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Preface

The present thesis addresses the theoretical and the numerical analysis of the Hodge
Laplace equation within the framework of �nite element exterior calculus. The
content of this thesis is partially based on the following research articles, which have
been accepted for publication or submitted for peer review:

[A] M. W. Licht, Complexes of discrete distributional di�erential forms and their
homology theory. Accepted for publication in Foundations of Computational
Mathematics, (2016), DOI: 10.1007/s10208-016-9315-y.

[B] S. H. Christiansen and M. W. Licht, Poincaré-Friedrichs inequalities of
complexes of discrete distributional di�erential forms. Submitted

[C] M. Licht, Smoothed projections over weakly Lipschitz domains. Submitted

[D] M. Licht, Smoothed projections and mixed boundary conditions. Submitted

[E] M. Licht, Higher order �nite element de Rham complexes, partially localized
�ux reconstructions, and applications. Submitted

For the purpose of a streamlined, thorough, and comprehensive exhibition, the con-
tent of the submitted versions has been rearranged and some proofs have been
expanded. Additionally, the remarks of anonymous referees have been taken into
account for the completion of this thesis. Speci�cally,

� Chapter IV is based on parts of [E],

� Chapter VII is based on [C] and parts of [D],

� Chapter VIII is based on parts of [D],

� Chapter IX is based on [A] and [B],

� and Chapter X is based on parts of [E].

The remaining chapters provide unpublished background material.

In addition, some of the ideas in Chapter IX were written down �rst for my unpub-
lished Diplom thesis submitted at the University of Bonn in 2012.

[F] M. W. Licht, Discrete distributional di�erential forms and their applications.
University of Bonn, August 2012.
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I. Introduction

Partial di�erential equations relate to almost every area of mathematics, and so a
plurality of methods and perspectives has enjoyed a productive history of research.
For example, the analysis of partial di�erential equations in the mathematics of
electromagnetism and elasticity has led to the discovery of di�erential complexes
that are composed of the classical di�erential operators of vector analysis. The study
of those di�erential complexes has revealed structural insights which, in return, have
fostered our understanding of the original partial di�erential equations.

The formalism of di�erential complexes originated in the �eld of algebraic topol-
ogy and inspired the entire branch of mathematics that is now known as homo-
logical algebra. Di�erential geometry and di�erential topology have driven much
of the research on di�erential complexes throughout the last century and provide
a considerable share of the mathematical background of this thesis. This includes
in particular the calculus of di�erential forms, or exterior calculus, which enables
a unifying perspective on many aspects of classical vector calculus. The de Rham
complex over a smooth manifold is a prominent example of a di�erential complex
and can be regarded as one of the most extensively studied objects in mathematical
analysis. A central result in the theory of the de Rham complex leads back to the
origins of di�erential complexes in algebraic topology: the de Rham cohomology is
isomorphic to the singular cohomology of the geometric ambient. Many variations of
the de Rham complex have emerged in applications and in interactions with di�erent
branches of mathematics.

Mathematical electromagnetism is an especially important and rich �eld of appli-
cation for the techniques of exterior calculus. Many insights on the Poisson problem,
the curl curl equation, and the vector Laplace equation can be obtained from the
di�erential complex of classical vector calculus, which is composed of the gradient
operator ∇, the curl operator ∇×, and the divergence operator ∇·. We can fur-
ther deepen our mathematical, geometrical, and physical understanding of the topic
when moving from classical vector calculus to the calculus of di�erential forms. Here
the aforementioned di�erential operators are regarded as instances of the exterior
derivative, which are constitutive of the de Rham complex. One may argue that the
de Rham complex is an indispensable concept in the analysis of these partial di�er-
ential equations. For example, the dimensions of the de Rham cohomology spaces
describe the dimensions of the solution spaces of homogeneous vector Laplace equa-
tions. In the larger picture, the solution theory of partial di�erential equations
re�ects topological properties of the domain.

Therefore it appears natural to incorporate di�erential complexes and exterior
calculus in the numerical analysis of partial di�erential equations. Applications in
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I. Introduction

numerical electromagnetism have been a signi�cant motivation for this development,
which has gained momentum during the past decades [29, 109]. A publication of
Arnold, Falk, and Winther from 2006 [9] has received attention from a broader
mathematical audience and has popularized �nite element exterior calculus as a
theoretical framework to unify and complete several research e�orts in numerical
analysis. Finite element exterior calculus [10, 11] provides a framework to utilize a
plethora of results in pure analysis for the theory of �nite element methods and has
given a comprehensive perspective on the construction of �nite element spaces for
vector-valued problems.

The topic of this thesis is the numerical analysis of partial di�erential equations
in the framework of �nite element exterior calculus. In addition to concepts of
the mathematical theory of �nite element methods, the framework of �nite element
exterior calculus involves many branches of mathematics, which include algebraic
topology, di�erential geometry, and functional analysis. We give a brief outline of
the theory in order to communicate the underlying ideas and to indicate the starting
points of the research in this thesis.

We start with the background in global analysis. Suppose that Ω ⊂ Rn is a
bounded Lipschitz domain and let L2Λk(Ω) be the Hilbert space of square-integrable
di�erential k-forms over Ω. The exterior derivatives of such di�erential forms exists
in the sense of distributions, and hence we de�ne

HΛk(Ω) :=
{
v ∈ L2Λk(Ω)

∣∣ dkv ∈ L2Λk+1(Ω)
}
. (I.1)

This is the Hilbert space of square-integrable di�erential k-forms whose exterior
derivative is square-integrable too. This is precisely the Sobolev space H1(Ω) in the
special case k = 0, but HΛk(Ω) generally contains much more than the di�erential
k-forms with coe�cients in H1(Ω). Since the exterior derivative of an exterior
derivative is zero, we obviously have dkHΛk(Ω) ⊆ HΛk+1(Ω). As a consequence, we
may formulate the L2 de Rham complex

0→ HΛ0(Ω)
d0

−−−→ . . .
dn−2

−−−→ HΛn−1(Ω)
dn−1

−−−→ L2Λn(Ω)→ 0 (I.2)

as a �rst but important example of a di�erential complex in this thesis. The theory
of Hilbert complexes shows that this di�erential complex satis�es a certain duality
relation with another di�erential complex,

0← L2Λ0(Ω)
δ1

←−−− H∗0 Λ1(Ω)
δ2

←−−− . . .
δn←−−− H∗0 Λn(Ω)← 0. (I.3)

Here, δ denotes the codi�erential andH∗0 Λk(Ω) denotes the space of square-integrable
k-forms whose codi�erential is square-integrable and which in addition satisfy a spe-
ci�c type of boundary conditions along ∂Ω, the details of which we omit at this point.
The nature of the aforementioned duality is precisely that δk+1 is the adjoint of dk

in the sense of unbounded operators between L2 spaces of di�erential forms.

The Hodge Laplace problem has been studied extensively in analysis. It general-
izes many partial di�erential equations in vector analysis such as the Poisson prob-

4



lem and the vector Laplace problem. Its precise form is as follows: given a square-
integrable k-form f ∈ L2Λk(Ω), the Hodge Laplace problem is �nding u ∈ L2Λk(Ω)
such that

u ∈ HΛk(Ω) ∩H∗0 Λk(Ω), dku ∈ H∗0 Λk+1(Ω), δku ∈ HΛk−1(Ω), (I.4a)

dk−1δku+ δk+1dku = f. (I.4b)

The �rst line of these conditions implies regularity of u and its higher derivatives
and several boundary conditions, whereas the second line states that u solves the
Hodge Laplace equation. The numerical analysis of the Hodge Laplace problem
has constituted a major motivation for the development of �nite element exterior
calculus.

To improve our understanding of the Hodge Laplace problem, we introduce the
space Hk(Ω) of harmonic k-forms,

Hk(Ω) :=
{
p ∈ HΛk(Ω) ∩H∗0 Λk(Ω)

∣∣ δkp = 0, dkp = 0
}
, (I.5)

This space is of particular relevance for the analysis of the Hodge Laplace equation
because Hk(Ω) is both the kernel of the Hodge Laplace operator and the orthogonal
complement of its range. On the other hand, it is a fundamental fact that

Hk(Ω) '
{
v ∈ HΛk(Ω)

∣∣ dkv = 0
}

{ dk−1w | w ∈ HΛk−1(Ω) }
,

where the factor space on the right-hand side is precisely the k-th cohomology space
of the L2 de Rham complex. It can be shown that the dimension of the k-th coho-
mology space, and thus the dimension of the space of harmonic k-forms, equals the
k-th absolute Betti numbers of the domain. This exempli�es a feature of a partial
di�erential equation that re�ects properties of the geometric ambient and can be
expressed in terms of di�erential complexes.

Corresponding to the usage of di�erential complexes in the analysis of partial
di�erential equations, it appears promising to study di�erential complexes of �nite
element spaces. Indeed, �nite element de Rham complexes constitute the foundation
of �nite element exterior calculus. Given a triangulation T of the domain Ω, we
study �nite element de Rham complexes

0→ PΛ0(T )
d0

−−−→ . . .
dn−2

−−−→ PΛn−1(T )
dn−1

−−−→ PΛn(T )→ 0 (I.6)

consisting of piecewise polynomial di�erential forms that have single-valued traces
along inter-element boundaries. These are subcomplexes of the original L2 de Rham
complex. Arnold, Falk and Winther have determined classes of �nite element
de Rham complexes that realize the k-th absolute Betti numbers on cohomology.
The study of �nite element de Rham complexes has guided the design of stable and
convergent mixed �nite element methods for the Hodge Laplace problem.

A �rst tentative approach to the �nite element analysis of the Hodge Laplace
equation could begin with switching from the strong formulation (I.4) to a weak
formulation, where we seek u ∈ HΛk(Ω) ∩H∗0 Λk(Ω) such that

〈dku, dkv〉+ 〈δku, δkv〉 = 〈f, v〉, v ∈ HΛk(Ω) ∩H∗0 Λk(Ω). (I.7)
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I. Introduction

Here the products denote the usual L2 products. Several issues, however, oppose this
as the foundation of a Galerkin method. On the one hand, the kernel of the symmet-
ric bilinear form associated to (I.7) is precisely Hk(Ω), which is generally a non-trivial
space unless the domain is contractible. We need a Lagrange multiplier to accom-
modate the kernel, and in many applications Hk(Ω) can only be approximated in
the �nite element space. On the other hand, and much more severely, one can show
that the piecewise polynomial k-forms in the intersection space HΛk(Ω)∩H∗0 Λk(Ω)
are generally not a dense subset unless the domain is convex [62]. Consequently,
Galerkin methods based on (I.7) will generally not converge to the solution of the
original problem.

These problems can be circumvented at the cost of an auxiliary variable for the
solution's codi�erential. Much research e�ort has been invested into the analysis of
mixed �nite element methods where we only need to provide �nite element spaces
conforming to HΛk−1(Ω) and HΛk(Ω). Speci�cally, we consider the following mixed
formulation of the Hodge Laplace problem: we seek σ ∈ HΛk−1(Ω), u ∈ HΛk(Ω),
and p ∈ Hk(Ω) such that

〈σ, τ〉 − 〈u, dk−1τ〉 = 0, τ ∈ HΛk−1(Ω), (I.8)

〈dk−1σ, v〉+ 〈dku, dkv〉+ 〈p, v〉 = 〈f, v〉, v ∈ HΛk(Ω), (I.9)

〈u, q〉 = 0, q ∈ Hk(Ω). (I.10)

One can show that this formulation is uniquely solvable with compact solution op-
erator, and it is easily seen to be equivalent to the original problem except for the
introduction of a Lagrange multiplier to handle the space of harmonic forms.

Finite element exterior calculus replicates this variational formulation over the L2

de Rham complex as a mixed �nite element method over the �nite element de Rham
complex. We seek σh ∈ PΛk−1(T ), uh ∈ PΛk(T ), and ph ∈ Hk(T ) such that

〈σh, τh〉 − 〈uh, dk−1τh〉 = 0, τh ∈ PΛk−1(T ), (I.11)

〈dk−1σh, vh〉+ 〈dkuh, dkvh〉+ 〈ph, vh〉 = 〈f, vh〉, vh ∈ PΛk(T ), (I.12)

〈uh, qh〉 = 0, qh ∈ Hk(T ). (I.13)

Here Hk(T ) denotes the space of discrete harmonic k-forms,

Hk(T ) :=
{
ph ∈ PΛk(T )

∣∣ dk−1PΛk−1(T ) ⊥ ph, d
kph = 0

}
, (I.14)

which is a (generally non-conforming) approximation of Hk(Ω). An important struc-
tural property of the harmonic k-forms is nevertheless preserved by their discrete
counterparts: their dimension equals the k-th absolute Betti numbers and thus cor-
responds to topological properties of the domain.

We have replicated important structures of the original problem in the discrete
setting. But in order to relate both worlds and especially in order to obtain ap-
proximation estimates for the Galerkin method, we need a concept of uttermost
importance to �nite element exterior calculus: commuting uniformly bounded pro-
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jections. Suppose that we have a commuting diagram

0 −−−→ HΛ0(Ω)
d−−−→ HΛ1(Ω)

d−−−→ . . .
d−−−→ L2Λn(Ω) −−−→ 0

π0
h

y π1
h

y πnh

y
0 −−−→ PΛ0(T )

d−−−→ PΛ1(T )
d−−−→ . . .

d−−−→ PΛn(T ) −−−→ 0,

where the vertical operators are idempotent and uniformly L2 bounded in the rele-
vant discretization parameters. Then a multitude of abstract results is immediately
instantiated, including the stability and convergence of mixed �nite element meth-
ods for the Hodge Laplace problem, corresponding results for eigenvalue problems,
upper bounds for Poincaré-Friedrichs constants, and approximation estimates for
the harmonic forms.

Signi�cant work has been accomplished on �nite element exterior calculus, but
several unresolved questions and untapped possibilities have remained at its very
foundations. In the course of this thesis we explore such topics. The error analysis
of �nite element exterior calculus is a thematic priority. The following observations
have inspired this research in particular.

� The class of Lipschitz domains, even though a common choice for the geometric
ambient in numerical analysis, is unnecessarily restrictive in theory and appli-
cations. There is no di�culty in �nding polyhedral domains in R3 that are not
Lipschitz domains. We propose the class of weakly Lipschitz domains as more
natural for the purposes of numerical analysis. Both the L2 de Rham complex
and the �nite element de Rham complexes can be formulated on weakly Lip-
schitz domains in the usual manner, but we need a smoothed projection over
weakly Lipschitz domains in order to instantiate the abstract Galerkin theory
of Hilbert complexes and enable a priori error estimates. Previous works have
constructed smoothed projections only over Lipschitz domains.

� The Poisson equation with mixed boundary conditions is standard. Much less
literature is available on mixed boundary conditions in mathematical and nu-
merical electromagnetism. More generally, the Hodge Laplace equation with
mixed boundary conditions has been discussed only in a few selected contribu-
tions to global analysis (e.g., [99]). The lack of literature on mixed boundary
conditions in pure analysis might be the reason that mixed boundary con-
ditions have not yet been incorporated into �nite element exterior calculus:
even the Poisson equation with mixed boundary conditions has remained in-
accessible. We have incentive to improve this situation since mixed boundary
conditions are relevant in theory and practice. For the numerical analysis of the
Hodge Laplace equation with mixed boundary conditions, we need to identify
a variant of the L2 de Rham complex with corresponding partial boundary con-
ditions and construct the smoothed projection. Harmonic forms with mixed
boundary conditions are especially interesting here.

� Apart from the a priori error analysis, we are also interested in the a posteriori
error analysis in �nite element exterior calculus. The classical residual error
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I. Introduction

estimator has been studied in �nite element exterior calculus by Demlow and
Hirani [72]. But several other error estimators in the literature show potential
for a productive interaction with �nite element exterior calculus. This is espe-
cially true for Braess and Schöberl's equilibrated a posteriori error estimator
for the curl curl equation [34]. We will study their results in this thesis with
particular attention to distributional �nite element sequences. Our agenda
moreover includes generalizing their intricate error estimator to higher order
edge elements. This provides new tools in numerical analysis and solves an
open problem of practical interest.

� Last but not least, we are inclined to address the discrete foundations of �nite
element exterior calculus, namely the construction of �nite element spaces
and their bases. Despite many contributions to this topic, the theoretical
framework cannot be regarded as �nished yet, and a comprehensive way of
representation is yet to be developed. We illuminate some aspects that might
be of interest to a broader audience.

This thesis comprises the research which has evolved from these observations. It is
organized into several chapters that are based on accepted publications, submitted
articles, and unpublished material. Chapter II addresses several topics related to
simplices, simplicial complexes, and chain complexes, which serve as a technical
background for subsequent chapters. Chapters III and IV describe the construction
of �nite element spaces. The remaining chapters treat three di�erent thematic areas
that can be read independently of each other. In Chapters VI�VIII we extend the a
priori error estimates in �nite element exterior calculus. In Chapter IX we develop
the notion of discrete distributional di�erential form. Eventually, in Chapter X we
address equilibrated a posteriori error estimates. The thesis is concluded with an
outlook to possible future directions of research.

In addition, several basic notions are given in the appendix of this thesis and
assumed throughout this work. The reader may brie�y consult the appendix before
approaching the actual content of this thesis.

Finite Element Di�erential Forms

The analysis of �nite element methods builds upon the notion of �nite element
spaces. In the case of �nite element exterior calculus we build upon the notion of
�nite element di�erential forms. A pivotal concept here are geometrically decom-
posed bases.

We set up the theory of polynomial di�erential forms on simplices in Chapter III.
The �nite element spaces PrΛk(T ) and P−r Λk(T ) over a simplex T have been stud-
ied in many publications [9, 10, 29, 52, 53, 57, 107, 108, 109, 153, 154] which build
upon previous research on Nédélec and Raviart-Thomas spaces [2, 103, 161, 174]. In
Chapter III we give an outline of these spaces over simplices. We do not, however,
aim at a complete construction ab initio. Hence the reader is strongly assumed to
be familiar with prior publications, in particular [9] and [10]. Even though many
of these results are known in principle, our way of exposition is new and possi-
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bly interesting for experts, and even though Chapter III is not intended as a text
book chapter, its content may contribute to popularizing the bases in �nite element
exterior calculus to practitioners in computational science.

We give a complete derivation of geometrically decomposed bases for the spaces
PrΛk(T ) and P−r Λk(T ) and the corresponding spaces with boundary conditions
P̊rΛk(T ) and P̊−r Λk(T ). Moreover, we construct extension operators

extk,rF,T : P̊rΛk(F )→ PrΛk(T ), extk,r,−F,T : P̊−r Λk(F )→ P−r Λk(T ),

from subsimplices F onto a simplex T . This is su�cient to facilitate the geometric
decomposition of �nite element spaces.

The construction of the basis forms and the geometric decomposition in �nite el-
ement exterior calculus has so far been distributed over two publications by Arnold,
Falk, and Winther [9, 10]. Our manner of presentation is inspired by these works
but features also some modest novelties. We �rst construct bases for PrΛk(T )
and P̊rΛk(T ) and derive the geometric decomposition. Analogously we address the
spaces P−r Λk(T ) and P̊−r Λk(T ) and their geometric decomposition.

A signi�cant innovation in Chapter III is our exposition of the isomorphisms

PrΛk(T ) ' P̊−r+n−k+1Λn−k(T ), P̊r+n−k+1Λk(T ) ' P−r Λn−k(T ),

and corresponding duality pairings, which have been used only implicitly in many
previous works. A recent publication by Christiansen and Rapetti [57] is a major
inspiration here and we generalize their results.

Having studied �nite element di�erential forms over simplices, we turn our at-
tention to �nite element di�erential forms over triangulations in Chapter IV. We
begin with a brief review of the classical Whitney forms over a triangulation, which
constitute the �nite element de Rham complex of lowest order, and their duality to
the simplicial chain complex of the triangulation. A minor novelty is that we study
the complex of Whitney forms with a general class of boundary conditions.

Proceeding to the construction of higher order �nite element spaces, we draw
inspiration from the dissertation of Zaglmayr [183] and a publication by Demkowicz,
Monk, Vardapetyn, and Rachowicz [69] in the area hp �nite element methods. We
obtain a new description of �nite element spaces of higher and possibly non-uniform
polynomial order. The basic idea is constructing �nite element spaces of higher
order through the local augmentation of the space of Whitney forms. Extending
that line of thought, we understand �nite element de Rham complexes of higher
and possibly non-uniform polynomial order as the augmentation of the complex of
Whitney forms by local higher order �nite element de Rham complexes. Eventually,
we devise the �nite element interpolant, building upon prior work in the area of
hp �nite element methods. The interpolant is notably di�erent from the canonical
interpolant in previous publications on �nite element exterior calculus, but it agrees
with the harmonic interpolation in the theory of �nite element systems [56].
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I. Introduction

Smoothed Projections

A fundamental topic in the theory of �nite element methods are a priori error
estimates, which estimate the approximation error of a Galerkin solution in terms of
the data (e.g., its Sobolev norm) and some parameters of the �nite element spaces
(e.g., the mesh size). Another fundamental topic is the stability of �nite element
methods, which a�ects their practical solvability by numerical algorithms. Within
the Galerkin theory of Hilbert complexes admitted by �nite element exterior calcu-
lus, stability and convergence can be studied in terms of one single concept: uni-
formly bounded commuting projections. These are known speci�cally as smoothed
projections in this context.

Smoothed projections are critical to �nite element exterior calculus, but actu-
ally constructing and analyzing smoothed projections is a technically sophisticated
endeavor. Building upon earlier works of Christiansen [52] and Schöberl [160], the
publication by Arnold, Falk, and Winther [9] approached L2 de Rham complexes
over Lipschitz domains and �nite element spaces over quasi-uniform families of tri-
angulations. This was successively extended by Christiansen and Winther [58] who
addressed L2 de Rham complexes over Lipschitz domains with homogeneous bound-
ary conditions and merely shape-uniform families of triangulations.

A major part of this thesis is dedicated to the extension of those contributions.
On the one hand, we have incentive to transcend the class of Lipschitz domains and
develop �nite element exterior calculus over weakly Lipschitz domains, as has been
brought to our attention above. Constructing a smoothed projection over weakly
Lipschitz domains will accomplish this.

On the other hand, we address the Hodge Laplace equation with mixed bound-
ary conditions in �nite element exterior calculus. Mixed boundary conditions are
standard for the Poisson problem, but the state of research is entirely di�erent for
the Hodge Laplace equation and its translations to classical vector analysis. For our
understanding of mixed boundary conditions, it is instructive to study the founda-
tional de Rham complexes in the �rst place: in this case, L2 de Rham complexes
with partial boundary conditions. For the analytical background we point to a ma-
jor publication by Gol'dshtein, Mitrea, and Mitrea [99], whose results we apply to
the Hodge Laplace equation with mixed boundary conditions over weakly Lipschitz
domains. The challenge is to construct a smoothed projection that preserves partial
boundary conditions. This is accomplished in Chapters V�VIII.

We begin with a review of Sobolev spaces of di�erential forms over domains in
Chapter V. For the sake of generality (and for subsequent use) we consider Lp

spaces of di�erential forms. In particular, we introduce the W p,q classes of di�er-
ential forms, which are Lp integrable di�erential forms with Lq integrable exterior
derivative [100], to the literature of numerical analysis. We study the behavior of
those di�erential forms under pullback along bi-Lipschitz mappings.

Next we discuss the class of weakly Lipschitz domains in Chapter VI. A weakly
Lipschitz domain is a domain whose boundary can be �attened locally by a bi-
Lipschitz coordinate transformation. Arguably, this class is very large: it contains
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Lipschitz domains and also all polyhedral domains in R3 (see Theorem VI.3.2). With
a recourse to Lipschitz topology [134], we introduce the concept of Lipschitz collar
(see Theorem VI.1.8) to the numerical literature. Moreover, we prepare our dis-
cussion of mixed boundary conditions with the foundational notions of admissible
boundary patch and admissible boundary partition.

The construction and analysis of the smoothed projection is completed in Chap-
ter VII over the course of several stages, reminiscent of the constructions in published
literature [9, 52, 58] even though notable changes are made.

First, a commuting extension operator extends the di�erential form to a neigh-
borhood of the domain. The basic idea is the extension-by-re�ection, for which we
utilize a Lipschitz collar along the domain boundary. A modi�cation of this idea
accommodates for partial boundary conditions: the di�erential form is extended by
zero to a bulge attached along the boundary part along which essential boundary
conditions are imposed. Subsequently, the pullback along a bi-Lipschitz deformation
extends this bulge. The resulting di�erential form vanishes in a neighborhood of the
boundary and the degree of deformation can be controlled locally. This step is cru-
cial for the handling of boundary conditions. In the next stage of the construction,
a commuting molli�cation operator smooths the di�erential form. The molli�cation
radius is locally controllable.

When we combine the canonical commuting interpolation operator with the
aforementioned commuting smoothing operator, and let the molli�cation radius be
controlled by a mesh size function, then we obtain a uniformly bounded commuting
mapping from the L2 de Rham complex with partial boundary conditions to a �nite
element subcomplex. But this is not yet a projection because it does not leave the
�nite element space invariant. As a compensation, we employ what is sometimes
called the Schöberl trick : carefully adjusting the parameters in our construction,
we can control the interpolation error over �nite element di�erential forms. This
ensures the existence of a uniformly bounded commuting operator that corrects the
interpolation error. Putting all this together we recover the projection property.

Estimating the aforementioned interpolation error is far from trivial though. We
model our proof after material in earlier publications [9, 58]. To the author's best
knowledge and understanding, however, the proofs in those papers are not complete
(see Remark VII.8.9). In order to �nalize the proof, we utilize an assortment of
concepts in geometric measure theory.

The technical e�ort to derive the smoothed projection is signi�cant, but eventu-
ally we instantiate the Galerkin theory of Hilbert complexes, as described in Chap-
ter VIII. We give an outline of Hilbert complexes and then discuss the L2 de Rham
complex with partial boundary conditions. Harmonic forms satisfying mixed bound-
ary conditions are of particular interest because they feature a quality not present
in the case of non-mixed boundary conditions: their dimension not only depends on
the topology of the domain but also on the topology of the boundary partition. As
an example application of the Galerkin theory of Hilbert complexes, we recapitulate
the a priori convergence estimates in �nite element exterior calculus and apply them
to the Hodge Laplace equation with mixed boundary conditions.

11



I. Introduction

De Rham complexes with partial boundary conditions over weakly Lipschitz
domains have not been subject of much research yet. As a secondary outcome of our
research we obtain a new result on the density of smooth di�erential forms in Sobolev
spaces of di�erential forms with partial boundary conditions (see Theorem VII.4.3).
This has not been available in the literature previously.

Discrete Distributional Di�erential Forms

After our study of a priori error estimates and smoothed projections we turn the
focus towards a very di�erent topic. In Chapter IX we investigate discrete distribu-
tional di�erential forms.

This track of research originates from the seminal publication of Braess and
Schöberl on equilibrated a posteriori error estimates for edge elements [34]. One of
the many novel concepts in their publication have been distributional �nite element
sequences, which generalize the classical conforming �nite element sequences. For a
motivating example, let T be a three-dimensional triangulation and consider a �nite
element sequence of lowest polynomial order,

P1
0 (T )

grad−−−→ Nd0
0(T )

curl−−−→ RT0
0(T )

div−−−→ P0
−1(T ),

consisting of the �rst-order Lagrange space P1
0 (T ) with Dirichlet boundary condi-

tions, the lowest-order Nédélec space Nd0
0(T ) with homogeneous tangential bound-

ary conditions, the lowest-order Raviart-Thomas space RT0
0(T ) with homogeneous

normal boundary conditions, and the space of piecewise constant functions P0
−1(T ).

The subindex −1 in the latter symbol indicates that no continuity conditions are
imposed on members of P0

−1(T ) along inter-element faces.
Similarly, let RT0

−1(T ) denote the space of vector �elds that are piecewise in the
Raviart-Thomas space but which do not necessarily satisfy any normal continuity
along inter-element faces or any normal boundary conditions. The divergence of
such vector �elds in the sense of distributions is contained in the space P0

−2(T ), the
space of distributions spanned by integrals over tetrahedra and integrals over faces
of the triangulation. We have a well-de�ned di�erential complex

P1(T )
grad−−−→ Nd0

0(T )
curl−−−→ RT0

−1(T )
div−−−→ P0

−2(T ).

We generalize this construction. Let Nd0
−1(T ) denote the space of vector �elds

that are piecewise in the lowest-order Nédélec space but that do not necessarily
satisfy any tangential continuity along inter-element faces or tangential boundary
condition along boundary faces. The curl of such a vector �eld is contained in
the space RT0

−2(T ), which is de�ned as the space of vector-valued distributions
spanned by integrals against piecewise Raviart-Thomas vector �elds and integrals
of the tangential component of a vector �eld against Nédélec vector �elds over faces.
The divergence of a distributional vector �eld in RT0

−2(T ) is contained in P0
−3(T ),

which is the direct sum of P0
−2(T ) and the span of integrals over edges. We can
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assemble the di�erential complex

P1(T )
grad−−−→ Nd0

−1(T )
curl−−−→ RT0

−2(T )
div−−−→ P0

−3(T ).

Once again, we may repeat this principle and consider the space P1
−1(T ) of piecewise

a�ne functions over T , which is a discontinuous version of the �rst-order Lagrange
elements. Proceeding in a completely analogous manner as above, we generate a
di�erential complex

P1
−1(T )

grad−−−→ Nd0
−2(T )

curl−−−→ RT0
−3(T )

div−−−→ P0
−4(T )

of distributional �nite element spaces.

In this thesis we translate their notion of distributional �nite element sequence
into the setting of �nite element exterior calculus, which gives rise to the notion
of discrete distributional di�erential form. The original contribution of Braess and
Schöberl treated only the case of lowest polynomial order over local patches. We
develop discrete distributional de Rham complexes over arbitrary triangulations and
allow for �nite element spaces of higher order.

The two major points of investigation are the homology theory of discrete dis-
tributional de Rham complexes and Poincaré-Friedrichs inequalities with respect to
mesh dependent norms. This work was originally conceived prior to the research
on smoothed projections, and one achievement has been the characterization of the
cohomology spaces of conforming �nite element sequences when partial boundary
conditions are imposed.

Flux Reconstruction and A Posteriori Error Estimation

We conclude this thesis with another approach to the work of Braess and Schöberl.
In Chapter X we give an a�rmative answer to an open question in the area of a
posteriori error estimation: can the equilibrated error estimator for edge elements of
lowest order be generalized to the higher order case?

In order to put this question into proper context, we recall the problem of error
estimation in the �nite element method. We not only want to compute an approxi-
mate solution to a partial di�erential equation, but we also want to quantitatively
estimate the approximation error. The terminology is suggestive of the fact that
a priori error estimates bound the approximation error prior to the computation
of the Galerkin solution. By their very nature these error bounds only involve the
initial data of the problem.

While a priori error estimates prove the asymptotic convergence of a Galerkin
method, they are not as suitable for adaptive �nite element methods and reliable
error estimation. On the one hand, they typically involve many unknown constants
which are di�cult to estimate in practice. On the other hand, we may reasonably
assume that we can bound the Galerkin error more precisely given the approximate
solution as additional information.

This motivates a posteriori error estimation, conducted posterior to the com-
putation of an approximate solution. Past decades have seen considerable research
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I. Introduction

activity on a posteriori error estimators and many rigorous and heuristic methods
have been proposed (see [4, 156, 172] for a small overview). The persistent research
interest is especially due to the signi�cant role of a posteriori error estimation in
adaptive �nite element methods (see, e.g., [46, 111]).

The classical residual error estimator is the prototypical example of an a pos-
teriori error estimator and can be found in many introductory textbooks on �nite
element methods. For a basic outline let f ∈ L2(Ω) and let uh ∈ H1

0 (Ω) be an
approximate solution to the Poisson problem ∆u = f with Dirichlet boundary con-
ditions. The residual rh ∈ H−1(Ω) is de�ned as rh := f − ∆uh, which means
rh = ∆(u − uh) in the sense of distributions. Since ∆ : H1

0 (Ω) → H−1(Ω) is an
isomorphism we conclude that the H1 norm of the error u−uh is comparable to the
H−1 norm of rh. The latter can be estimated explicitly in terms of a mesh-dependent
norm if f and uh are piecewise polynomial and uh is the Galerkin solution.

The classical residual error estimator, however, su�ers from practical short-
comings that have motivated further research: the estimate involves anonymous
constants that are di�cult to estimate in practice and it is outcompeted in numer-
ical experiments. This thesis will not explore the classical residual error estimator
in �nite element exterior calculus in further detail; we refer to the publication of
Demlow and Hirani for a detailed exposition [72].

Instead we explore alternative a posteriori error estimators that promise sharper
error bounds. Among these, the class of equilibrated or implicit error estimators has
attracted considerable attention [3, 33, 118]. They utilize the hypercircle method
[170]. For a brief outline of the idea, consider again the Poisson problem ∆u = f
with Dirichlet boundary conditions and let uh ∈ H1

0 (Ω) be any approximate solution.
Suppose that σ ∈ H(div,Ω) with − divσ = f . The hypercircle theorem (or Prager-
Synge theorem) states that

‖σ − graduh‖2
L2 = ‖σ − gradu‖2

L2 + ‖ gradu− graduh‖2
L2 .

We obtain a simple L2 estimate for the error gradu−graduh in terms of the L2 norm
of σ−graduh. Practically using the equilibrated error estimator, however, comes at
a price: whereas the approximation uh is assumed to be known from the outset, the
�ux σ needs to be reconstructed with additional computational e�ort. In principle,
σ can be obtained as the �ux variable in a mixed �nite element method for the
same Poisson problem, which requires the solution of a global problem. But if uh
is the Galerkin solution over, say, the Lagrange elements of some polynomial order,
then this additional structure enables a more e�cient �ux reconstruction: we can
compute a �ux σ in, say, the Raviart-Thomas space using only local computations
over patches. Numerical experiments indicate that this error estimator bounds the
error more tightly than the classical residual error estimator [47].

In the light of those research activities, we are interested in a posteriori error
estimators for the curl curl problem. The largest share of previous research has
focused on the classical residual error estimator (see, e.g, [16, 144, 160]). A notable
exception is Braess and Schöberl's a posteriori error estimator, which has already
been mentioned above. For a brief outline, let f ∈ L2(Ω) and let u ∈ H(curl,Ω) be
a solution to the partial di�erential equation curl curl u = f . When uh ∈ H(curl,Ω),
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then it is reasonable to ask for an L2 estimate of the error curl (u− uh).
If the domain is contractible, and f has vanishing divergence and vanishing nor-

mal component along ∂Ω, then there exists σ ∈ H(curl,Ω) with vanishing tangential
component along ∂Ω such that curlσ = f . Under these conditions one can show a
vector �eld analogue to the Prager-Synge identity above,

‖σ − curl uh‖2
L2 = ‖σ − curl u‖2

L2 + ‖ curl u− curl uh‖2
L2 .

Therefore the H(curl,Ω) seminorm of the error u− uh is bounded by the L2 norm
of the vector �eld σ − curl uh.

But as before, there is no free lunch: the computation of the �ux variable σ must
precede the equilibrated error estimation. Computing a �ux by a mixed method is a
global problem, but the computation can be localized under additional conditions:
if uh is contained in the Nédélec space and satis�es the Galerkin property for the
curl curl equation, then computations over local patches recover a �ux σ. In practice,
we assume f in a Raviart-Thomas space with normal boundary conditions and we
compute σ in a Nédélec space with tangential boundary conditions.

This instance of localized �ux reconstruction, however, is considerably more in-
tricate, both mathematically and algorithmically, than for the Poisson problem.
Braess and Schöberl have addressed the problem of �ux reconstruction for vector-
valued �nite elements only in the lowest-order case. How to generalize to the higher
order case is far from obvious and has remained an unresolved problem for years.

Solving this open problem is the main agenda of Chapter X. We address the
topic of �ux reconstruction, the algorithmic solution of the �ux equation curlσ = f
between �nite element spaces, and we introduce the partially localized �ux recon-
struction as a novel concept. Here we build upon Chapter IV, where we have
constructed the �nite element de Rham complexes via local augmentation of the
complex of Whitney forms. The partially localized �ux reconstruction reduces the
�ux reconstruction for curlσ = f between �nite element spaces of higher (and pos-
sibly non-uniform) polynomial order to the case of lowest polynomial order. This
reduction uses only parallelizable local computations.

As a closure of Chapter X we address the problem of equilibrated error esti-
mators for the curl curl problem once again: the fully localized computation of the
equilibrated error estimator in the case of higher order �nite elements is achieved by
combining the partially localized �ux reconstruction with the fully localized com-
putations of Braess and Schöberl for the lowest order case. This solves the open
problem mentioned above.

This outcome demonstrates how abstract mathematical methods can lead to
surprising new insights and practical applications.
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II. Simplices and Triangulations

Simplices are studied in many branches of mathematics, such as combinatorics, ge-
ometry, or algebraic topology. Simplices also provide the mathematical background
for meshes in many �nite element methods. In this thesis we draw on these di�erent
accesses to simplices in mathematics and have them come together in the study of
mixed �nite element methods. For that reason, an entire chapter is dedicated to a
thorough exposition of simplicial concepts.

We begin with gathering de�nitions concerning simplices, simplicial complexes,
and local patches in Section II.1, in order to establish the combinatorial background.
We then turn our attention to quantifying the quality of simplices and simplicial
complexes in several sections. In Section II.2 we de�ne the geometric shape measure
and relate it to properties of reference transformations. Subsequently, we discuss
solid angles of simplices in Section II.3, and show how the geometric shape measure
determines a lower bound for the minimum solid angle of a simplex. Having studied
the regularity of single simplices, we address the regularity of simplicial triangula-
tions in Section II.4. Finally, we discuss the regularity of reference transformations
in Section II.5. Those sections elaborate the technical details of mesh regularity in
the theory of �nite element methods, which seem to be mathematical folklore. We
study those technical details (i) to make the presentation self-contained and fully
rigorous, (ii) to make explicit results formally available in the higher-dimensional
case, and (iii) because explicit and quantitative estimates are of inherent interest in
a computational setting. Lastly, we put simplicial complexes into the perspective
of algebraic topology, and study simplicial chain complexes in Section II.6. Here we
pay special attention to simplicial chain complexes associated to local patches.

Simplicial complexes have been referred to before in research on �nite element
di�erential complexes (e.g., [56, 57, 109, 154]). Throughout this chapter, we discuss
combinatorial and algebraic properties of a simplicial complex T always relative to
a subcomplex U wherever this is applicable. The consideration of subcomplexes is
a natural prerequisite for the discussion of de Rham complexes with boundary con-
ditions. Even though a basic concept of algebraic topology, simplicial subcomplexes
have not received much attention in numerical literature.

The decomposition of a domain into smaller elements has been the seminal idea
of �nite element methods, but those elements are not necessarily simplices. Histor-
ically, quadrilateral elements have been used since the beginnings of �nite element
methods [59, 65]. Moreover, prismatic and pyramidal elements appear naturally
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when connecting tetrahedral and quadrilateral meshes (e.g., [183]). Finite element
methods based on discretizations by general polytopes have seen a surge of interest
in recent years. There are far too many developments in that area to list them here;
two particular examples that we mention are virtual �nite element methods [19, 39]
and polytopal �nite element methods based on generalized barycentric coordinates
[90, 91, 96, 137, 173]. Finite element systems are an abstract framework for gen-
eral polyhedral methods [56]. The combinatorial and algebraic aspects of simplicial
complexes carry over with only technical changes to general polyhedral complexes;
indeed, general cellular complexes are a standard concept in combinatorial and al-
gebraic topology (e.g. polyhedral complexes [5]). By contrast, the understanding of
shape measures for general polytopes is only in its beginnings [95].

II.1. Basic De�nitions

Let m,n ∈ N0. Points v0, . . . , vm ∈ Rn are called a�nely independent if no single
of these points is an a�ne combination of the others. Moreover, if v0, . . . , vm are
a�nely independent, then m ≤ n.

A set S ⊂ Rn is a closed m-simplex if it is the convex closure of a�nely indepen-
dent points v0, . . . , vm ∈ Rn, which we call the vertices of S. We write Ver(S) for the
vertices of S, and note that Ver(S) is uniquely determined by S. We say that S is
m-dimensional or has dimension m. We call S full-dimensional if S is an n-simplex.
An important simplex is the m-dimensional reference simplex ∆m ⊂ Rm,

∆m := convex {0, e1, . . . , em} , (II.1)

de�ned as the convex closure of the origin and the m di�erent standard coordinate
vectors e1, . . . , en of Rm.

If F is another simplex with Ver(F ) ⊆ Ver(S), then we call F a subsimplex of S,
and in turn we call S a supersimplex of F . We write ∆(S) for the set of subsimplices
of S. For any F ∈ ∆(S) we let ıF,S : F → S denote the inclusion. In the sequel, we
call 0-simplices also vertices and 1-simplices also edges . If T is an m-simplex and
F ∈ ∆(T ) is a simplex of dimension m− 1, then we call F a face of T .

Remark II.1.1.

(i) Even though considering the empty set as a simplex is not unheard of in the
literature, we do not consider the empty set as a simplex in this thesis. (ii) Our
de�nition of simplex does not allow for �degenerate� simplices whose vertices are not
a�nely independent. We will not consider those in this thesis. (iii) A 0-simplex is
a set containing one single point of Rn, not the point itself, but we will often ignore
this di�erence to simplify the discussion.

A set T of simplices in Rn is called a simplicial complex if

∀T ∈ T : ∀S ∈ ∆(T ) : S ∈ T , (II.2a)

∀T, T ′ ∈ T :
(
T ∩ T ′ 6= ∅ =⇒ T ∩ T ′ ∈ ∆(T ) ∩∆(T ′)

)
. (II.2b)

The �rst condition means that T is closed under taking subsimplices, and the second
condition means that the intersection of two simplices is either empty or a common

18



1. Basic De�nitions

subsimplex. A simplicial complex U with U ⊆ T is called a simplicial subcomplex
of T . For m ∈ Z we de�ne

T m := { T ∈ T | dimT = m } , T [m] := { T ∈ T | dimT ≤ m } .

In other words, T m, m ∈ Z, is the set of m-dimensional simplices in T , and T [m],
m ∈ Z, is the smallest subcomplex of T that contains all of the m-dimensional
simplices of T . The set T [m] is also known as the m-dimensional skeleton of T . We
say that T is m-dimensional or has dimension m if

∀S ∈ T : ∃T ∈ T m : S ⊆ T.

We note that T m = ∅ if m /∈ {0, . . . , dim T }.
Simplicial complexes appear as discretizations of topological spaces. We write

[T ] :=
⋃
T∈T

T. (II.3)

We then say that T triangulates the closed set [T ]. We may sometimes ignore the
di�erence between T and [T ] in the notation for the sake of simplicity.

Example II.1.2.

(i) If T is an m-simplex, then ∆(T ) is a simplicial complex of dimension m. Then
∆(T )l is the set of l-dimensional subsimplices of T for l ∈ Z. (ii) Any a�ne triangula-
tion of an m-dimensional topological submanifold of Euclidean space with boundary
is an m-dimensional simplicial complex. (iii) Suppose that a simplicial complex T
triangulates a topological manifold with boundary. Then a simplicial subcomplex
of T triangulates the boundary of that manifold. Throughout this thesis, we will
consider subcomplexes U of T that triangulate a part of the boundary.

We are interested in the local structure of simplicial complexes. For this purpose
we introduce notions of patches. To begin with, we de�ne

T (T ) := { S ∈ ∆(T ′) | T ′ ∈ T , T ∩ T ′ 6= ∅ } . (II.4)

We call T (T ) the local patch or macropatch of T in T . It is the smallest simplicial
complex which contains all simplices of T with non-empty intersection with T .

A di�erent notion of simplicial patch is

M(T , F ) := { S ∈ T | ∃T ∈ T : {S, F} ⊆ ∆(T ) } . (II.5)

Note thatM(T , F ) is the smallest simplicial complex containing all simplices of T
that contain F . We callM(T , F ) the micropatch around F in T .

It will be of interest to construct a subcomplex of M(T , F ) that models the
boundary of the micropatch M(T , F ). Furthermore, T triangulates a topological
manifold with boundary in our applications, and then it will be of interest to take a
subcomplex U of T into account in our study of micropatches, where U triangulates
a boundary part of the manifold. Formally, if U is a simplicial subcomplex of T ,
then we de�ne

N (T ,U , F ) := { S ∈M(T , F ) | F /∈ ∆(S) or S ∈ U } . (II.6)

We call N (T ,U , F ) the micropatch boundary of F in T relative to U .
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Remark II.1.3.

If T is a simplicial complex of dimension m, then T (T ) andM(T , T ) are simplicial
complexes of dimension m. If additionally U is a subcomplex of T of dimension
m− 1, then N (T ,U , F ) is a simplicial complex of dimension m− 1.

Remark II.1.4.

We use micropatches to describe the local combinatorial structure of T relative to U .
For example, suppose that T triangulates a topological manifold M with boundary
and that U triangulates a part of the boundary of that manifold. If V ∈ T 0 is vertex
in the interior of M , thenM(T , V ) is the simplicial ball around V , and N (T ,U , V )
triangulates the boundary of that simplicial ball; here N (T ,U , V ) does not depend
on U . If V is instead a vertex at the boundary, then M(T , V ) triangulates a
simplicial ball that contains V in its boundary. The simplicial complex N (T ,U , V )
triangulates a part of the boundary of the simplicial ball; it contains those simplices
that do not contain V , and in addition those that are contained in U . In this
example, the subcomplex U enters the de�nition of N (T ,U , V ) only for boundary
vertices. The micropatch M(T , F ) and its subcomplex N (T ,U , F ) appear in our
discussion of discrete distributional di�erential forms.

Figure II.1: Illustration of macropatch and micropatch in a triangulation. The
macropatch around the thick edge segment is displayed. The hatched area indicates
the micropatch of the edge.

II.2. Regularity of Simplices

In this section we introduce regularity criteria for simplices and relations with
quantities of interest. We express the shape regularity of a simplex both in geo-
metric terms and in terms of linear algebra. The central notions of this section are
the geometric shape measure µ(T ) (see (II.9)) of a simplex T and its relation to the
generalized condition number of associated matrices (see (II.21)).

Let m,n ∈ N0 with m ≤ n. Let T ⊂ Rn be an m-simplex with vertices
v0, v1, . . . , vm ∈ Rn. We let diam(T ) denote its diameter, and we let volm(T ) denote
its m-dimensional volume. We observe that diam(T ) is the largest distance between
two vertices of T , i.e., the length of the longest edge of T . If T is a vertex, i.e., if
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2. Regularity of Simplices

Figure II.2: Illustration of micropatches and micropatch boundaries of a triangula-
tion T which triangulates a two-dimensional domain. U is assumed to triangulate
a part of the boundary. Left : a micropatch around an interior vertex of a trian-
gulation. The thick line indicates the micropatch boundary. Middle: a micropatch
around a boundary vertex that is not contained in U . Only the boundary edges not
adjacent to the vertex are the micropatch boundary. Right : a micropatch around
the same boundary vertex when the micropatch contains parts of U , which is in-
dicated in dashed lines. The micropatch boundary is the dashed and non-dashed
thick lines.

m = 0, then diam(T ) = 0 and vol0(T ) = 1.
Throughout this section, we assume that T is a simplex of positive dimension,

so 1 ≤ m. But we may explicitly mention whenever a result extends formally to the
case of zero-dimensional T . The convention 00 = 1 will be useful in this regard.

First we introduce the shape measure of a simplex in purely geometric terms.
Assume that T has positive dimension m. For 0 ≤ i ≤ m we let F T

i ∈ ∆(T )m−1

denote the face of T opposite to the vertex vi, and we let hTi denote the height
of F T

i over vi, which is the distance of vi from the a�ne closure of F T
i . Applying

Cavalieri's principle, we easily �nd

volm(T ) =
hTi
m

volm−1(Fi). (II.7)

Recursive application of this identity gives the estimate

volm(T ) ≤ diam(T )m

m!
, (II.8)

which bounds the volume of T in terms of its diameter. The geometric shape measure
µ(T ) of T ,

µ(T ) :=
diam(T )m

volm(T )
, (II.9)

measures in how far the reverse inequality holds. The idea is that simplices with
low geometric shape measure have �good quality� whereas a high geometric shape
measure indicates �bad quality�.

We note that the geometric shape measure (II.9) of a vertex is well-de�ned due
to 00 = 1. We observe that µ(T ) = 1 for simplices of dimension 0 or 1. Generally,
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II. Simplices and Triangulations

(II.8) implies µ(T ) ≥ m! as a lower bound.

A simple application of this notion is relating geometric properties of subsimplices
of T to the corresponding properties of T itself. By (II.7) we have

hTi = m · volm(T )

volm−1(F T
i )
. (II.10)

Using (II.10), (II.9), and (II.8), we obtain a lower bound for hTi by

hTi ≥
m

µ(T )
· diam(T )m

volm−1(F T
i )

(II.11)

≥ m!

µ(T )
· diam(T )m

diam(F T
i )m−1

≥ m!

µ(T )
· diam(T ). (II.12)

This formalizes that non-degenerate simplices have heights comparable to the sim-
plex diameter.

The diameter of T is an upper bound for the diameter of any subsimplex of
T . A converse estimate involves µ(T ) and is a direct consequence of (II.11). For
0 ≤ j ≤ m with i 6= j we have ‖vi − vj‖ ≥ hi. Hence for S ∈ ∆(T ) with positive
dimension dimS > 0 we �nd

diam(S) ≥ m!

µ(T )
diam(T ). (II.13)

This formalizes that for non-degenerate simplices, the diameter of each subsimplex
of positive dimension is comparable to the diameter of the whole simplex.

The geometric shape measure of a simplex T bounds the geometric shape measure
of its subsimplices. More precisely, by (II.7) we have

µ(F T
i ) =

diam(F T
i )m−1

volm−1(F T
i )
≤ hTi

m
· diam(T )m−1

volm(T )
≤ 1

m
· µ(T ). (II.14)

An iteration of (II.14) shows for 0 ≤ p ≤ m and S ∈ ∆(T )p that

µ(S) ≤ p!

m!
µ(T ). (II.15)

A converse inequality does not hold in general, as we easily see from considering a
generic triangle.

We have quanti�ed the shape quality of T in geometric terms with µ(T ). Another
access to the shape quality of T opens through linear algebra. We assume that
0 ≤ i ≤ m is an index of an arbitrary vertex of T and that M ∈ Rn×m is the matrix

M =
(
v1 − vi

∣∣∣ · · · ∣∣∣ vi−1 − vi
∣∣∣ vi+1 − vi

∣∣∣ · · · ∣∣∣ vm − vi).
We let ‖M‖mc denote the maximum of the `2 norm of the columns of M . We let
‖M‖2,2 denote the classical `2 operator norm of M . An elementary computation
shows that

‖M‖mc ≤ ‖M‖2,2 ≤ m‖M‖mc. (II.16)
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2. Regularity of Simplices

The triangle inequality implies

‖M‖mc ≤ diam(T ) ≤ 2‖M‖mc. (II.17)

We note from this in particular that

1

m
‖M‖2,2 ≤ diam(T ) ≤ 2‖M‖2,2. (II.18)

Hence the diameter of T is comparable to matrix norms of M .
We let σ1(M), . . . , σm(M) denote the singular values of M in ascending order.

We also write σmin(M) = σ1(M) and σmax(M) = σm(M). Note that σmin(M) > 0.
It is well-known that

‖M‖2,2 = σmax(M), ‖M †‖2,2 = σmin(M)−1, (II.19)

where M † denotes the Moore-Penrose pseudoinverse of M .
One can show that

vol(T ) =
1

m!

m∏
i=1

σi(M). (II.20)

In combination, we observe that

diam(T )m

volm(T )
≤ m!2m

σmax(M)m∏m
i=1 σi(M)

≤ m!2m
(
σmax(M)

σmin(M)

)m−1

,

and conversely

diam(T )m

volm(T )
≥ m!

mm

σmax(M)m∏m
i=1 σi(M)

≥ m!

mm

σmax(M)

σmin(M)
.

The generalized condition number κ(M) of M is the quantity

κ(M) = σmax(M)/σmin(M).

The central observation is that

m!

mm
κ(M) ≤ µ(T ) ≤ m!2mκ(M)m−1, (II.21)

which relates the geometric shape measure of T to the generalized condition number
of M .

Remark II.2.1.

Di�erent shape measures are used throughout the literature of numerical analysis
and computational geometry to quantify the quality of simplices (see [78, 133] for
overviews). Another shape measure that is commonly used in �nite element liter-
ature is the ratio of the diameter and the largest inscribed circle of a simplex (see
[37, p.97, De�nition (4.2.16)], [32, p.61, De�nition 5.1]). Our notion of geometric
shape measure equals what is known as fatness in di�erential geometry [50] and is
precisely the reciprocal of the fullness discussed by Whitney [180]. The thickness of
a simplex is the ratio of its smallest height to its diameter [146].
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II. Simplices and Triangulations

Remark II.2.2.

Practical applications have been driving the research on shape regularity for a long
time with almost exclusive attention to triangles and tetrahedra (see, e.g., [35, 36,
78, 133]). Considering shape regularity in arbitrary dimension is not only a purely
mathematical musing but is also motivated by the emergence of (four-dimensional)
space-time methods in recent years (see, e.g., [147, 169]).

II.3. Solid Angles

We dedicate a section to the discussion of solid angles of simplices. We relate
the solid angles to the geometric shape measure. Solid angles can be regarded as
higher-dimensional generalizations of the classical angle between two vectors. The
main result of this section can be paraphrased as follows: non-degenerate simplices
do not have small solid angles.

Let n ∈ N. Assume that T ⊂ Rn is an n-dimensional simplex. The solid angle
of T at vertex vi is the limit

^i(T ) := lim
ε→0

voln (Bε(vi) ∩ T )

voln (Bε(vi))
. (II.22)

It is easy to see that this limit assumes a constant for ε > 0 small enough. For
example, the n-dimensional reference simplex ∆n has a solid angle of 2−n at the
origin.

Remark II.3.1.

In the special case n = 2, the solid angle coincides with the classical two-dimensional
angle of the triangle at vertex vi when measured as the ratio of radians over 2π. One
of the earliest studies of higher-dimensional solid angles was conducted by Euler
[85]. Beyond dimension two, their theory is considerably more complex, and very
few results are known beyond dimension three (see [81, 157]).

For the purposes of this thesis, the following result gives helpful upper and lower
bounds for the solid angle.

Lemma II.3.2.

Let T = convex {v0, v1, . . . , vn} be an n-simplex in Rn. Let M ∈ Rn×n denote the
matrix with columns v1 − v0, . . . , vn − v0. Then

| det(M)|
2nσnmax

≤ ^i(T ) ≤ | det(M)|
2nσnmin

. (II.23)

Proof. Let Q =
(
R+

0

)n denote the non-negative quadrant. It is well-known that the
radially symmetric function f(x) = (2π)−

n
2 exp

(
−1

2
‖x‖2

)
has unit integral over Rn.

By the law of substitution and radial symmetry, we conclude that for every σ > 0
we have ∫

Q

σn

(2π)
n
2

exp

(
−σ

2

2
‖x‖2

)
dx = 2−n.
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3. Solid Angles

Next, since f is radially symmetric and has unit integral, we see

^i(T ) =

∫
M(Q)

(2π)−
n
2 exp

(
−1

2
‖x‖2

)
dx.

Combining these observations, we obtain

^i(T ) =

∫
Q

(2π)−
n
2 exp

(
−1

2
〈Mx,Mx〉

)
· | det(M)| dx

≥
∫
Q

(2π)−
n
2 exp

(
−σ

2
max

2
‖x‖2

)
· | det(M)| dx =

| det(M)|
2nσnmax

.

This proves the lower bound of (II.23). Analogously,

^i(T ) =

∫
Q

(2π)−
n
2 exp

(
−1

2
〈Mx,Mx〉

)
· | det(M)| dx

≤
∫
Q

(2π)−
n
2 exp

(
−σ

2
min

2
‖x‖2

)
· | det(M)| dx =

| det(M)|
2nσnmin

provides the upper bound. The proof is complete.

We combine Lemma II.3.2 with (II.21) to derive bounds for the solid angle in
terms of the geometric shape measure. Let T be the simplex with vertices v0, . . . , vn
and letM ∈ Rn×n be the matrix with columns v1−v0, . . . , vn−v0. By the de�nition
of the generalized condition number we �nd

2−nκ(M)−n+1 ≤ ^i(T ) ≤ 2−nκ(M)n−1. (II.24)

Combining this with (II.21) gives

2−n
(
nn

n!

)1−n

µ(T )1−n ≤ ^i(T ) ≤ 2−n
(
nn

n!

)n−1

µ(T )n−1 (II.25)

Consequently, we have lower and upper bounds for the solid angles of a simplex in
terms of its geometric shape measure.

Remark II.3.3.

Solid angles are generally bounded above by 1 in contrast to the geometric shape
measure of a simplex, so it is intuitive that (II.25) does not give a sharp bound for
the solid angle. The lower bound, however, shows that �good� simplices do not have
small solid angles.

It is intuitive that the reciprocal of the minimum solid angle of a simplex also
bounds the geometric shape measure. This has been proven for low dimensions (see
[133]). But for the higher-dimensional case, no proof seems to be available in the
literature.

Example II.3.4.

An equilateral triangle T with unit side lengths has a volume of
√

3/4, and so
µ(T ) = 4/

√
3. Its solid angles are all 1/6. Inequality (II.25) gives the (trivial)

upper bound 2/
√

3 > 1 and the (non-trivial, non-sharp) lower bound
√

3/32 for the
solid angles.
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II. Simplices and Triangulations

II.4. Regularity of Triangulations

We have discussed regularity criteria for single simplices. In this section we
extend that discussion to regularity criteria of entire triangulations and eventually
families of meshes. Here, the central notion is the geometric shape measure µ(T ) of
a triangulation. Its applications are discussed in Lemmas II.4.1, II.4.3, and II.4.6.
These results require stronger conditions on the triangulations, such as being the
triangulation of a full-dimensional subset of Rn, as can be seen by simple counterex-
amples.

Throughout this section, we let T be an n-dimensional simplicial complex. The
geometric shape measure µ(T ) of the triangulation T is de�ned as

µ(T ) := sup
T∈T

µ(T ), (II.26)

and bounds the degeneracy of simplices in T . In the remainder of this section, we
show how µ(T ) quanti�es further properties of the triangulation.

First, we bound the local combinatorial complexity of the mesh in terms of its
geometric shape measure. Formally, we de�ne the quantity µN(T ) as

µN(T ) := max
T∈T

# { S ∈ T | S ∩ T 6= ∅ } . (II.27)

This quantity bounds the number of simplices adjacent to a given simplex. We prove
that µN(T ) can be bounded in terms of the geometric shape measure.

Lemma II.4.1.

Assume that T triangulates an n-dimensional topological manifold in Rn. Then

µN(T ) ≤ 2n+1(n+ 1) ·

⌈
2n
(
n
n
2

n!

)n−1
⌉
µ(T )n−1. (II.28)

Proof. Consider the special case that V ∈ T 0 is a vertex of T . Then the solid angles
of the n-simplices adjacent to V satisfy the lower bound in (II.25). By the additivity
of the Hausdor� measure, we obtain the upper bound

# { T ∈ T n | V ∈ ∆(T ) } ≤

⌈
2n
(
n
n
2

n!

)n−1
⌉
µ(T )n−1.

More generally, let T ∈ T . We recall that T has at most n + 1 vertices, and
that every simplex S ∈ T adjacent to T has at least one vertex in common with
T . Furthermore, every simplex in T has at most 2n+1 subsimplices. The claim
follows.

Remark II.4.2.

The upper bound in Lemma II.4.1 is generally not sharp. It is easy to see that, if
T triangulates a manifold of positive codimension in Rn, then the quantity µN(T )
can generally not be bounded in terms of µ(T ) alone.
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4. Regularity of Triangulations

The second class of inequalities that we consider relates to the question in how
far adjacent simplices in T have comparable diameters. As a preparation, if T ∈ T
is a simplex of positive dimension, then we set hT := diam(T ), and if instead V ∈ T 0

is a vertex of T , then we de�ne

hV := inf
{
hE
∣∣ E ∈ T 1, V ∈ ∆(E)0

}
as the in�mum length of the edges of T adjacent to V . Now, the local quasi-
uniformity constant µlqu(T ) of T is de�ned as

µlqu(T ) := sup

{
hT
hS

∣∣∣∣ S, T ∈ T : S ∩ T 6= ∅
}
. (II.29)

This can be bounded in terms of the mesh quality.

Lemma II.4.3.

Assume that T triangulates a topological manifold of dimension at least 2. Then

µlqu(T ) ≤ µ(T )µN(T ). (II.30)

Proof. Let T ∈ T have positive dimension. For S ∈ ∆(T ) with positive dimension
we have hS/hT ≤ 1 and hT/hS ≤ µ(T ), as follows from a simpli�cation of (II.13).
Next, let T ′ ∈ T be adjacent to T and write S := T ∩ T ′. If S has positive
dimension, then we observe hT/hT ′ = hT/hS · hS/hT ′ ≤ µ(T ). More generally, if
T ′ ∈ T (T ) has positive dimension and V ∈ T 0 is a common vertex of T and T ′,
then there exists L ∈ N and a �nite sequence T0, . . . , TL ∈ T such that T0 = T
and TL = T ′ and such that for all l ∈ [1 : L] we have V ∈ ∆(Tl) and Tl−1 ∩ Tl
is a simplex of positive dimension. The existence of such a sequence follows from
the assumption that T triangulates a topological manifold. We have L ≤ µN(T ),
and thus hT/hT ′ ≤ µ(T )µN(T ) is easily veri�ed. Lastly, if V ∈ ∆(T )0, then there
exists an edge E ∈ T (T )1 such that hV = hE, and we can simply apply the previous
observations. The proof is complete.

Remark II.4.4.

The previous proof has explicitly used that T triangulates a manifold. We show
that this is generally necessary. Consider a triangulation consisting of two triangles
that only meet at one vertex. This triangulation does not triangulate a topological
manifold. If we iteratively re�ne one of the triangles in a uniform manner while
not changing the other triangle, then the local quasi-uniformity constants of that
sequence of triangulations diverge to in�nity although the quality of simplices in the
triangulation remains the same. See also Figure II.3 for an illustration. Moreover,
the statement does not apply if dimM = 1 as is easily veri�ed.

Remark II.4.5.

The de�nition of hV enables us to assign a �length� to each vertex V ∈ T 0. The
important property is that hV is comparable to the local mesh size. We could have
chosen slightly di�erent de�nitions, such as the average or maximum diameter of
edges adjacent to V , and that would serve our purpose equally. Associating a local
mesh size to vertices has been a useful formalism in several publications (e.g., [34])
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II. Simplices and Triangulations

Figure II.3: Two triangles that do not triangulate a manifold. If the left trian-
gle is subject to iterated uniform re�nement, then the produced triangles do not
degenerate, but the length between adjacent triangles become incomparable.

Our third quantity considers the diameter of neighborhoods of a simplex. We will
quantify in terms of the geometric shape measure in how far local patches around a
simplex T ∈ T contain an Euclidean neighborhood of T whose size is proportional
to the diameter of T . Speci�cally, we de�ne the neighborhood constant as

µr(T ) := sup
T∈T

sup

{
r > 0

∣∣∣∣ Br·diam(T )(T ) ∩M is contained in the
interior of [T (T )] relative to M.

}
. (II.31)

We use the following bound on the neighborhood constant.

Lemma II.4.6.

Let T be a triangulation. Then

µr(T ) ≤ n!

2n
n+1

2 µlqu(T )µ(T )
.

Proof. Let m ∈ N. For 0 ≤ l ≤ m − 1 we let Sml be the smallest subsimplex of
∆m that contains the origin and the �rst l unit vectors, and let Fm

l be the smallest
subsimplex of ∆m containing the remaining m − l unit vectors. It is evident that
Fm

0 , the face of ∆m opposite to the origin, has distance 1/
√
m from the origin. More

generally, the distance of Sml and Fm
l is 1/

√
m− l.

Let T ∈ T and let T ′ ∈ T (T )n with T 6= T ′. We denote the vertices of T ′

by v0, . . . , vn and assume that v0, . . . , vl are precisely those vertices that T ′ has in
common with T . We let ϕ : ∆n → T ′ be the unique a�ne mapping that maps
the origin to v0 and the unit vectors ei ∈ Rn to vi for 1 ≤ i ≤ n. We may write
ϕ(x) = Mx+ v0, where the i-th column of M ∈ Rn×n is vi − v0. Consequently,

ϕ(Snl ) = convex{v0, . . . , vl}, ϕ(F n
l ) = convex{vl+1, . . . , vm}.

By (II.18) we see that the distance between these two sets is at least σmin(M)/
√
n,

where σmin(M) ≥ κ(M)−1diam(T ′)/2. We recall κ(M) ≤ n
n
2

n!
µ(T ) from (II.21).

Furthermore, we have diam(T ′) ≥ µlqu(T )−1diam(T ).
This implies that a closed r-neighborhood of ϕ(Snl ) has positive distance from

ϕ(F n
l ), where

r <
n!

2n
n+1

2 µlqu(T )µ(T )
diam(T )

This implies in particular that an r-neighborhood of T in [T (T )] is compactly con-
tained in [T (T )].
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Remark II.4.7.

The constant µr(T ) has the following alternative interpretation: for every T ∈ T ,
the set [T (T )] contains the closed µr(T )hT -environment around T with respect to
the inner path metric of the space [T ]. The distance of two points x, y ∈ [T ] with
respect to the inner path metric is the in�mum of the lengths of recti�able paths in
[T ] between x and y. If this path metric and the Euclidean metric are comparable
over [T ], then it is possible to modify the de�nition of µr(T ) such that for every
T ∈ T , the set [T (T )] contains the Euclidean closed µr(T )hT -environment around
T . It is easy to see that the equivalence of the Euclidean metric and the local path
metric depends on global properties of the metric space [T ] which cannot be �felt�
by the local geometry of T (T ). The set [−1, 1]2 \ ([0, 1]× {0}) is a compact space
where these two metrics are not equivalent.

Remark II.4.8.

In applications we typically consider families (Th)h of simplicial complexes that
triangulate a �xed topological manifold, where h ranges over some set of indices,
typically the mesh size. In this remark we relate the results above, which consider
regularity criteria for single �xed simplicial complexes, to regularity criteria for such
families of simplicial complexes, which can be found in �nite element literature (e.g.
[37, De�nition (4.4.13)], [32, De�nition 5.1]).

Let (Th)h be a family of simplicial complexes. We call (Th)h shape-uniform if the
geometric shape measures (µ(Th))h satisfy a uniform upper bound. For example, if
a sequence of simplicial complexes is constructed from an initial simplicial complex
T0 by successively applying local re�nement of simplices via newest-vertex-bisection,
then the resulting family is shape-uniform (see Maubauch [135]). In two and three
dimensions one can implement local mesh re�nement alternatively with red-green
re�nement (see [13, 142]).

We call a family of simplicial complexes (Th)h quasi-uniform if their geometric
shape measures (µ(T ))h satisfy a uniform upper bound and if additionally

sup
h

sup
S,T∈Th

hT
hS

<∞. (II.32)

This means that the simplices have comparable diameters in each single simplicial
complex Th. For example, if a sequence of simplicial complexes is constructed by
successive global uniform re�nement of an initial simplicial complex Th, then the
resulting family is quasi-uniform (see Bey [26]).

II.5. Regularity of Reference Transformations

Scaling arguments are the most important application of measures of shape reg-
ularity in �nite element theory. The basic idea is to transform between the local
geometry and a reference geometry. The reference geometry should not depend on
the concrete mesh, and the quality of the reference transformations should depend
only on the mesh quality. We implement this idea for simplices, local patches, and
micropatches. The main point of this section is to de�ne reference transformations
and establish their regularity. In this section, suppose that the simplicial complex
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II. Simplices and Triangulations

T triangulates a compact topological manifold.

For every simplex T ∈ T of dimension m there exists MT ∈ Rn×m and bT ∈ Rn

such that the a�ne mapping ϕT (x) = MTx + bT maps the reference simplex ∆m

onto the simplex T . This implies that bT ∈ Ver(T ) is a vertex of T and that the
edge vectors from bT to the remaining vertices of T constitute the columns of MT .
Consequently, the results of Section II.2 apply and we can relate the generalized
condition number κ(MT ) to the geometric shape measure of T by (II.21). We call
such an a�ne mapping ϕT a reference transformation of T .

In general, there are up to (n+1)! di�erent reference transformations of a simplex.
Henceforth we �x a reference transformation ϕT for each simplex T . With a slight
abuse of notation, we identify this a�ne mapping with its restriction to the reference
m-simplex

ϕT : ∆m → T. (II.33)

This is a di�eomorphism of manifolds with corners (see [127]) whose Jacobian DϕT
is constant. We de�ne

κ(T ) := sup
T∈T

κ (DϕT ) . (II.34)

Via (II.18) and (II.19) we easily �nd

σmax (DϕT ) ≤ ndiam(T ), σmin (DϕT )−1 ≤ 2κ (T ) diam(T )−1, (II.35)

κ (T ) ≤ nn

n!
µ(T ). (II.36)

In particular, if the triangulation T has a low geometric shape measure, then the
singular values of all reference transformations are comparable to the diameters of
the associated simplices.

We now attend to the construction of reference patches. We �rst construct a
reference patch and a reference transformation for the macropatch T (T ) around a
simplex T ∈ T .

We observe that for every �nite triangulation the macropatch T (T ) has one of
�nitely many combinatorial structures, the number of which can be bounded in
terms of µN(T ). Thus there exist a �nite number of simplicial complexes S1, . . . ,SN
in Rn such that for every T ∈ T there exists 1 ≤ iT ≤ N such that T (T ) has the
same combinatorial structure as SiT . We write T̂ (T ) := SiT in the sequel and call
this the reference macropatch.

Consequently, there exists a homeomorphism

ΦT :
[
T̂ (T )

]
→ [T (T )] (II.37)

such that the restriction ΦT |S to S ∈ T̂ (T ) is a�ne. We conclude that the Jacobians
D ΦT and D Φ−1

T exist almost everywhere, and that

κ
(
D ΦT |S

)
≤ µΦ · µ(T ), S ∈ T̂ (T ), (II.38)
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where µΦ can be bounded in terms of n, µN(T ), and κ(T ).

In a similar manner, we construct the reference micropatch M̂(T , F ) of F ∈ T
and de�ne the reference mapping

ΨF :
[
M̂(T , F )

]
→ [M(T , F )]. (II.39)

This homeomorphism restricts to a di�eomorphism on each simplex. We have

κ
(
D ΨF |S

)
≤ µΨ · µ(T ), S ∈ M̂(T , F ) (II.40)

where µΨ can be bounded in terms of n, µN(T ), and κ(T ). Additionally, we let
N̂ (T ,U , F ) ⊆ M̂(T , F ) denote the simplicial subcomplex which ΨF maps onto
N (T ,U , F ). We call N̂ (T ,U , F ) the reference micropatch boundary of F .

II.6. Chain Complexes

We �nish this chapter with a discussion of simplicial complexes from the point
of view of algebraic topology. We refer to specialized literature (e.g., [31, 93, 122,
126, 127, 168]) for further background. While most of this section covers standard
material, it also contains some concepts particular to this thesis.

To begin with, we introduce the notion of orientation of simplices. This can be
done in di�erent ways; we use a purely combinatorial de�nition here, which is equiv-
alent to the notion of orientation of manifolds (with corners) known in di�erential
geometry (see Lee [127]).

Let S ⊆ Rn be a simplex of dimension m = dimS. If m = 0, then we de�ne an
orientation over S as a choice of sign in {−1, 1}. If m > 0, then an orientation of
S is de�ned as an equivalence class of enumerations of the vertices of S, where two
enumerations are considered equivalent if they can be transferred into each other by
a permutation of positive sign. An oriented simplex is a simplex equipped with a
choice of orientation.

If S = {v0} is a vertex, then we let [v0] denote the oriented vertex with positive
orientation. If S has positive dimension m, and ρ : [0 : m]→ Ver(S) is an enumer-
ation of the vertices of S, then we write [ρ(0), . . . , ρ(m)] for the oriented m-simplex
with vertices Ver(S) and the orientation induced by ρ.

If [v0, . . . , vm] is an oriented m-simplex, then we write −[v0, . . . , vm] for the ori-
ented m-simplex with the same vertices but the opposite orientation. For every
permutation π ∈ Perm(0 : m) we have[

vπ(0), . . . , vπ(m)

]
= sgn(π)[v0, . . . , vm]. (II.41)

Lastly, if S ∈ T with Ver(S) = {v0, . . . , vm}, then we say that the orientation of
the oriented simplex [v0, . . . , vm] induces the orientation of the oriented subsimplex
(−1)i[v0, . . . , vi−1, vi+1, . . . , vm].

Often we understand each simplex with a �xed orientation. In that case we may
identify a simplex S with the corresponding oriented simplex in order to simplify
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the notation. If S ∈ T m and F ∈ ∆(S)m−1, then we let o(F, S) = 1 in the case that
the �xed orientation of S induces the �xed orientation of F , and let o(F, S) = −1
in the contrary case.

Let T be a simplicial complex in Rn. For m ∈ Z, the space of simplicial m-
chains of T is the real vector space Cm(T ) generated by the oriented m-simplices
[v0, . . . , vm] with {v0, . . . , vm} ∈ T m, where we make the identi�cation

[vπ(0), . . . , vπ(m)] = sgn(π)[v0, . . . , vm], π ∈ Perm(0 : m).

Note that the set T m is empty for negative m or m > n, in which case Cm(T ) is the
zero vector space. The simplicial boundary operator

∂m : Cm(T )→ Cm−1(T ) (II.42)

is the linear operator that is de�ned by setting

∂m[v0, . . . , vm] :=
m∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vm], [v0, . . . , vm] ∈ Cm(T )

and taking the linear extension. The following observation is fundamental.

Lemma II.6.1.

Let m ∈ Z. Then ∂m−1∂mS = 0 for S ∈ T m.

Proof. It su�ces to consider the case m ≥ 2. Fix [v0, . . . , vm] ∈ Cm(T ). Then

∂m−1∂m[v0, . . . , vm]

=
m∑
i=0

(−1)i∂m−1[v0, . . . , vi−1, vi+1, . . . , vm]

=
m∑
i=0

i−1∑
j=0

(−1)i+j∂m−1[v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vm]

−
m∑
i=0

m∑
j=i+1

(−1)i+j∂m−1[v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vm].

Rearranging the sum, we obtain

∂m−1∂m[v0, . . . , vm]

=
∑

0≤j<i≤m

(−1)i+j∂m−1[v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vm]

−
∑

0≤i<j≤m

(−1)i+j∂m−1[v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vm] = 0.

By linear extension, the desired result follows.

Remark II.6.2.

If a �xed orientation is understood for each simplex S ∈ T , then these oriented

32



6. Chain Complexes

simplices constitute a canonical basis of Cm(T ), and the boundary operator can be
written as

∂mS =
∑

F∈∆(S)m−1

o(F, S)F, S ∈ T m.

The boundary operator and the spaces of simplicial chains can be assembled into
a di�erential complex, the simplicial chain complex of the triangulation T ,

. . .
∂m+1−−−→ Cm(T )

∂m−−−→ Cm−1(T )
∂m−1−−−→ . . . (II.43)

Let U ⊆ T be a simplicial subcomplex of T . This induces the corresponding spaces
Cm(U) of simplicial chains and simplicial chain complex over U ,

. . .
∂m+1−−−→ Cm(U)

∂m−−−→ Cm−1(U)
∂m−1−−−→ . . . (II.44)

Since Cm(U) is a subspace of Cm(T ), we may consider the quotient space

Cm(T ,U) := Cm(T )/Cm(U).

We call Cm(T ,U) the space of simplicial m-chains of T relative to U . Since

∂mCm(T ) ⊆ Cm−1(T ), ∂mCm(U) ⊆ Cm−1(U)

we conclude that we have a well-de�ned operator

∂m : Cm(T ,U)→ Cm−1(T ,U)

that satis�es the di�erential property

∂m−1∂mC = 0, C ∈ Cm(T ,U).

Remark II.6.3.

If orientations on the simplices in T are understood, then the canonical basis of
Cm(T ,U) is given by (the equivalence classes of) the m-simplices in T m \ Um.

Next we approach the homology theory of these di�erential complexes. We
introduce the quotient spaces

Hm(T ,U) :=
ker
(
∂m : Cm(T ,U)→ Cm−1(T ,U)

)
ran
(
∂m+1 : Cm+1(T ,U)→ Cm(T ,U)

) . (II.45)

We call Hm(T ,U) the m-th simplicial homology space of T relative to U . If U = ∅,
then we call

Hm(T ) := Hm(T , ∅)

the m-th (absolute) simplicial homology space of T . The dimensions of the simpli-
cial homology spaces,

bm(T ,U) := dimHm(T ,U), bm(T ) := dimHm(T ),
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II. Simplices and Triangulations

are of particular interest. We call bm(T ,U) the m-th simplicial Betti number of T
relative to U , and we call bm(T ) the m-th absolute simplicial Betti number of T .
Note that bm(T ) = bm(T , ∅).

The homology spaces of simplicial chain complexes re�ect the topological features
of the triangulated topological spaces. Assume that M is a topological space and
that Γ is a topological subspace. The m-th topological Betti number bm(M,Γ) of M
relative to Γ is de�ned as the dimension of the m-th singular homology space of M
relative to Γ. We refer to [168, Chapter 4, Section 4] for the details of this concept.
In the case Γ = ∅ we call bm(M) := bm(M, ∅) the m-th absolute topological Betti
number of M .

In the presence of a triangulation of M by a simplicial complex T , the topolog-
ical Betti numbers can be expressed in combinatorial terms. Assume that T is a
simplicial complex that triangulates M and that U ⊆ T is a simplicial subcomplex
that triangulates Γ. In that case we have the identity

bm(T ,U) = bm(M,Γ), m ∈ Z. (II.46)

This is Theorem 8 in [168, Chapter 4, Section 6]. If the simplicial complex T is �nite,
then this implies in particular that the topological Betti numbers are e�ectively
computable.

Example II.6.4.

The following topological Betti numbers are of frequent interest. Let p ∈ N0 and
m ∈ Z.

(i) All Betti numbers bm(Bp) of the p-ball Bp vanish except for b0(Bp) = 1.

(ii) All Betti numbers bm(Sp) of the p-sphere Sp vanish except for bp(Sp) = 1 and
b0(Sp) = 1.

(iii) All Betti numbers bm(Bp, ∂Bp) of the p-ball relative to its boundary vanish
except for bp(Bp, ∂Bp) = 1.

(iv) If Dp−1 ( ∂Bp is homeomorphic to Bp−1, then all Betti numbers bm(Bp, Dp−1)
of the p-ball relative to a disk on the boundary vanish.

Remark II.6.5.

The Betti numbers have a geometric interpretation. For example, the 0-th absolute
Betti number equals the number of path-connected components of a topological
space (Corollary 8 in [168, Chapter 4, Section 4]).

For a two-dimensional bounded domain, the 0-th absolute Betti number counts
the number of path-connected components, and the �rst Betti number counts the
number of holes inside the domain.

More complicated examples are possible in higher dimensions. Consider a three-
dimensional cube inside of which a �doughnut� has been cut out. The 0-th Betti
number is still the number of path-connected components. The �rst Betti number
is 1, and the �rst homology space can be represented by a circle wrapped around
the doughnut and piercing through the hole. The second Betti number is 1, and
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the second homology space can be represented by the internal spherical surface that
encloses the doughnut.

The presence of a boundary patch leads to more complex situations too. Consider
the unit cube in dimension two and pick a non-trivial boundary patch. The �rst
Betti number then equals the number of path-connected components of the boundary
patch minus one. The homology space is represented by line segments that lead from
one boundary patch to the other one.

II.7. Homology of Micropatches

We have introduced the notion of micropatch in Section II.1. We close this
chapter with a study of simplicial chain complexes associated to micropatches. The
micropatches of a simplicial complex encode its local combinatorial structure, which
can be analyzed in terms of chain complexes. We will revisit this notion later in our
study of discrete distributional di�erential forms.

Let T be a simplicial complex and let F ∈ T . Then M(T , F ) induces the
simplicial chain complex

. . .
∂m+1−−−→ Cm(M(T , F ))

∂m−−−→ Cm−1(M(T , F ))
∂m−1−−−→ . . . (II.47)

Assume that U is a simplicial subcomplex. Then N (T ,U , F ) induces the simplicial
chain complex

. . .
∂m+1−−−→ Cm(N (T ,U , F ))

∂m−−−→ Cm−1(N (T ,U , F ))
∂m−1−−−→ . . . (II.48)

We will study the simplicial chain complex ofM(T , F ) relative to N (T ,U , F ). In
order to simplify the notation, we write

CFm(T ,U) := Cm
(
M(T , F ),N (T ,U , F )

)
, (II.49)

HF
m(T ,U) := Hm

(
M(T , F ),N (T ,U , F )

)
, (II.50)

bFm(T ,U) := bm
(
M(T , F ),N (T ,U , F )

)
, (II.51)

for the spaces of simplicial chains, the simplicial homology spaces, and the simplicial
Betti numbers, respectively, of M(T , F ) relative to N (T ,U , F ). We consider the
simplicial chain complex

. . .
∂m+1−−−→ CFm(T ,U)

∂m−−−→ CFm−1(T ,U)
∂m−1−−−→ . . . (II.52)

Our goal is to determine the simplicial Betti numbers of the simplicial complex
M(T , F ) relative to its subcomplexN (T ,U , F ). This can be complicated in general.
For the purpose of this thesis, it is su�cient to carry out the analysis in the following
special case.

Lemma II.7.1.

Assume T triangulates an n-dimensional topological manifold M with boundary,
and that U triangulates a topological submanifold Γ of ∂M of dimension n− 1 with
boundary. Let V ⊂ T be the simplicial subcomplex that triangulates the closure of
the complement of Γ in ∂Ω. Then

bFm(T ,U) =

{
δnm if F /∈ V ,
0 if F ∈ V , F ∈ T . (II.53)
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II. Simplices and Triangulations

Proof. The proof uses the identity of simplicial and topological Betti numbers (II.46).
It thus remains to determine the topological Betti numbers of [M(T , F )] relative to
[N (T ,U , F )]. We accomplish this by reducing the question to the instances Exam-
ple II.6.4, for which the Betti numbers are known.

It is easy to see that the closed set [M(T , F )] is homeomorphic to a topological
n-ball. We let B(T , F ) denote the subcomplex of M(T , F ) that triangulates the
topological boundary of [M(T , F )]. Then N (T ,U , F ) is a subcomplex of B(T , F ).
We make a case distinction.

1. Suppose that F * Γ. Then B(T , F ) = N (T ,U , F ). The relevant case are the
Betti numbers of a ball relative to its boundary, and so bFm(T ,U) = δnm.

2. Similarly, suppose that F ⊆ Γ but F /∈ V . Again, B(T , F ) = N (T ,U , F ), and
so bFm(T ,U) = δnm.

3. Finally, suppose that F ⊆ Γ with F ∈ V . Then N (T ,U , F ) triangulates a
topological ball of dimension n− 1 embedded in [B(T , F )]. We conclude that
bFm(T ,U) = 0.

This shows (II.53). The proof is complete.

Another helpful observation is that the homology spaces of the simplicial chain
complexes of micropatches are well-behaved with respect to restriction to subcom-
plexes. Unfolding de�nitions, we observe that CFm(T ,U) is spanned by the (oriented)
simplices of T \ U that contain F as a subcomplex:

CFm(T ,U) ' span { C ∈ T m \ Um | ∃T ∈ T : F ∈ ∆(F ), C ∈ ∆(T ) } , F ∈ T [m].

Consequently, we only need to consider m-simplices in the de�nition of CFm(T ,U).
In particular,

CFm−1(T ,U) = CFm−1

(
T [m−1],U [m−1]

)
, F ∈ T [m−1]. (II.54)

As a consequence, the lower homology spaces of M(T , F ) relative to N (T ,U , F )
can be calculated from considering the lower-dimensional skeletons only.

It will be of interest to us that a result similar to Lemma II.7.1 holds for lower
dimensional skeletons provided that the original simplicial complex satis�es a gen-
eralization of (II.53). This is a simple consequence of (II.54).

Lemma II.7.2.

Let T be an m-dimensional simplicial complex and let U be a subcomplex of T . Let
F ∈ T [m−1]. If

bFp (T ,U) = 0, p < m,

then

bFp (T [m−1],U [m−1]) = 0, p < m− 1.

Proof. This is veri�ed by linear algebra. If the simplicial chain complex ofM(T , F )
relative to N (T ,U , F ) is exact at indices k < m, then the corresponding simplicial
chain complex of the (m− 1)-skeleton is exact at indices k < m− 1.
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A particular achievement of �nite element exterior calculus has been the identi�ca-
tion of spaces of polynomial di�erential forms invariant under a�ne transformations,
and subsequently the construction of �nite element de Rham complexes. This chap-
ter is dedicated to the study of �nite element spaces of polynomial di�erential forms
over simplices. Our main goal in this chapter is constructing geometrically decom-
posed bases for the spaces PrΛk(T ) and P−r Λk(T ) over a simplex T .

We regard the exposition [9, Chapter 4] of Arnold, Falk, and Winther as our
starting point. First they review geometrically decomposed bases for the spaces
PrΛ0(T ) and P−1 Λk(T ) and their degrees of freedom. Then they develop a pre-
liminary basis for P−r Λk(T ). Towards geometric decompositions, they subsequently
determine a geometrically decomposed basis of the degrees of freedom of PrΛk(T ),
and a geometrically decomposed basis of the degrees of freedom of P−r Λk(T ). Fi-
nally, they give geometrically decomposed bases for P−r Λk(T ) and P̊−r Λk(T ), the
latter implicitly, and next for the spaces PrΛk(T ) and P̊rΛk(T ), again implicitly in
the latter case. Their derivation of the geometrically decomposed bases for the �nite
element spaces utilizes isomorphisms

PrΛk(T ) ' P̊−r+n−k+1Λn−k(T ), P̊r+n−k+1Λk(T ) ' P−r Λn−k(T ). (III.1)

A subsequent publication of Arnold, Falk, and Winther [10] has extended these stud-
ies and is another major point of reference to us. There they give explicit bases for
the spaces with vanishing trace P̊−r Λk(T ) and P̊rΛk(T ). The geometrically decom-
posed bases in [10] provide additional algebraic conditions that are of independent
interest: not only the basis forms are associated to a subsimplex (vertices, edges, ...)
of T each, but also the spaces themselves are decomposed into subspaces associated
to a subsimplex each. The construction is more complex for the spaces PrΛk(T )
than for the spaces P−r Λk(T ).

There are still incentives for reapproaching geometrically decomposed bases in
�nite element exterior calculus. The foundational parts of the theory are distributed
over two research articles. A new systematical approach may help a larger audience
access the theory. Even though we do not aim at a completely self-contained expo-
sition in this thesis and still assume some basic familiarity with the theory of �nite
element di�erential forms, it seems reasonable to illuminate some new approaches
to the topic. Another motivation is that the 2006 publication of Arnold, Falk, and
Winther [9] already provides very simple geometrically decomposed bases in �nite
element exterior calculus; we give a new presentation of those results.
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We give a brief outline of the calculus of di�erential forms over simplices in Sec-
tion III.1 and introduce polynomial di�erential forms over simplices in Section III.2.
The subsequent Section III.3 is dedicated to several auxiliary lemmas which have
appeared in publications on �nite element exterior calculus and which we frequently
use throughout this chapter. In Section III.4 we introduce the spaces PrΛk(T )
and P−r Λk(T ) and some of their basic properties. This also includes the subspaces
P̊rΛk(T ) and P̊−r Λk(T ) with vanishing traces along the simplex boundary.

We then focus our attention to the major topic of this chapter: the construction
of geometrically decomposed bases in Sections III.5 and III.6. In contrast to prior
expositions, we �rst derive geometrically decomposed bases for the spaces PrΛk(T )
and then independently for the spaces P−r Λk(T ). In particular, this naturally pro-
duces consistent extension operators in the sense of [10, Section 4] and bases for the
spaces P̊rΛk(T ), and P̊−r Λk(T ). Moreover, our construction does not involve the
degrees of freedom or the isomorphisms (III.1) mentioned above.

For the space P−r Λk(T ) our basis is the same as given in [9, Subsections 4.4, 4.7]
and in [10, Theorem 6.1, Section 7]). By contrast, our basis for the space PrΛk(T )
coincides with the one given in [9] and is thus di�erent from the one in [10, Section 8].
An advantage of the basis of the space PrΛk(T ) in [9] is its simplicity, but a disad-
vantage is that the subspaces associated to di�erent subsimplices generally depend
on the numbering of the vertices. No such trade o� is made for the geometrically
decomposed bases of P−r Λk(T ).

Even though we establish geometrically decomposable bases, the spanning sets
are still of interest. We show that the isomorphisms (III.1) have a natural expression
in terms of the canonical spanning sets. Thus we can transfer linear dependencies
between the canonical spanning sets of the spaces in each isomorphic pair. For the
�rst isomorphic pair, this follows from Proposition 3.1 of [57], which has been a
major inspiration for this research. With di�erent techniques, we reproduce the
result and its analogon for the second isomorphic pair.

Duality pairings that correspond to these isomorphisms are another concept in
the seminal publication of Arnold, Falk, and Winther, which only recently has been
identi�ed as a subject worth independent study by Christiansen and Rapetti [57].
They have discovered more details about the �rst isomorphism in (III.1) and the
corresponding duality pairing. Their results for the second isomorphic pair are less
extensive. Using di�erent methods, we reproduce and re�ne their result on the �rst
isomorphic pair and give an analogous result for the second isomorphic pair.

Our primary sources for this chapter are the expositions by Arnold, Falk, and
Winther [9, 10]. Their work is preceded by several contributions in numerical anal-
ysis that address the construction of bases for �nite element spaces of vector �elds.
(e.g., [2, 103, 107, 108, 109, 174]). We refer to [153] and [154] for additional algebraic
approaches.

III.1. Smooth Di�erential Forms over Simplices

We commence this chapter with a discussion of smooth di�erential forms over
simplices. This is only a review of basic notions, with particular attention to a�ne
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di�eomorphisms between simplices and traces onto subsimplices. For a rigorous
discussion of smooth di�erential forms on simplices, we refer to the treatment of
manifolds with corners in Lee's monograph [127].

Let T ⊂ RN be a simplex of dimension n. We let C∞(T ) denote the space of
restrictions of smooth functions over RN onto T . More generally, for k ∈ Z we let
C∞Λk(T ) denote the space of traces of smooth di�erential k-forms on RN onto T .
We have C∞Λ0(T ) = C∞(T ) and C∞Λk(T ) = {0} for k /∈ {0, . . . , n}.

When ω ∈ C∞Λk(T ) and η ∈ C∞Λl(T ), then ω ∧ η ∈ C∞Λk+l(T ) denotes their
exterior product . We recall that ω ∧ η = (−1)klη ∧ ω. Furthermore, we recall the
exterior derivative

dkT : C∞Λk(T )→ C∞Λk+1(T ). (III.2)

It is well-known that for ω ∈ C∞Λk(T ) and ω ∈ C∞Λl(T ) we have

dk+l
T (ω ∧ η) = dkTω ∧ η + (−1)kω ∧ dlTη.

We also recall that the integral of an n-form over T is well-de�ned provided that an
orientation of T is �xed.

Suppose that S is another simplex of dimension n and that ϕS,T : S → T is an
a�ne di�eomorphism from S onto T . Then the pullback induces linear mappings

ϕ∗S,T : C∞Λk(T )→ C∞Λk(S).

These commute with the exterior derivative, and distribute over the exterior product,

ϕ∗S,Td
k
Tω = dkSϕ

∗
S,Tω, ω ∈ C∞Λk(T ),

ϕ∗S,T (ω ∧ η) = ϕ∗S,Tω ∧ ϕ∗S,Tη, ω ∈ C∞Λk(T ), ω ∈ C∞Λl(T ).

For the pullback along the inverse ϕ−1
S,T : T → S we use the special notation ϕ−∗S,T .

Moreover, the integral transformation∫
S

ϕ∗S,Tω = o(ϕS,T )

∫
T

ω, ω ∈ C∞Λn(T )

holds for n-forms, where o(ϕS,T ) = 1 if ϕS,T is orientation preserving and o(ϕ) = −1
if ϕS,T is orientation reversing.

We also consider the trace operator onto subsimplices. For every m-dimensional
subsimplex F ∈ ∆(T ) of T , we have the inclusion ıF,T : F → T , and the pullback
along that inclusion de�nes the trace operators

trkF,T : C∞Λk(T )→ C∞Λk(F ), k ∈ Z.

Since ıF,T ıf,F = ıf,T for F ∈ ∆(T ) and f ∈ ∆(F ), we also have trkF,f trkT,F = trkT,f .
As with the pullback along a�ne di�eomorphisms, we observe

trk+1
T,F dkTω = dkF trkT,F ω, ω ∈ C∞Λk(T ),

trk+l
T,F (ω ∧ η) = trkT,F ω ∧ trlT,F η, ω ∈ C∞Λk(T ), ω ∈ C∞Λl(T ).
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We note at this point that trkT,F ω = 0 for every ω ∈ C∞Λk(T ) if k > dimF . In
particular, if F 6= T then trnT,F ω = 0 for every n-form ω ∈ C∞Λn(T ).

Having discussed the exterior derivative and traces, we recall a version of Stokes'
theorem that states∫

T

dn−1ω =
∑

F∈∆(T )m−1

o(F, T )

∫
F

trn−1
T,F ω, ω ∈ C∞Λn−1(T ). (III.3)

Sometimes we will use the existence of Riemannian metric over simplices. We refer
to the literature on di�erential geometry for further information on this topic (cf.
Agricola and Friedrich [92]). At this point, we merely remark that there exists a
bilinear pairing

BT : C∞Λk(T )× C∞Λk(T )→ R

for simplex T that is scalar product. In particular, BT (ω, ω) > 0 for each ω ∈
C∞Λk(T ) holds true. The choice of BT is generally not canonical: it depends on a
Riemannian metric and the orientation.

III.2. Polynomial Di�erential Forms over Simplices

A speci�c class of di�erential forms over simplices are polynomial di�erential
forms. Whereas polynomial di�erential forms on Rn can be discussed easily within
the canonical Euclidean coordinate system, polynomial di�erential forms over a sim-
plex can be discussed with the help of barycentric coordinates. In this section we
develop polynomial di�erential forms primarily with barycentric coordinates.

We recall that T is the convex closure of its n + 1 di�erent vertices, which we
enumerate by vT0 , . . . , v

T
n . The barycentric coordinates λT0 , λ

T
1 , . . . , λ

T
n ∈ C∞(T ) are

the unique a�ne functions over T that satisfy the Lagrange property

λTi (vj) = δij, i, j ∈ [0 : n]. (III.4)

The exterior derivatives dλT0 , dλ
T
1 , . . . , dλ

T
n ∈ C∞Λ1(T ) of the barycentric coordi-

nates are constant 1-forms, corresponding to the gradients of the barycentric co-
ordinates. The Lagrange property of the barycentric coordinates implies the linear
independence of the barycentric coordinate functions and that they constitute a par-
tition of unity, i.e. 1 = λT0 + · · ·+λTn over T . As a consequence, we have the partition
of zero 0 = dλT0 + · · · + dλTn of their exterior derivatives. It can be shown that this
is the only linear independence up to scaling between the exterior derivatives of the
barycentric coordinate functions.

Lemma III.2.1.

Let ci ∈ R for i ∈ [0 : n] and assume that 0 = c0dλ0+· · ·+cndλn. Then c0 = · · · = cn.

Proof. From the assumption we have c = c0λ0 + · · ·+ cnλn for some c ∈ R. Via the
Lagrange property we �nd that c = c0 = · · · = cn.
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2. Polynomial Di�erential Forms over Simplices

The barycentric coordinates and their exterior derivatives can be combined to
new objects. For a multiindex α ∈ A(0 : n) we de�ne the barycentric polynomial

λαT :=
n∏
i=0

(λTi )α(i). (III.5)

For k ∈ N0 and σ ∈ Σ(1 : k, 0 : n) we de�ne the basic k-alternator as

dλTσ := dλTσ(1) ∧ · · · ∧ dλTσ(k). (III.6)

Note that dλT∅ = 1. Moreover, for k ∈ N0 and ρ ∈ Σ(0 : k, 0 : n) we introduce the
Whitney k-form

φTρ :=
∑
p∈[ρ]

ε(p, ρ− p)λTp dλTρ−p. (III.7)

We henceforth agree to the convention that the sums and exterior products of di�er-
ential forms of the form (III.5), (III.6), and (III.7) are called polynomial di�erential
forms . We will use products and sums of these objects to construct spaces of poly-
nomial di�erential forms.

Remark III.2.2.

In the sequel, we may simplify the notation by

λi ≡ λTi , λα ≡ λαT , dλσ ≡ dλTσ , φρ ≡ φTρ ,

whenever the simplex T is �xed and understood,

In the previous section we have studied the transformation behavior of di�er-
ential forms over simplices, and we give special scrutiny to the case of polynomial
di�erential forms. As above, we suppose that S is another n-dimensional simplex
and that ϕS,T : S → T is an a�ne di�eomorphism from S onto T . We �rst observe
that ϕS,T necessarily maps the vertices vS0 , . . . , v

S
n of S bijectively to the vertices

vT0 , . . . , v
T
n of T . Hence, with a mild abuse of notation, we introduce a permutation

ϕS,T : [0 : n] → [0 : n] by setting vTϕS,T (i) = vSi for i ∈ [0 : n]. Now it is easy to
observe that

ϕ∗S,Tλ
α
T = λ

αϕS,T
S , α ∈ A(0 : n),

ϕ∗S,Tdλ
T
σ = dλSϕS,T σ, σ ∈ Σ(1 : k, 0 : n),

ϕ∗S,Tφ
T
ρ = φSϕS,T ρ, ρ ∈ Σ(0 : k, 0 : n),

This shows how to transform polynomial di�erential forms along a�ne transforma-
tions of simplices.

Similarly, we observe that polynomial di�erential forms are preserved by taking
traces onto subsimplices. Let F ∈ ∆(T ) be an m-dimensional subsimplex of T . We
assume to have �xed enumerations of the vertices vT0 , . . . , v

T
n of T and of the vertices

vF0 , . . . , v
F
m of F such that there exists ıF,T ∈ Σ(0 : m, 0 : n) with vFi = vTıF,T (i) for
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III. Finite Element Spaces over Simplices

i ∈ [0 : m]. Note that such a mapping exists if and only if our ordering of the vertices
of T restricts to our ordering of the vertices of F . Via the Lagrange property we
easily obtain for i ∈ [0 : n] that

tr0
T,F λ

T
i =

{
λFj if i ∈ [ıF,T ], i = ıF,T (j),

0 if i /∈ [ıF,T ].

It is easily observed that for α ∈ A(0 : n) we have [α] ⊆ [ıF,T ] if and only if there
exists α′ ∈ A(0 : m) with α′ = αıF,T . In that case, |α′| = |αıF,T |. Thus, for every
multiindex α ∈ A(0 : n) we observe that

tr0
T,F λ

α
T =

{
λα
′
T if [α] ⊆ [ıF,T ], α′ ∈ A(0 : m), α′ = αıF,T ,
0 if [α] * [ıF,T ].

For σ ∈ Σ(1 : k, 0 : m) we have ıF,Tσ ∈ Σ(1 : k, 0 : n). Conversely, for σ ∈
Σ(1 : k, 0 : n) we have [σ] ⊆ [ıF,T ] if and only if there exists σ′ ∈ Σ(1 : k, 0 : m)
with σ = ıF,Tσ

′. In that case, σ′ is unique. Analogous statements hold for any
ρ ∈ Σ(0 : k, 0 : n). Thus we observe

trkT,F dλTσ =

{
dλσ

′

F if [σ] ⊆ [ıF,T ], σ′ ∈ Σ(1 : k, 0 : m), [ıF,Tσ
′] = [σ],

0 if [σ] * [ıF,T ],

trkT,F φ
T
ρ =

{
φTρ′ if [ρ] ⊆ [ıF,T ], ρ′ ∈ Σ(0 : k, 0 : m), [ıF,Tρ

′] = [ρ],
0 if [ρ] * [ıF,T ].

These basic relations describe the behavior of polynomial di�erential forms under
taking traces to subsimplices.

Having established these basic de�nitions and results, we introduce some di�er-
ential forms of particular interest in the sequel. We let 1T ∈ C∞(T ) denote the
function over T with constant value 1, and we let volT ∈ C∞Λn(T ) denote the
constant n-form over T whose integral

∫
T

volT = voln(T ) over T equals the volume
voln(T ). The n-form volT is also known as the volume form of T . There are di�erent
ways to represent the volume form in terms of polynomial di�erential forms.

Lemma III.2.3.

Let σ ∈ Σ(1 : n, 0 : n) and let p ∈ [0 : n] \ [σ]. Then

dλσ =
ε(p, σ)

n! · voln(T )
volT .

Proof. We let ϕT : ∆n → T be the unique a�ne di�eomorphism which maps 0 to
v0 and ei to vi for 1 ≤ i ≤ n. We then �nd that∫

T

dλTσ =

∫
T

ϕ−∗T dλ∆n
σ = s0 ·

∫
∆n

dλ∆n
σ =

s0s1

n!
,

where s0, s1 ∈ {−1, 1} are speci�ed as follows. Let τ ∈ Σ(1 : n, 0 : n) satisfy
[τ ] = [1 : n]. If σ = τ , then we let s1 = ε(0, σ) = 1. Otherwise, 0 ∈ [σ] and there
exists a unique p ∈ [1 : n] \ [σ]. We then let s1 = ε(p, σ). Lastly, we let s0 = 1 if ϕT
preserves the orientation and s0 = −1 otherwise. The proof is complete.
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3. Auxiliary Lemmas

Lemma III.2.4.

Let ρ ∈ Σ(0 : n, 0 : n). Then

φTρ =
volT

n! · voln(T )
.

Proof. Using Lemma III.2.3, the identity

φρ =
∑
p∈[ρ]

ε(p, ρ− p)λTp dλTρ−p =
∑
p∈[ρ]

λTp dλ
T
ρ−0 = dλTρ−0 =

1

n! · voln(T )
volT

is easily veri�ed.

We �nish this section with some special notation and results considering Whitney
k-forms. Any enumeration of the vertices of T induces an enumeration of the vertices
of each subsimplex of T . Suppose that we have �xed enumerations of the subsim-
plices of T that are all compatible with each other. For every ρ ∈ Σ(0 : k, 0 : n)
we let F T

ρ ∈ ∆(T ) be the unique k-dimensional subsimplex of T with [ıF,T ] = [ρ].
In other words, F T

ρ is the subsimplex of T whose vertices have the indices indicated
by ρ. The enumeration of the vertices of T thus yields a bijective mapping between
∆(T )k and Σ(0 : k, 0 : n). We then let φTF := φTρ , where F = F T

ρ .
We �rst verify that trkT,F φ

T
f = φFf for all F ∈ ∆(T ) and f ∈ ∆(F ). With our

observations about the traces of Whitney forms and Lemma III.2.4, we get∫
F

φTG =

{
1/n! if F = G,

0 if F 6= G,
F,G ∈ ∆(T )k. (III.8)

III.3. Auxiliary Lemmas

We give elementary proofs for some auxiliary lemmas concerning polynomial dif-
ferential forms. All of these results have been proven in the literature several times.
In this section, let T be an n-simplex assumed be understood.

Consider σ ∈ Σ(1 : k, 0 : n) for some k ∈ [1 : n] and p ∈ [σ]. We then have

dλσ = ε(p, σ − p)dλp ∧ dλσ−p. (III.9)

This follows from the de�nition of dλσ and properties of the alternating product.
We interpret this as a recursive formula for the basic alternators. The following
lemma gives a recursive formula for the Whitney forms.

Lemma III.3.1.

Let k ∈ [0 : n]. If ρ ∈ Σ(0 : k, 0 : n) and q ∈ [0 : n] \ [ρ], then

ε(q, ρ)φρ+q = λqdλρ − dλq ∧ φρ. (III.10)

Proof. Let k, ρ, and q be as in the statement of the lemma. Unfolding de�nitions
gives

ε(q, ρ)φρ+q − λqdλρ = ε(q, ρ)
∑
l∈[ρ+q]

ε(l, ρ+ q − l)λldλρ+q−l − λqdλρ

= ε(q, ρ)
∑
l∈[ρ]

ε(l, ρ+ q − l)λldλρ+q−l.
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III. Finite Element Spaces over Simplices

A simple calculation yields

ε(q, ρ)
∑
l∈[ρ]

ε(l, ρ+ q − l)λldλρ+q−l

= ε(q, ρ)
∑
l∈[ρ]

ε(l, ρ+ q − l)ε(q, ρ− l)λldλq ∧ dλρ−l

= ε(q, ρ)
∑
l∈[ρ]

ε(l, q)ε(q, l)ε(l, ρ− l)ε(q, ρ)λldλq ∧ dλρ−l

= −dλq ∧
∑
l∈[ρ]

ε(l, ρ− l)λldλρ−l

= −dλq ∧ φρ,

where we have used

ε(q, σ − l) = ε(q, σ)ε(q, l), ε(l, σ + q − l) = ε(l, q)ε(l, σ − l),

valid for l ∈ [σ]. This completes the proof.

Lemma III.3.2 (Proposition 3.4 in [57], Equation (6.6) in [10]).
Let k ∈ [0 : n] and ρ ∈ Σ(0 : k, 0 : n). Then

dkφρ = (k + 1)dλρ. (III.11)

Proof. For k ∈ [0 : n] and ρ ∈ Σ(0 : k, 0 : n) we �nd

dkφρ =
∑
p∈[ρ]

ε(p, ρ− p)dλTp ∧ dλTρ−p = (k + 1)dλρ,

which is the desired result.

Remark III.3.3.

The preceding observation motivates the notation λρ := φρ for the Whitney forms,
which can be found in several publications (e.g. Christiansen and Rapetti [57]).

Lemma III.3.4 (Proposition 3.4 in [57]).
Let k ∈ [0 : n] and σ ∈ Σ(0 : k, 0 : n). Then

dλσ =
∑
q∈[σc]

ε(q, σ)φσ+q. (III.12)

Proof. Via Lemma III.3.1 we �nd∑
q∈[σc]

ε(q, σ)φσ+q =
∑
q∈[σc]

(λqdλσ − dλq ∧ φσ)

=

∑
q∈[σc]

λq

 dλσ −

∑
q∈[σc]

dλq

 ∧ φσ.
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4. Finite Element Spaces

Using the partition of zero, the de�nition of the Whitney forms, Equation (III.9),
and eventually the partition of unity, we derive∑

q∈[σc]

ε(q, σ)φσ+q =
∑
q∈[σc]

λpdλσ +
∑
p∈[σ]

dλp ∧ φσ

=
∑
q∈[σc]

λpdλσ +
∑
p∈[σ]

dλp ∧ ε(p, σ − p)λpdλσ−p

=
∑
q∈[σc]

λpdλσ +
∑
p∈[σ]

λpdλσ =
n∑
i=0

λidλσ = dλσ.

This had to be shown.

The following identity describes an elementary linear dependence between Whit-
ney forms of higher order.

Lemma III.3.5 (Proposition 3.3 in [57], Equation (6.5) in [10]).
Let k ∈ [0 : n] and ρ ∈ Σ(0 : k, 0 : n). Then∑

p∈[ρ]

ε(p, ρ− p)λpφρ−p = 0. (III.13)

Proof. Using (III.7), we expand the left-hand side of (III.13) to see∑
p∈[ρ]

ε(p, ρ− p)λpφρ−p =
∑
p∈[ρ]

ε(p, ρ− p)λp
∑

s∈[ρ−p]

λsε(s, ρ− p− s)dλρ−p−s

=
∑
p,s∈[ρ]
p6=s

ε(p, ρ− p)ε(s, ρ− p− s)λpλsdλρ−p−s

=
∑
p,s∈[ρ]
p 6=s

ε(p, ρ− p)ε(s, ρ− s)ε(s, p)λpλsdλρ−p−s.

It is evident that the last expression vanishes, since the sum contains for each sum-
mand also its negative.

III.4. Finite Element Spaces

We are now in the position to introduce spaces of polynomial di�erential forms
and discuss some basic properties. Let T be an n-dimensional simplex. For r, k ∈ Z
we de�ne the space PrΛk(T ) by

PrΛk(T ) := span
{
λαTdλ

T
σ

∣∣ α ∈ A(r, 0 : n), σ ∈ Σ(1 : k, 0 : n)
}
, (III.14)

and we de�ne the space P−r Λk(T ) by

P−r Λk(T ) := span
{
λαTφ

T
σ

∣∣ α ∈ A(r − 1, 0 : n), σ ∈ Σ(0 : k, 0 : n)
}
. (III.15)
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III. Finite Element Spaces over Simplices

We �rst study the transformation properties of these spaces. Suppose that T ′ is
another n-dimensional simplex and let ϕT ′,T : T ′ → T be an a�ne di�eomorphism.
In that case we have isomorphisms

ϕ∗T ′,T : PrΛk(T )→ PrΛk(T ′), ϕ∗T ′,T : P−r Λk(T )→ P−r Λk(T ′),

for r, k ∈ Z, as follows from the discussion in Section III.2. We also consider traces
to subsimplices. Let F ∈ ∆(T ) be a subsimplex of T . It is easy to verify that the
traces preserve the spaces PrΛk(T ) and P−r Λk(T ) and that they are even surjective.
We have

PrΛk(F ) = trkT,F PrΛk(T ), P−r Λk(F ) = trkT,F P−r Λk(T ),

for r, k ∈ Z. It is now of particular interest to consider the subspaces of PrΛk(T )
and P−r Λk(T ) with vanishing traces along the boundary. We introduce

P̊rΛk(T ) := span
{
ω ∈ PrΛk(T )

∣∣ ∀F ∈ ∆(T ) \ {T} : trkT,F ω = 0
}
, (III.16)

P̊−r Λk(T ) := span
{
ω ∈ P−r Λk(T )

∣∣ ∀F ∈ ∆(T ) \ {T} : trkT,F ω = 0
}
. (III.17)

Similar as above, if T ′ is another n-dimensional simplex and ϕT ′,T : T ′ → T is an
a�ne di�eomorphism, then we have isomorphisms

ϕ∗T ′,T : P̊rΛk(T )→ P̊rΛk(T ′), ϕ∗T ′,T : P̊−r Λk(T )→ P̊−r Λk(T ′),

for r, k ∈ Z.
We note that for some combinations of parameters r, k, n ∈ Z, the above spaces

are linear hulls of the empty set, in which case the respective spaces are the zero-
dimensional vector space. In particular, we have

PrΛk(T ) = P−r Λk(T ) = P̊rΛk(T ) = P̊−r Λk(T ) = {0}

if k /∈ [0 : n] or if r < 0. We also note at this point that P0Λ0(T ) = span{1T} but
P−0 Λ0(T ) = {0} in our de�nition (see also Remark III.4.2 below).

We consider some inclusion properties. We have

Pr−1Λk(T ) ⊆ P−r Λk(T ) ⊆ PrΛk(T ), r, k ∈ Z,

by Lemma III.3.4 and an iteration of Lemma III.3.1. We immediately obtain

P̊r−1Λk(T ) ⊆ P̊−r Λk(T ) ⊆ P̊rΛk(T ), r, k ∈ Z. (III.18)

From de�nitions we have

PrΛ0(T ) = P−r Λ0(T ), P̊rΛ0(T ) = P̊−r Λ0(T )

in the case r ≥ 1. On the other hand,

Pr−1Λn(T ) = P−r Λn(T ) = P̊r−1Λn(T ) = P̊−r Λn(T )

is implied by Lemma III.2.4. But for r ≥ 0 and k ∈ [1 : n−1], the inclusions (III.18)
are strict.
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4. Finite Element Spaces

Remark III.4.1.

In this section we have described the spaces PrΛk(T ) and P−r Λk(T ) only in terms
of barycentric coordinates, but we can de�ne the spaces PrΛk(T ) and P−r Λk(T )
alternatively as the traces of PrΛk(RN) and P−r Λk(RN) onto T , where PrΛk(RN)
and P−r Λk(RN) are spaces of polynomial di�erential forms over RN . Our de�nition
of P−r Λk(T ) is equivalent to the de�nition of P−r Λk(T ) in the literature, where the
Koszul operator is used (see [9]).

Remark III.4.2.

The case r = 0 is the only instance where PrΛ0(T ) and P−r Λ0(T ) di�er. This is
noted explicitly in the seminal paper of Arnold, Falk, and Winther [9, p.34].

The exterior derivative gives rise to linear mappings between these spaces of
polynomial di�erential forms. We have

dkT : PrΛk(T )→ Pr−1Λk+1(T ), dkT : PrΛk(T )→ P−r Λk+1(T ),

dkT : P−r Λk(T )→ Pr−1Λk+1(T ), dkT : P−r Λk(T )→ P−r Λk+1(T ),

and corresponding mappings between spaces with boundary conditions,

dkT : P̊rΛk(T )→ P̊r−1Λk+1(T ), dkT : P̊rΛk(T )→ P̊−r Λk+1(T ),

dkT : P̊−r Λk(T )→ P̊r−1Λk+1(T ), dkT : P̊−r Λk(T )→ P̊−r Λk+1(T ),

Moreover, one can show that

dkTP−r Λk(T ) = dkTPrΛk(T ), (III.19a)

dkT P̊−r Λk(T ) = dkT P̊rΛk(T ), (III.19b)

and that

ker dkT ∩ P−r Λk(T ) = ker dkT ∩ Pr−1Λk(T ), (III.20a)

ker dkT ∩ P̊−r Λk(T ) = ker dkT ∩ P̊r−1Λk(T ). (III.20b)

These identities have been proven in [9], and we will prove them in Section III.9.
They will not be used in the remaining sections of this chapter.

The constant function 1T spans the kernel of dkT : C∞Λ0(T ) → C∞Λ1(T ). On
the other hand, C∞Λn(T ) is the direct sum of dn−1C∞Λn−1(T ) and the span of volT .
Analogous statements hold for polynomial di�erential forms. It will be convenient
to introduce notation for spaces with those special di�erential forms removed. Let∫
T

: C∞Λ0(T )→ R and
∫
T

: C∞Λn(T )→ R denote the respective integral mappings
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III. Finite Element Spaces over Simplices

of 0- and n-forms over T . We set

PrΛk(T ) :=

{
PrΛ0(T ) ∩ ker

∫
T

if k = 0,
PrΛk(T ) otherwise, (III.21)

P−r Λk(T ) :=

{
PrΛ0(T ) ∩ ker

∫
T

if k = 0,
P−r Λk(T ) otherwise, (III.22)

P̊rΛk(T ) :=

{
P̊rΛn(T ) ∩ ker

∫
T

if k = n,

P̊rΛk(T ) otherwise,
(III.23)

P̊
−
r Λk(T ) :=

{
P̊−r Λn(T ) ∩ ker

∫
T

if k = n,

P̊−r Λk(T ) otherwise.
(III.24)

We obviously have for r ≥ 0 the direct sum decompositions

PrΛ0(T ) = PrΛ0(T )⊕ span {1T} , (III.25)
P−r+1Λ0(T ) = P−r+1Λ0(T )⊕ span {1T} , (III.26)

P̊rΛn(T ) = P̊rΛn(T )⊕ span {volT} , (III.27)

P̊
−
r+1Λn(T ) = P̊

−
r+1Λn(T )⊕ span {volT} , (III.28)

and no changes in the other cases. With these de�nitions at our disposal, we may
concisely state that

∀ω ∈ PrΛk(T ) :
(
dkω = 0 =⇒ ∃η ∈ P−r+1Λk−1 : dk−1η = ω

)
, (III.29a)

∀ω ∈ P̊rΛk(T ) :
(
dkω = 0 =⇒ ∃η ∈ P̊−r+1Λk−1 : dk−1η = ω

)
. (III.29b)

The implications (III.29) will be proven in Section III.9 and will not be used in the
remaining sections of this chapter.

III.5. Basis construction for PrΛk(T ) and P̊rΛk(T )

Let T be a simplex of dimension n and let r, k ∈ Z. In this section we review
bases for the spaces PrΛk(T ) and P̊rΛk(T ). This includes geometric decompositions
for the space PrΛk(T ) and extension operators.

The canonical spanning set for PrΛk(T ) is given by

SPrΛk(T ) :=
{
λαTdλ

T
σ

∣∣ α ∈ A(r, 0 : n), σ ∈ Σ(1 : k, 0 : n)
}
. (III.30)

The members of SPrΛk(T ) are not linearly independent in general, but we can
specify linearly independent subsets. A �rst possible choice is

B0PrΛk(T ) :=

{
λαTdλ

T
σ

∣∣∣∣ α ∈ A(r, 0 : n),
σ ∈ Σ(1 : k, 0 : n), min[σ] > 0

}
. (III.31)

In the case that k = 0 we have [σ] = ∅ and by convention min[σ] =∞. So the basis
for the barycentric polynomials over T is included as a special case. Formally we
prove the following two lemmas.
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5. Basis construction for PrΛk(T ) and P̊rΛk(T )

Lemma III.5.1.

Let r ∈ Z. The set B0PrΛ0(T ) is a basis for PrΛ0(T ).

Proof. By de�nition, B0PrΛ0(T ) is a spanning set for PrΛ0(T ), so it remains to
prove the linear independence of the members of B0PrΛ0(T ). Suppose that (cα)α
are real numbers indexed over A(r, n) and suppose that

0 =
∑

α∈A(r,n)

cαλ
α
T . (III.32)

We prove that cα = 0 for all α ∈ A(r, n) by induction along the dimension of the
simplex. If T is a vertex, dimT = 0, then A(r, n) has only a single member and the
statement follows. Next, suppose that the statement holds true over simplices with
dimension strictly smaller than T . We know that tr0

T,F B0PrΛ0(T ) = B0PrΛ0(F ).
By the induction assumption we conclude that cα = 0 for all α ∈ A(r, n) with
[α] 6= [0 : n]. It remains to show the linear independence of the interior basis
functions.

To complete the proof, we use another induction argument along the polynomial
order. If r < n + 1, then [α] 6= [0 : n] for all α ∈ A(r, n) and the claim is already
proven. Next, suppose the claim is already proven for polynomial orders strictly
smaller than r and that r ≥ n + 1. Then for each α ∈ A(r, n) there exists α′ ∈
A(r−n−1, n) such that λαT = λT0 λ

T
1 · · ·λTn ·λα

′
T . Note that λ

T
0 λ

T
1 · · ·λTn is positive over

the relative interior of T . The linear independence of B0PrΛ0(T ) is a consequence
of the linear independence of B0Pr−n−1Λ0(T ). This completes the second induction
argument.

Lemma III.5.2.

Let k, r ∈ Z. The set B0PrΛk(T ) is a basis for PrΛk(T ).

Proof. Let α ∈ A(r, 0 : n) and σ ∈ Σ(1 : k, 0 : n). If 0 /∈ [σ], then λαTdλ
T
σ ∈

B0PrΛk(T ). If instead 0 ∈ [σ], then λαTdλ
T
σ is in the span of B0PrΛk(T ), as can be

seen by the partition of zero property. We conclude that B0PrΛk(T ) is a spanning
set for PrΛk(T ).

The case k = 0 has been treated above. For the case k > 1 we recall that the
constant 1-forms dλT1 , . . . , dλ

T
n span the cotangent space at each point. Consequently,

the constant k-forms dλTσ with σ ∈ Σ(1 : k, 1 : n) span the k-th exterior power of
the cotangent space at each point. Since the monomials λαT for α ∈ A(r, 0 : n) are
linearly independent, so are the members of B0PrΛk(T ). The proof is complete.

The basis B0PrΛk(T ) is straight-forward to derive, but there are disadvantages
when working with B0PrΛk(T ). For example, traces of members of B0PrΛk(T ) onto
a face F ∈ ∆(T ) generally do not contain PrΛk(F ) unless k = 0. We introduce a
basis that has better properties and is almost as easy to describe. However, we need
to impose the restriction that r ≥ 1. We de�ne

BPrΛk(T ) :=

{
λαTdλ

T
σ

∣∣∣∣ α ∈ A(r, 0 : n), σ ∈ Σ(1 : k, 0 : n),
min[α] /∈ [σ]

}
. (III.33)

Theorem III.5.3.

If r ≥ 1, then the set BPrΛk(T ) is a basis of PrΛk(T ).
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III. Finite Element Spaces over Simplices

Proof. First we show that BPrΛk(T ) spans PrΛk(T ). Let α ∈ A(r, 0 : n) and
σ ∈ Σ(1 : k, 0 : n) with bαc ∈ [σ]. We �nd

λαTdλ
T
σ = ε(bαc, σ − bαc)λαTdλTbαc ∧ dλTσ−bαc

= −ε(bαc, σ − bαc)λαT
∑
q∈[σc]

dλTq ∧ dλTσ−bαc

= −ε(bαc, σ − bαc)λαT
∑
q∈[σc]

ε(q, σ − bαc)dλTσ−bαc+q

=
∑
q∈[σc]

ε(bαc, σ − bαc)ε(q, σ)λαTdλ
T
σ−bαc+q.

Hence the spanning set property is shown. Suppose that the members of BPrΛk(T )
are linearly dependent. Then there exist coe�cients cα,σ ∈ R such that

0 =
∑

α∈A(r,0:n)
σ∈Σ(1:k,0:n)
bαc/∈[σ]

cα,σλ
α
Tdλ

T
σ .

We de�ne the constant k-forms

Vα :=
∑

σ∈Σ(1:k,0:n)
bαc/∈[σ]

cα,σdλ
T
σ , α ∈ A(r, 0 : n).

We note for each α ∈ A(r, 0 : n) that Vα = 0 if and only if for all σ ∈ Σ(1 : k, 0 : n)
with bαc /∈ [σ] we have cα,σ = 0. Suppose there exists β ∈ A(r, 0 : n) with Vα 6= 0.
Then we let V β denote the constant k-vector �eld over T such that Vβ(V β) = 1
everywhere over T . By assumption, we have

0 =
∑

α∈A(r,0:n)

λαTVα(V β) = λβT +
∑

α∈A(r,0:n)
α 6=β

λαTVα(V β).

But this contradicts the linear independence of the barycentric monomials. Hence
no such β exists, and we conclude that all coe�cients cα,σ vanish. This shows linear
independence of BPrΛk(T ) and completes the proof.

Our next objective is to relate this basis to the combinatorial structure of the
simplex T . Speci�cally, we show that BPrΛk(T ) is well-behaved under taking the
trace to subsimplices. This is formalized in the following lemma.

Lemma III.5.4.

Let F ∈ ∆(T ) and m = dimF . For each λαTdλ
T
σ ∈ BPrΛk(T ) we either have

[α] ∪ [σ] * [ıF,T ] and

trkT,F λ
α
Tdλ

T
σ = 0,

or we have [α]∪ [σ] ⊆ [ıF,T ], in which case there exist α′ ∈ A(r, 0 : m) and σ′ ∈ Σ(1 :
k, 0 : m) with

trkT,F λ
α
Tdλ

T
σ = λα

′

F dλ
F
σ′ , λα

′

F dλ
F
σ′ ∈ BPrΛk(F ),

α′ = αıF,T , ıF,Tσ
′ = σ.
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Conversely, if λαFdλ
F
σ ∈ BPrΛk(F ), then there exist α′ ∈ A(r, 0 : n) and σ′ ∈ Σ(1 :

k, 0 : n) such that

λα
′

T dλ
T
σ′ ∈ BPrΛk(T ), trkT,F λ

α′

T dλ
T
σ′ = λαFdλ

F
σ ,

α = α′ıF,T , ıF,Tσ = σ′.

Proof. This follows from the results of Section III.2.

Having discussed spanning sets and bases for PrΛk(T ), we now address a span-
ning set and a basis for P̊rΛk(T ). Ideally, the basis should be a subset of the basis
BPrΛk(T ) for PrΛk(T ). We introduce

SP̊rΛk(T ) =

{
λαTdλ

T
σ

∣∣∣∣ α ∈ A(r, 0 : n), σ ∈ Σ(1 : k, 0 : n),
[α] ∪ [σ] = [0 : n]

}
. (III.34)

and

BP̊rΛk(T ) =

{
λαTdλ

T
σ

∣∣∣∣ α ∈ A(r, 0 : n), σ ∈ Σ(1 : k, 0 : n),
min[α] /∈ [σ], [α] ∪ [σ] = [0 : n]

}
. (III.35)

It is evident that

SP̊rΛk(T ) ⊆ SPrΛk(T ), BP̊rΛk(T ) ⊆ BPrΛk(T ), BP̊rΛk(T ) ⊆ SP̊rΛk(T ).

Moreover, the following is veri�ed easily.

Theorem III.5.5.

The set BP̊rΛk(T ) is a basis for P̊rΛk(T ), and SP̊rΛk(T ) is a spanning set for that
space.

Proof. Let ω ∈ P̊rΛk(T ). Then ω ∈ PrΛk(T ), and thus there exist unique coe�cients
cα,σ such that

ω =
∑

σ∈Σ(1:k,0:n)
bαc/∈[σ]

cα,σλ
α
Tdλ

T
σ .

For m ∈ [0 : n− 1] and F ∈ ∆(T )m we then �nd

0 = trkT,F ω =
∑

σ∈Σ(1:k,0:n)
bαc/∈[σ]

cα,σ trkT,F λ
α
Tdλ

T
σ =

∑
σ∈Σ(1:k,0:n)
bαc/∈[σ]

[α]∪[σ]⊆[ıF,T ]

cα,σ trkT,F λ
α
Tdλ

T
σ .

By Lemma III.5.4 we thus have cα,σ = 0 whenever [α] ∪ [σ] 6= [0 : n]. We thus
�nd that BP̊rΛk(T ) is a spanning set of P̊rΛk(T ), and a fortiori SP̊rΛk(T ) is a
spanning set too. Furthermore, BP̊rΛk(T ) is linearly independent, being a subset of
BPrΛk(T ). Thus BP̊rΛk(T ) is a basis of P̊rΛk(T ). The proof is complete.

We are now in a position to address the geometric decomposition of �nite element
spaces. This means that we decompose the space PrΛk(T ) into the direct sum
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of subspaces associated to the subsimplices of T . The key ingredient for this are
extension operators. For every subsimplex F ∈ ∆(T ) of T we introduce the operator

extk,rF,T : P̊rΛk(F )→ PrΛk(T ), (III.36)

by taking the linear extension of setting

extk,rF,T λ
α
Fdλ

F
σ := λα

′

T dλ
T
σ′ , λαFdλ

F
σ ∈ BPrΛk(F ),

where σ′ = ıF,Tσ and α′ ∈ A(r, 0 : n) is αı−1
F,T over [ıF,T ] and zero elsewhere. Since

B̊PrΛk(F ) is a basis of P̊rΛk(F ), this is well-de�ned.

Lemma III.5.6.

The following observations hold.

(i) For all T ∈ T we have

extk,rT,T ω = ω, ω ∈ P̊rΛk(T ).

(ii) For all T ∈ T , F ∈ ∆(T ), and f ∈ ∆(F ) we have

extk,rf,F ω = trkT,F extk,rf,T ω, ω ∈ P̊rΛk(f).

(iii) For all T ∈ T and f, F ∈ ∆(T ) with f /∈ ∆(F ) we have

trkT,F extk,rf,T ω = 0, ω ∈ P̊rΛk(f).

Proof. This follows again from Lemma III.5.4 and Theorem III.5.5.

Theorem III.5.7.

For every ω ∈ PrΛk(T ) there exist unique ω̊F ∈ P̊rΛk(F ) for F ∈ ∆(T ) such that

ω =
∑

F∈∆(T )

extk,rF,T ω̊F .

Proof. According to Theorem III.5.3 there exist unique coe�cients cα,σ such that

ω =
∑

σ∈Σ(1:k,0:n)
bαc/∈[σ]

cα,σλ
α
Tdλ

T
σ .

We de�ne ω̊F ∈ P̊Λk(F ) for F ∈ ∆(T ) by

ω̊F :=
∑

σ∈Σ(1:k,0:n)
bαc/∈[σ]

[α]∪[σ]=[ıF,T ]

cα,σ trkT,F λ
α
Tdλ

T
σ .

These terms satisfy the required relation. The proof is complete.

Remark III.5.8.

The de�nition of extk,rF,T depends on the enumeration of the vertices of F and T .
Though this dependence is perhaps not desirable, it is su�cient for the purpose of
this thesis. We refer to Section 8 of [10] for extension operators that do not depend
on the enumeration of vertices.
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III.6. Basis construction for P−r Λk(T ) and P̊−r Λk(T )

The agenda of the previous section for the Pr-family of spaces is repeated in this
section for the P−r -family of spaces. Let T be a simplex and let k, r ∈ Z with r ≥ 1.
We consider the sets

SP−r Λk(T ) =
{
λαTφ

T
ρ

∣∣ α ∈ A(r − 1, n), ρ ∈ Σ(0 : k, 0 : n)
}
, (III.37)

and

BP−r Λk(T ) =

{
λαTφ

T
ρ

∣∣∣∣ α ∈ A(r − 1, n), ρ ∈ Σ(0 : k, 0 : n),
bαc ≥ bρc

}
. (III.38)

We easily observe that

BP−r Λk(T ) ⊆ SP−r Λk(T ).

By construction, SP−r Λk(T ) is a spanning set for P−r Λk(T ). Our goal is to show
that the subset BP−r Λk(T ) is even a basis of P−r Λk(T ). In a �rst step, we prove that
it is a smaller spanning set.

Lemma III.6.1.

The set BP−r Λk(T ) is a spanning set of P−r Λk(T ).

Proof. We need to show that any λαTφ
T
ρ can be written as a linear combination of

elements of BP−r Λk(T ). If r = 1, then there is nothing to show, so let us assume
that r > 1. To see this, suppose that λαTφ

T
ρ ∈ SP−r Λk(T ) such that bαc < bρc.

There exists β ∈ A(r − 2, n) such that λαT = λβTλ
T
bαc. Using Lemma III.3.5, we �nd

that

λαTφ
T
ρ = λβTλ

T
bαcφ

T
ρ = λβT

k∑
j=0

(−1)jλTρ(j)φ
T
ρ+bαc−ρ(j).

This shows the desired result.

Similarly as in the preceding section, we study the behavior of BP−r Λk(T ) under
taking traces.

Lemma III.6.2.

Let F ∈ ∆(T )m. For each λαTφ
T
ρ ∈ BP−r Λk(T ) we either have [α] ∪ [ρ] * [ıF,T ] and

trkT,F λ
α
Tφ

T
ρ = 0,

or we have [α] ∪ [ρ] ⊆ [ıF,T ], in which case there exist α′ ∈ A(r − 1, 0 : m) and
ρ′ ∈ Σ(0 : k, 0 : m) with

trkT,F λ
α
Tφ

T
ρ = λα

′

F φ
F
ρ′ , λα

′

F φ
F
ρ′ ∈ BP−r Λk(F ),

α′ = αıF,T , ıF,Tρ
′ = ρ.

Conversely, if λαFφ
F
ρ ∈ BP−r Λk(F ), then there exist α′ ∈ A(r − 1, 0 : n) and ρ′ ∈

Σ(0 : k, 0 : n) such that

λα
′

T φ
T
ρ′ ∈ BP−r Λk(T ), trkT,F λ

α′

T φ
T
ρ′ = λαFφ

F
ρ ,

α = α′ıF,T , ıF,Tρ = ρ′.
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Proof. This is again a consequence of the results of Section III.2.

It remains to prove that the members of BP−r Λk(T ) are linearly independent.
To this end, we make a small detour and consider the set

B0P−r Λk(T ) =

{
λαTφ

T
ρ

∣∣∣∣ α ∈ A(r − 1, n), ρ ∈ Σ(0 : k, 0 : n),
bρc = 0

}
. (III.39)

Clearly, we have the inclusion

B0P−r Λk(T ) ⊆ BP−r Λk(T ).

We prove the following auxiliary result �rst.

Lemma III.6.3.

The set B0P−r Λk(T ) is linearly independent.

Proof. Let ω ∈ P−r Λk(T ) be in the span of B0P−r Λk(T ). Then there exist coe�cients
cα,ρ with

ω =
∑

α∈A(r,0:n)
ρ∈Σ(0:k,0:n)
bρc=0

cα,ρλ
α
Tφ

T
ρ .

We observe that ω = ω0 + ω+, where

ω0 :=
∑

α∈A(r,0:n)
ρ∈Σ(0:k,0:n)
bρc=0

cα,ρλ
α
Tλ

T
0 dλ

T
ρ−0,

ω+ :=
n∑
i=1

dλTi ∧
∑

α∈A(r,0:n)
ρ∈Σ(0:k,0:n)
bρc=0

∑
p∈[ρ−0]

ε(p, ρ− 0− p)cα,ρλTp λαTdλTρ−0−p.

From the de�nitions of ω0 and ω+ we obtain a descriptions of ω0 and ω+ in terms
of the basis BPrΛk(T ) of PrΛk(T ).

Let us assume ω = 0. We prove that all coe�cients cα,ρ vanish by induction.
First, it is evident that cα,ρ = 0 for α(0) = r−1. Now let us assume that s ∈ [1 : r−1]
such that cα,ρ = 0 for all α(0) ∈ [s : r−1]. Since the terms λαTλ0 with α(s) = s−1 in
the de�nition of ω0 always have a higher exponent in index 0 than the terms λTp λ

α
T

in the de�nition of ω+ we conclude that cα,ρ = 0 for α(0) = s − 1. Eventually we
derive cα,ρ = 0 for all coe�cients. The proof is complete.

Theorem III.6.4.

The set BP−r Λk(T ) is a basis of P−r Λk(T ).

Proof. Since BP−r Λk(T ) is a spanning set of P−r Λk(T ), it only remains to prove its
linear independence. We prove the claim by induction on the dimension of T . We
start with the case dimT = k. Here we notice that Σ(0 : k, 0 : k) has only one single
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member, and so the claim holds due to the linear independence of the barycentric
polynomials.

Next, let dimT = m + 1 and let us assume that the claim holds the face F ∈
∆(T )m. We have

P−r Λk(T ) = spanB0P−r Λk(T ) + spanBP−r Λk(T ) \ B0P−r Λk(T )

It is now evident that B0P−r Λk(T ) ⊆ ker trkT,F . On the other hand, trkT,F yields an
isomorphism between the span of BP−r Λk(T ) \B0P−r Λk and the span of BP−r Λk(F ).
This implies the desired result.

Next we study bases and spanning sets for the spaces with homogeneous bound-
ary conditions. We �rst introduce the sets

SP̊−r Λk(T ) =

{
λαTφ

T
ρ

∣∣∣∣ α ∈ A(r − 1, n), ρ ∈ Σ(0 : k, 0 : n),
[α] ∪ [ρ] = [0 : n]

}
(III.40)

and

BP̊−r Λk(T ) =

{
λαTφ

T
ρ

∣∣∣∣ α ∈ A(r − 1, n), ρ ∈ Σ(0 : k, 0 : n),
bρc = 0, [α] ∪ [ρ] = [0 : n]

}
. (III.41)

We observe the inclusions

SP̊−r Λk(T ) ⊆ SP−r Λk(T ), BP̊−r Λk(T ) ⊆ BP−r Λk(T ).

Theorem III.6.5.

The set BP̊−r Λk(T ) is a basis of P̊−r Λk(T ), and SP̊−r Λk(T ) is a spanning set for
P̊−r Λk(T ).

Proof. Let ω ∈ P̊−r Λk(T ). Then ω ∈ P−r Λk(T ), and thus there exist unique coe�-
cients cα,ρ such that

ω =
∑

α∈A(r−1,n)
ρ∈Σ(0:k,0:n)
bαc≥bρc

cα,ρλ
α
Tφ

T
ρ .

When F is a face of T , then we �nd

0 = trkT,F ω =
∑

α∈A(r−1,n)
ρ∈Σ(0:k,0:n)
bαc≥bρc

cα,ρ trkT,F λ
α
Tφ

T
ρ =

∑
α∈A(r−1,n)
ρ∈Σ(0:k,0:n)
bαc≥bρc

[α]∪[ρ]⊆[ıF,T ]

cα,ρ trkT,F λ
α
Tφ

T
ρ .

We thus �nd that

ω =
∑

α∈A(r−1,n)
ρ∈Σ(0:k,0:n)
bαc≥bρc

[α]∪[ρ]=[0:n]

cα,ρλ
α
Tφ

T
ρ .

Hence BP̊−r Λk(T ) is a spanning set of P̊−r Λk(T ), and moreover it is linearly inde-
pendent, being a subset of BP−r Λk(T ). It follows that SP̊−r Λk(T ) is a spanning set
of P̊−r Λk(T ). The proof is complete.
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Eventually, we can de�ne an extension operator that facilitates a geometric de-
composition. Whenever F is a subsimplex of T , we consider the operator

extr,k,−F,T : P̊−r Λk(F )→ P−r Λk(T ),

which is de�ned by setting

extr,k,−F,T λαFφ
F
ρ = λ

ι(F,T )α
T φTι(F,T )ρ, λαFφ

F
ρ ∈ BP−r Λk(F ).

where ρ′ = ıF,Tρ and α′ ∈ A(r − 1, 0 : n) is αı−1
F,T over [ıF,T ] and zero elsewhere.

Since B̊P−r Λk(F ) is a basis of P̊−r Λk(F ), this is well-de�ned.

Lemma III.6.6.

The following observations hold.

(i) For all T ∈ T we have

extk,r,−T,T ω = ω, ω ∈ P̊−r Λk(T ).

(ii) For all T ∈ T , F ∈ ∆(T ), and f ∈ ∆(F ) we have

extk,r,−f,F ω = trkT,F extk,r,−f,T ω, ω ∈ P̊−r Λk(f).

(iii) For all T ∈ T and f, F ∈ ∆(T ) with f /∈ ∆(F ) we have

trkT,F extk,r,−f,T ω = 0, ω ∈ P̊−r Λk(f).

Proof. This follows again from Lemma III.5.4 and Theorem III.5.5.

Theorem III.6.7.

For every ω ∈ P−r Λk(T ) there exist unique ω̊F ∈ P̊−r Λk(F ) for F ∈ ∆(T ) such that

ω =
∑

F∈∆(T )

extk,r,−F,T ω̊F .

Proof. According to Theorem III.6.4 there exist unique coe�cients cα,ρ such that

ω =
∑

ρ∈Σ(0:k,0:n)
bαc/∈[ρ]

cα,ρλ
α
Tdλ

T
ρ .

We de�ne ω̊F ∈ P̊Λk(F ) for F ∈ ∆(T ) by

ω̊F :=
∑

ρ∈Σ(0:k,0:n)
bαc/∈[ρ]

[α]∪[ρ]=[ıF,T ]

cα,ρ trkT,F λ
α
Tdλ

T
ρ .

These terms satisfy the required relation. The proof is complete.

Remark III.6.8.

The bases for P−r Λk(T ) and P̊−r Λk(T ) are identical to the bases presented or im-
plied in Section 4 of [9] or in [10]. Moreover, our extension operator can easily be
generalized to the extension operator in Section 8 of [10]. In particular, it does not
depend on the enumeration of vertices.
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III.7. Linear Dependencies

The two major families of �nite element di�erential forms over simplices can
be related in a curious manner. Arnold, Falk and Winther's study of bases and
spanning sets in [9] utilizes isomorphisms

PrΛk(T ) ' P̊−r+kΛ
n−k(T ), P̊r+n−k+1Λk(T ) ' P−r+1Λn−k(T ).

Even though these isomorphisms play a central role in [9], not much research has
been invested so far. We will elaborate several aspects of these mappings and show
how they expose linear independencies in the canonical spanning sets of the �nite
element spaces. Throughout this section we let T be an n-dimensional simplex.
Moreover, in this and the next section we write

λσ := λσ(1) · · ·λσ(k), σ ∈ Σ(1 : k, 0 : n), k ∈ Z,
λρ := λρ(0) · · ·λρ(k), ρ ∈ Σ(0 : k, 0 : n), k ∈ Z.

First, we consider a relation between PrΛk(T ) and P̊−r+kΛk(T ). Note that a part of
the following statement is implied already by Proposition 3.7 of [57].

Lemma III.7.1.

Let k, r ∈ Z. Let ωα,σ ∈ R for σ ∈ Σ(1 : k, 0 : n) and α ∈ A(r, n). Then

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ωα,σλ
αdλσ = 0 ⇐⇒

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ε(σ, σc)ωα,σλ
αλσφσc = 0, (III.42)

which is the case if and only if the condition

ωα,σ −
∑
p∈[σ]

ε(p, σ − p)ωα,σ−p+0 = 0 (III.43)

holds for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n) with 0 /∈ [σ].

Proof. In the special case k = 0, the statement is trivial. We prove the statement
for the case 1 ≤ k ≤ n. Let σ ∈ Σ(1 : k, 0 : n) with 0 ∈ [σ].

For q ∈ [σc], it is an elementary fact that ε(q, σ−0) = −ε(q, σ). By combinatorial
arguments and the partition of zero of the barycentric di�erentials, we �rst �nd

dλσ = dλ0 ∧ dλσ−0 = −
∑
q∈[σc]

dλq ∧ dλσ−0

= −
∑
q∈[σc]

ε(q, σ − 0)dλσ−0+q =
∑
q∈[σc]

ε(q, σ)dλσ−0+q.
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We calculate that

SL :=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

ωα,σλ
αdλσ

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

0/∈[σ]

ωα,σλ
αdλσ +

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
0∈[σ]

ωα,σλ
αdλσ

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

0/∈[σ]

ωα,σλ
αdλσ +

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
0∈[σ]

ωα,σλ
α
∑
q∈[σc]

ε(q, σ)dλσ−0+q

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

0/∈[σ]

ωα,σ +
∑
p∈[σ]

ε(p, σ − p+ 0)ωα,σ−p+0

λαdλσ

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

0/∈[σ]

ωα,σ −∑
p∈[σ]

ε(p, σ − p)ωα,σ−p+0

λαdλσ.

This is an expression in terms of the basis B0PrΛk(T ) of PrΛk(T ).
Next, using Lemma III.3.5 we �nd

λσφσc = λσ−0λ0φσc = λσ−0
∑
q∈[σc]

ε(q, σ)λqφσc−q+0.

We then calculate∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
0∈[σ]

ε(σ, σc)ωα,σλ
αλσφσc ,

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

0∈[σ]

∑
q∈[σc]

ε(σ, σc)ε(q, σc − q)ωα,σλαλσ−0+qφσc−q+0,

so that

SR :=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

ε(σ, σc)ωα,σλ
αλσφσc

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

0/∈[σ]

ε(σ, σc)ωα,σλ
αλσφσc +

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
0∈[σ]

ε(σ, σc)ωα,σλ
αλσφσc

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

0/∈[σ]

ε(σ, σc)uσ +
∑
p∈[σ]

ε(σ − p+ 0, σc + p− 0)ε(p, σc − 0)uσ−p+0

λαλσφσc
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holds. This is an expression in terms of the basis BP̊−r+kΛk(T ) of P̊−r+kΛk(T ).
The proof is �nished if we prove SL = SR. The combinatorial observation

−ε(σ, σc)ε(p, σ − p) = (−1)kε(σ, σc)ε(σ − p, p)
= −ε(σ, σc)ε(σ − p, p)ε(σ − p, 0)

= −ε(σ, σc)ε(σ − p, p)ε(0, σc − 0)ε(σ − p, 0)

= ε(σ − p+ 0, σc + p− 0)ε(p, σc − 0)

for σ ∈ Σ(1 : k, 0 : n) with 0 /∈ [σ] and p ∈ [σ] accomplishes that.

With very similar methods we prove a relation between the �nite element spaces
P̊r+n−k+1Λk(T ) and P−r+1Λn−k(T ). This statement is an expectable but new analogue
of Proposition 3.7 in [57].

Lemma III.7.2.

Let k, r ∈ Z. Let ωα,σ ∈ R for σ ∈ Σ(1 : k, 0 : n) and α ∈ A(r, n). Then

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ωα,σλ
αλσdλσ = 0 ⇐⇒

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ε(σ, σc)ωα,σλ
αφσc = 0, (III.44)

which is the case if and only if the condition

ωα,σ −
∑

q∈[σ]∩[α]

ε(bσcc, σ − q)ε(q, σ − q)ωα+bσcc−q,σ+bσcc−q = 0 (III.45)

holds for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n) with bαc ≥ bσcc.

Proof. In the special case k = 0, the statement is trivial. So let us assume k > 0.
Using Lemma III.3.5 again, the computation

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
bαc<bσcc

ε(σ, σc)ωα,σλ
αφσc =

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
bαc<bσcc

ε(σ, σc)ωα,σλ
α−bαcλbαcφσc

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc<bσcc

∑
q∈[σc]
q 6=bαc

ε(σ, σc)ε(q, σc − q)ωα,σλα−bαc+qφσc+bαc−q
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is easily veri�ed. From this we conclude on the one hand that

SL :=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

ε(σ, σc)ωα,σλ
αφσc

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc≥bσcc

ε(σ, σc)ωα,σλ
αφσc +

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
bαc<bσcc

ε(σ, σc)ωα,σλ
αφσc

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc≥bσcc

ε(σ, σc)ωα,σλ
αφσc

+
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc<bσcc

∑
q∈[σc]
q 6=bαc

ε(σ, σc)ε(q, σc − q)ωα,σλα−bαc+qφσc+bαc−q.

For σ ∈ Σ(1 : k, 0 : n), α ∈ A(r, n) and q ∈ [σ] ∩ [α] with bαc ≥ bσcc we �nd

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
bαc<bσcc

∑
q∈[σc]
q 6=bαc

ε(σ, σc)ε(q, σc − q)ωα,σλα−bαc+qφσc+bαc−q,

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc≥bσcc
q∈[σ]∩[α]

ε(σ + bσcc − q, σc − bσcc+ q)ε(q, σc − bσcc)ωα+bσcc−q,σ+bσcc−qλ
αφσc .

The combinatorial observation

ε(σ + bσcc − q, σc − bσcc+ q)ε(q, σc − bσcc)
= −ε(σ, σc)ε(σ − q, q)ε(bσcc, σc − bσcc)ε(σ − q, bσcc)ε(q, σc − bσcc)ε(q, σc − bσcc)
= −ε(σ, σc)ε(σ − q, q)ε(σ − q, bσcc)

proves that SL equals

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)
bαc≥bσcc

ε(σ, σc)

ωα,σ − ∑
q∈[σ]∪[α]

ε(σ − q, q)ε(σ − q, bσcc)ωα+bσcc−q,σ+bσcc−q

λαφσc .

This an expression in terms of the basis BP−r Λn−k(T ) of P−r Λn−k(T ).
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On the other hand, we �nd

−
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc<bσcc

ωα,σλ
αλσ

c

dλσ

= −
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc<bσcc

ωα,σλ
αλσ

c

ε(bαc, σ − bαc)dλbαc ∧ dλσ−bαc

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc<bσcc

∑
q∈[σc]
q 6=bαc

ωα,σλ
αλσ

c

ε(bαc, σ − bαc)ε(q, σ − bαc)dλσ−bαc+q

=
∑

β∈A(r,n)
ρ∈Σ(1:k,0:n)
bβc≥bρcc

∑
q∈[ρ]∩[β]

ωβ+bρcc−q,ρ+bρcc−qλ
β+bρcc−qλρ

c−bρcc+qε(bρcc, ρ− q)ε(q, ρ− q)dλρ

=
∑

β∈A(r,n)
ρ∈Σ(1:k,0:n)
bβc≥bρcc

∑
q∈[ρ]∩[β]

ωβ+bρcc−q,ρ+bρcc−qλ
βλρ

c

ε(bρcc, ρ− q)ε(q, ρ− q)dλρ.

We thus infer

SR :=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)

ωα,σλ
αλσ

c

dλσ

=
∑

α∈A(r,n)
σ∈Σ(1:k,0:n)
bαc≥bσcc

ωα,σ − ∑
q∈[σ]∩[α]

ε(bσcc, σ − q)ε(q, σ − q)ωα+bσcc−q,σ+bσcc−q

λαλσ
c

dλσ.

This is an expression in terms of a basis of P̊r+n−k+1Λk(T ). Thus the desired state-
ment SL = SR follows.

These results give correspondences between the linear dependencies of the canon-
ical spanning sets of PrΛk(T ) and P̊−r+k+1Λn−k(T ), and between the linear depen-
dencies of the canonical spanning sets of P̊r+n−k+1Λk(T ) and P−r+1Λn−k(T ). An
immediate application is the well-de�nedness of the following isomorphisms.

We have a linear isomorphism PrΛk(T ) to P̊−r+k+1Λn−k(T ) which is de�ned via∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ωα,σλ
αdλσ 7→

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ωα,σλ
αλσφσc (III.46)

and a linear isomorphism from P̊r+n−k+1Λk(T ) to Pr+1Λn−k(T ) which is de�ned via∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ωα,σλ
αφσc 7→

∑
α∈A(r,n)

σ∈Σ(1:k,0:n)

ωα,σλ
αλσ

c

dλσ. (III.47)
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Lemma III.7.1 and Lemma III.7.2 imply the well-de�nedness of those mappings.

These results produce conditions under which a �nite element di�erential form
vanishes, expressed in the canonical spanning set. We �nish this section with two
auxiliary results that provide coe�cient conditions equivalent to the ones encoun-
tered in the previous two lemmas but which are easier to handle in some situations,
including the next chapter.

Lemma III.7.3.

Let k, r ∈ Z and let ωα,σ ∈ R for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n). Then the
condition

ωα,σ −
∑
p∈[σ]

ε(p, σ − p)ωα,σ−p+0 = 0 (III.48)

holds for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n) with 0 /∈ [σ] if and only the condition∑
p∈[θ]

ε(p, θ − p)ωα,θ−p = 0 (III.49)

holds for α ∈ A(r, n) and θ ∈ Σ(1 : k + 1, 0 : n).

Proof. The lemma is trivial if k = 0, so let us assume that 1 ≤ k ≤ n. Clearly, the
second claim implies the �rst, so we assume the �rst claim holds. Then the second
claim holds for all θ with 0 ∈ [θ]. If instead 0 /∈ [θ], then we �nd∑

p∈[θ]

ε(p, θ − p)ωα,θ−p =
∑
p∈[θ]

∑
s∈[θ−p]

ε(p, θ − p)ε(s, θ − p− s)ωα,θ−p−s+0

=
∑
p∈[θ]

∑
s∈[θ−p]

ε(p, s)ε(p, θ − p)ε(s, θ − p− s)ωα,θ−p−s+0.

Antisymmetry implies that this sum vanishes. The lemma is proven.

We devise an analogous result that extends Lemma III.7.2

Lemma III.7.4.

Let k, r ∈ Z and let ωα,σ ∈ R for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n). The condition

ωα,σ −
∑

q∈[σ]∩[α]

ε(bσcc, σ − q)ε(q, σ − q)ωα+bσcc−q,σ+bσcc−q = 0

holds for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n) with bαc ≥ bσc if and only the condition∑
β∈A(r+1,n)

∑
p∈[θ]

ε(θ − p, p)ωβ,θ−p = 0

holds for β ∈ A(r + 1, n) and θ ∈ Σ(1 : k + 1, 0 : n).
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Proof. The lemma is trivial if k = 0, so let us assume that 1 ≤ k ≤ n. The �rst
condition has several equivalent formulations:

ωα,σ −
∑

q∈[σ]∩[α]

ε(bσcc, σ − q)ε(q, σ − q)ωα+bσcc−q,σ+bσcc−q = 0

⇐⇒ ωα,σ −
∑

q∈[σ]∩[α]

ε(bσcc, σ)ε(bσcc, q)ε(q, σ − q)ωα+bσcc−q,σ+bσcc−q = 0

⇐⇒ ε(bσcc, σ)ωα,σ +
∑

q∈[σ]∩[α]

ε(q, bσcc)ε(q, σ − q)ωα+bσcc−q,σ+bσcc−q = 0

⇐⇒ ε(bσcc, σ)ωα,σ +
∑

q∈[σ]∩[α]

ε(q, σ + bσcc − q)ωα+bσcc−q,σ+bσcc−q = 0

⇐⇒
∑

q∈[σ+bσcc]∩[α+bσcc]

ε(q, σ + bσcc − q)ωα+bσcc−q,σ+bσcc−q = 0.

It is now obvious that the second condition implies the �rst condition.
Let us assume in turn that the �rst condition holds, and derive the second

condition. From the �rst condition we conclude that the second condition already
holds for β ∈ A(r + 1, n) and θ ∈ Σ(1 : k + 1, 0 : n) for which there exists σ ∈ Σ(1 :
k, 0 : n) and α ∈ A(r, n) such that θ = σ + bσcc and β = α + bσcc.

But we that θ = σ + bσcc if and only if 0 ∈ [θ] and bσcc = 0. So it remains to
show the second condition for the case 0 /∈ [θ] ∩ [β]. For such θ and β, we �nd∑

p∈[θ]∩[β]

ε(θ − p, p)ωβ−p,θ−p

= −
∑

p∈[θ]∩[β]

∑
s∈[θ]∩[β]\{p}

ε(θ − p, p)ε(s, θ − p+ 0− s)ωβ−p+0−s,θ−p+0−s

= (−1)k
∑

p∈[θ]∩[β]

∑
s∈[θ]∩[β]\{p}

ε(θ − p, p)ε(s, θ − p+ 0− s)ωβ−p+0−s,θ−p+0−s

using the �rst condition. But with the combinatorial observation

ε(θ − p, p)ε(s, θ − p+ 0− s) = ε(θ + 0− p, p)ε(s, θ − p+ 0− s)
= −ε(θ + 0− p, p)ε(s, p)ε(s, θ + 0− s)

we eventually tell that the sum vanishes if and only if

0 =
∑

s,p∈[θ]∩[β]
p 6=s

ε(θ + 0− p, p)ε(s, p)ε(s, θ + 0− s)ωβ−p+0−s,θ−p+0−s.

This holds because the terms in the sum cancel. The statement is proven.

III.8. Duality Pairings

Our next goal is to re�ne the results of the preceding section. Corresponding to
the isomorphisms

PrΛk(T ) ' P̊−r+k+1Λn−k(T ), P−r+1Λn−k(T ) ' P̊r+n−k+1Λk(T ),
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there exist two non-degenerate bilinear pairings: the �rst between PrΛk(T ) and
P̊−r+k+1Λn−k(T ), and the second between P̊r+n−k+1Λk(T ) and P−r+1Λn−k(T ). Similar
to the isomorphisms, those bilinear pairings have already been used in the seminal
publication of Arnold, Falk, and Winther [9], but not much further study has been
applied. The �rst pairing is provided by our Theorem III.8.2, which is a re�nement
of Proposition 3.1 in [57].

We continue to assume that T is an n-dimensional simplex. We begin with a
technical auxiliary result.

Lemma III.8.1.

Let k, r ∈ Z and σ, ρ ∈ Σ(1 : k, 0 : n). Then the following holds true.

� If [σ] ∩ [ρc] has cardinality greater than one, then

dλσ ∧ φρc = 0. (III.50a)

� If [σ] ∩ [ρc] = ∅, then

dλσ ∧ φρc = (−1)kε(σ, σc)
∑
q∈[σc]

λqφT . (III.50b)

� If [σ] ∩ [ρc] contains exactly one element, then

dλσ ∧ φρc = (−1)k+1ε(ρ, ρc)ε(p, σ − p)ε(q, σ − p)λpφT , (III.50c)

where q ∈ [σc] and p ∈ [σ] are the unique solutions of ρ = σ − p+ q.

Proof. Let σ, ρ ∈ Σ(1 : k, 0 : n), so ρc ∈ Σ(0 : n − k, 0 : n). The three cases of
(III.50) are disjoint and their disjunction is true. Also, if [σ] ∩ [ρc] = {p} for some
p ∈ [σ], then ρ = σ − p + q for some q ∈ [σc], and ρc = σc − q + p. In particular,
[σc] ∩ [ρ] = {q}. We see that the right-hand side of (III.50c) is well-de�ned.

Firstly, if [σ] ∩ [ρc] has more than one element, then it is easy to verify that

dλσ ∧ φρc = 0. (III.51)

This can be seen by expanding the Whitney form φρc according to (III.7) and then
using the de�nition of the alternating product.

Secondly, if σ = ρ, or equivalently, [σ] ∩ [ρc] = ∅, then we see, using (III.7),
(III.9) and Lemma III.3.4, that

dλσ ∧ φσc = dλσ ∧
∑
q∈[σc]

λqε(q, σ
c − q)dλσc−q

=
∑
q∈[σc]

λqε(q, σ
c − q)ε(σ, σc − q)dλσ+σc−q

=
∑
q∈[σc]

λqε(q, σ
c − q)ε(σ, σc − q)ε(q, σ + σc − q)φT .

From the combinatorial observation that

ε(q, σc − q)ε(σ, σc − q)ε(q, σ + σc − q) = (−1)kε(σ, σc),
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we conclude the desired expression for dλσ ∧ φσc .
Eventually, we consider the case that [σ] ∩ [ρc] has exactly one element. Then

there exist unique p, q ∈ [0 : n] such that [σ] ∩ [ρc] = {p} and [σc] ∩ [ρ] = {q} and
ρc = σc − q + p. We �nd, similar as above, that

dλσ ∧ φρc = dλσ ∧ φσc−q+p
= ε(p, σc − q)λpdλσ ∧ dλσc−q

= ε(p, σc − q)ε(σ, σc − q)λpdλσ+σc−q

= ε(p, σc − q)ε(σ, σc − q)ε(q, σ + σc − q)λpφT
= (−1)kε(p, σc − q)ε(σ, σc)ε(q, σc − q)λpφT .

With the combinatorial observation

ε(σ − p+ q, σc − q + p) = ε(σ, σc)ε(σ − p, p)ε(q, σc − q)(−1)ε(σ − p, q)ε(p, σc − q),

we derive

(−1)kε(p, σc − q)ε(σ, σc)ε(q, σc − q)
= (−1)k+1ε(σ − p+ q, σc − q + p)ε(p, σ − p)ε(q, σ − p).

From this, the identity

dλσ ∧ ε(ρ, ρc)φρc = (−1)k+1ε(σ − p+ q, σc − q + p)ε(p, σ − p)ε(q, σ − p)λpφT
= (−1)k+1ε(ρ, ρc)ε(p, σ − p)ε(q, σ − p)λpφT

follows. The proof is complete.

This auxiliary lemma has the following implications, which we utilize in the
proofs of this section's main results. For k ∈ Z and σ ∈ Σ(1 : k, 0 : n) we �nd

dλσ ∧ ε(σ, σc)λσφσc = (−1)kλσ
∑
q∈[σc]

λqφT . (III.52)

If furthermore ρ = σ − p+ q for p ∈ [σ] and q ∈ [σc], then

dλσ ∧ ε(ρ, ρc)λρφρc = (−1)k+1ε(p, σ − p)ε(q, σ − p)λρλpφT (III.53)

on the one hand, while

dλρ ∧ ε(σ, σc)λσφσc = (−1)k+1ε(q, ρ− q)ε(p, ρ− q)λσλqφT
= (−1)k+1ε(p, σ − p)ε(q, σ − p)λρλpφT

(III.54)

on the other hand; the symmetry result

dλσ ∧ ε(ρ, ρc)λρφρc = dλρ ∧ ε(σ, σc)λσφσc (III.55)

follows thence.
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Analogously, for σ ∈ Σ(1 : k, 0 : n) we have

λσ
c

dλσ ∧ ε(σ, σc)φσc = (−1)kλσ
c
∑
q∈[σc]

λqφT . (III.56)

If σ ∈ Σ(1 : k, 0 : n) and ρ = σ − p+ q with p ∈ [σ] and q ∈ [σc], then

λσ
c

dλσ ∧ ε(ρ, ρc)φρc = (−1)k+1ε(p, σ − p)ε(q, σ − p)λσcλpφT . (III.57)

If σ, ρ ∈ Σ(1 : k, 0 : n) with [σ] ∪ [ρc] having cardinality greater than one, then

λσ
c

dλσ ∧ ε(ρ, ρc)φρc = 0. (III.58)

We have an analogous symmetry result

λσ
c

dλσ ∧ ε(ρ, ρc)φρc = λρ
c

dλρ ∧ ε(σ, σc)φσc (III.59)

for σ, ρ ∈ Σ(1 : k, 0 : n).

We have the technical preparation ready to prove the �rst main result of this
section.

Theorem III.8.2.

Let k, r ∈ Z and let ωα,σ ∈ R for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n). Then∑
α,β∈A(r,n)

∑
σ,ρ∈Σ(1:k,0:n)

∫
T

ωα,σλ
αdλσ ∧ ε(ρ, ρc)ωβ,ρλβλρφρc

= (−1)k
∑

θ∈Σ(1:k+1,0:n)

∫
T

λθ

 ∑
α∈A(r,n)

∑
p∈[θ]

ε(p, θ − p)λαωα,θ−p

2

.

In particular, this term is zero if and only one of the equivalent conditions of
Lemma III.7.1 and Lemma III.7.3 is satis�ed.

Proof. Let us write

S(θ, α, ω) :=
∑
p∈[θ]

ε(p, θ − p)ωα,θ−p, θ ∈ Σ(1 : k + 1, 0 : n), α ∈ A(r, n).

We moreover write

S(ω) :=
∑

α,β∈A(r,n)

∑
σ,ρ∈Σ(1:k,0:n)

∫
T

ωα,σλ
αdλσ ∧ ε(ρ, ρc)ωβ,ρλβλρφρc ,

Sd(ω) :=
∑

α,β∈A(r,n)

∫
T

λα+β
∑

σ∈Σ(1:k,0:n)

ωα,σωβ,σλ
σdλσ ∧ ε(σ, σc)φσc ,

So(ω) :=
∑

α,β∈A(r,n)

∫
T

λα+β
∑

σ,ρ∈Σ(1:k,0:n)
σ 6=ρ

ωα,σωβ,ρdλσ ∧ ε(ρ, ρc)λρφρc .
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So S(ω) = Sd(ω) + Sd(ω) splits into a diagonal part Sd(ω) and an o�-diagonal part
So(ω). We apply our previous observations and �nd that S(ω) equals

∑
α,β∈A(r,n)
σ∈Σ(1:k,0:n)

q∈[σc]

∫
T

(−1)kλα+βλσ+qωα,σ

ωβ,σ −∑
p∈[σ]

ε(p, σ − p)ε(q, σ − p)ωβ,σ−p+q

φT .

With the combinatorial observation

ε(p, σ − p)ε(q, σ − p) = ε(p, σ + q − p)ε(p, q)ε(q, σ)ε(q, p)

= −ε(p, σ + q − p)ε(σ, q),

we simplify the sum further to

∑
α,β∈A(r,n)
σ∈Σ(1:k,0:n)

q∈[σc]

(−1)k
∫
T

λα+βλσ+qωα,σε(q, σ)

 ∑
p∈[σ+q]

ε(p, σ − p+ q)ωβ,σ+q−p

φT

=
∑

α,β∈A(r,n)

∫
T

λα+β
∑

σ∈Σ(1:k,0:n)
q∈[σc]

(−1)kλσ+qωα,σε(q, σ)S(σ + q, β, ω)φT

= (−1)k
∑

α,β∈A(r,n)

∫
T

λα+β
∑

θ∈Σ(1:k+1,0:n)

λθ
∑
p∈[θ]

ωα,θ−pε(p, θ − p)S(θ, β, ω)φT

= (−1)k
∑

θ∈Σ(1:k+1,0:n)

∫
T

λθ
∑

α,β∈A(r,n)

λα+βS(θ, α, ω)S(θ, β, ω)φT

= (−1)k
∑

θ∈Σ(1:k+1,0:n)

∫
T

λθ

 ∑
α∈A(r,n)

λαS(θ, α, ω)

2

φT .

The integrand is non-negative. Hence the integral vanishes if and only if

0 =
∑

α∈A(r,n)

λαS(θ, α, ω), θ ∈ Σ(1 : k + 1, 0 : n).

Since the λα are linearly independent for α ∈ A(r, n), this holds if and only if one
of the equivalent conditions of Lemma III.7.1 and Lemma III.7.3 is satis�ed.

We apply Theorem III.8.2 in the following manner. Consider the bilinear form

(ω, η) 7→
∑

α,β∈A(r,n)

∑
σ,ρ∈Σ(1:k,0:n)

∫
T

ωα,σλ
αdλσ ∧ ε(ρ, ρc)ηβ,ρλβλρφρc

de�ned for ω, η ∈ RA(r,n)×Σ(1:k,0:n). We have shown in this section that this bilinear
form is symmetric and semide�nite. Its degeneracy space is exactly the linear space
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III. Finite Element Spaces over Simplices

of coe�cients that satisfy the conditions of Lemma III.7.1 and Lemma III.7.3. This
implies in particular that the bilinear form

(ω, η) 7→
∫
T

ω ∧ η, ω ∈ PrΛk(T ), η ∈ P̊−r+k+1Λn−k(T ),

is non-degenerate.

Theorem III.8.3.

Let k, r ∈ Z and ωα,σ ∈ R for α ∈ A(r, n) and σ ∈ Σ(1 : k, 0 : n). Then

∑
α,β∈A(r,n)

∑
σ,ρ∈Σ(1:k,0:n)

∫
T

ωα,σλ
αλσ

c

dλσ ∧ ε(ρ, ρc)ωβ,ρλβφρc

= (−1)k
∑

θ∈Σ(1:k+1,0:n)

∫
T

λθ
c

 ∑
α∈A(r,n)

∑
p∈[θ]

ε(p, θ − p)λαλpωα,θ−p

2

.

In particular, this term is zero if and only one of the equivalent conditions of
Lemma III.7.2 and Lemma III.7.4 is satis�ed.

Proof. Let us consider

S(ω) :=
∑

α,β∈A(r,n)

∑
σ,ρ∈Σ(1:k,0:n)

∫
T

ωα,σλ
αλσ

c

dλσ ∧ ε(ρ, ρc)ωβ,ρλβφρc .

We can split the sum into two parts. On the one hand, for the diagonal part,

Sd(ω) :=
∑

α,β∈A(r,n)

∑
σ∈Σ(1:k,0:n)

∫
T

ωα,σλ
αλσ

c

dλσ ∧ ε(σ, σc)ωβ,σλβφσc

=
∑

α,β∈A(r,n)

∑
σ∈Σ(1:k,0:n)

∫
T

ωα,σωβ,σλ
α+βλσ

c

(−1)k
∑
q∈[σ]

λqφT ,

while on the other hand, for the o�-diagonal part,

So(ω) :=
∑

α,β∈A(r,n)

∑
σ,ρ∈Σ(1:k,0:n)

σ 6=ρ

∫
T

ωα,σλ
αλσ

c

dλσ ∧ ε(ρ, ρc)ωβ,ρλβφρc

=
∑

σ∈Σ(1:k,0:n)
α,β∈A(r,n)

∑
p∈[σ]
q∈[σc]

∫
T

ωα,σωβ,σ−p+qλ
α+βλσ

c

(−1)k+1ε(p, σ − p)ε(q, σ − p)λpφT .
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9. Flux Reconstruction over a Simplex

Since S(ω) = Sd(ω) + So(ω), we combine that (−1)kS(ω) equals

∑
α,β∈A(r,n)
σ∈Σ(1:k,0:n)

q∈[σc]

∫
T

λα+βωα,σλ
σc

ωβ,ρλq −∑
p∈[σ]

ε(p, σ − p)ε(q, σ − p)ωβ,σ−p+qλp

φT

=
∑

α,β∈A(r,n)

∫
T

λα+β
∑

σ∈Σ(1:k,0:n)
q∈[σc]

ωα,σλ
σcε(q, σ)

 ∑
p∈[σ+q]

ε(p, σ − p+ q)ωβ,σ−p+qλp

φT

=
∑

α,β∈A(r,n)

∫
T

λα+β
∑

θ∈Σ(1:k+1,0:n)
p∈[θc]

ε(p, θ − p)ωα,θ−pλθ
c

λp

∑
p∈[θ]

ε(p, θ − p)ωβ,θ−pλp

φT

=
∑

θ∈Σ(1:k+1,0:n)

∫
T

λθ
c

 ∑
α∈A(r,n)

∑
p∈[θ]

ε(p, θ − p)ωα,θ−pλαλp

2

φT

=
∑

θ∈Σ(1:k+1,0:n)

∫
T

λθ
c

 ∑
β∈A(r+1,n)

∑
p∈[θ]

ε(θ − p, p)ωβ−p,θ−pλβ
2

φT .

The integrand is non-negative. Moreover, we see that it vanishes if and only if the
conditions of Lemma III.7.2 and Lemma III.7.4. This completes the proof.

Similar as before, we utilize Theorem III.8.3 for our understanding of bilinear
pairings. We de�ne

(ω, η) 7→
∑

α,β∈A(r,n)

∑
σ,ρ∈Σ(1:k,0:n)

∫
T

ωα,σλ
αλσ

c

dλσ ∧ ε(ρ, ρc)ηβ,ρλβφρc

for ω, η ∈ RA(r,n)×Σ(1:k,0:n). This bilinear form is symmetric and semide�nite. Its
degeneracy space is exactly the linear space of coe�cients that satisfy the conditions
of Lemma III.7.2 and Lemma III.7.4. The non-degeneracy of the bilinear form

(ω, η) 7→
∫
T

ω ∧ η, ω ∈ P̊r+n−k+1Λk(T ), η ∈ P−r+1Λn−k(T ),

is an important consequence.

III.9. Flux Reconstruction over a Simplex

At the end of this chapter we make up for a promise given earlier: we prove the
statements (III.19), (III.20), and (III.29). We begin with the identities concerning
the spaces without boundary conditions. Speci�cally, (III.19a), (III.20a) and (III.29)
are evident by the following theorem.

Theorem III.9.1.

Let T be an n-simplex and let r, k ∈ Z. Then the following holds:
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III. Finite Element Spaces over Simplices

� If k > 0 and ω ∈ PrΛk(T ) with dkω = 0, then there exists ξ ∈ P−r+1Λk−1(T )
such that dk−1ξ = ω.

� If ω ∈ P−r Λk(T ) with dkω = 0, then ω ∈ Pr−1Λk(T ).

Proof. Using the partition of unity property of the barycentric coordinates over T
and the partition of zero property of their di�erentials, it is easily proven that

APrΛk(T ) :=

{
λαdλσ

∣∣∣∣ α ∈ A(1 : n), |α| ≤ r,
σ ∈ Σ(1 : k, 1 : n)

}
is a basis of PrΛk(T ). We de�ne a linear mapping P k : PrΛk(T )→ P−r+1Λk−1(T ) by

P k (λαdλσ) := (r + k)−1λα
k∑
i=1

(−1)iλσ(i)dλσ−σ(i), λαdλσ ∈ APrΛk(T ).

One can moreover show that

dk−1P kω + P k+1dkω = (r + k)ω. (III.60)

In particular, (r + k)ω = dk−1P kω if dkω = 0, and (r + k)ω = P k+1dkω if P kω = 0.
The �rst statement of the lemma is an easy consequence.

To prove (III.60), we �x α ∈ A(1 : n) and σ ∈ Σ(1 : k, 0 : n). We observe

d0 (λα) =
∑
i∈[α]

α(i)λα−idλi.

On the one hand,

dk−1P k (λαdλσ) = k · λαdλσ + d0 (λα) ∧ φρ,

and

d0 (λα) ∧ φρ =
∑
i∈[α]
p∈[σ]

α(i)λα−idλi ∧ ε(p, σ)λpdλσ−p

=
∑

i∈[α]∩[σ]

α(i)λαdλσ +
∑

i∈[α]\[σ]
p∈[σ]

α(i)λα+p−iε(p, σ)ε(i, σ − p)dλσ−p+i.

On the other hand,

P k+1dk (λαdλσ) =
∑

i∈[α]\[σ]

α(i)λαdλσ +
∑

i∈[α]\[σ]
p∈[σ]

α(i)λα+p−iε(i, σ)ε(p, σ − i)dλσ+i−p.

For i ∈ [α] \ [σ] and p ∈ [σ] we make the combinatorial observation

ε(p, σ)ε(i, σ − p) = ε(p, σ)ε(i, p)ε(i, σ) = −ε(p, σ)ε(p, i)ε(i, σ) = −ε(i, σ)ε(p, σ − i).

This in combination yields (III.60).
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9. Flux Reconstruction over a Simplex

For proving the second statement, we need a fact about the space P−r Λk(T ). For
α ∈ A(r, n) and ρ ∈ Σ(0 : k, 1 : n) we see

dk (λαφρ) =
n∑
i=1

α(i)λα−idλi ∧ φρ + λα ∧ dkφρ.

We have dkφρ = (k + 1)dλρ and one can show that P k+1dλρ di�ers from φρ only by
constant scaling and by addition of a constant k-form. It is revealed in combination
that

P−r Λk(T ) = Pr−1Λk(T ) + P k+1Pr−1Λk+1(T ).

Let us suppose that ω ∈ P−r Λk(T ). Then there exist ω0 ∈ Pr−1Λk(T ) and ω1 ∈
Pr−1Λk+1(T ) such that ω = ω0 + P k+1ω1. If dkω = 0, then dkω0 + dk−1P kω1 = 0.
But upon representing ω0 and ω1 in terms of the basis families APrΛk(T ) it is
obvious that we may assume dkω0 = 0 and dk−1P kω1 = 0 without loss of generality.
But then (III.60) implies ω1 = P k+1ω2 for some ω2 ∈ Pr−1Λk+2(T ). Consequently,
P kω1 = 0 and ω = ω0, which proves the desired claim.

Proving (III.19a), (III.20a) and (III.29) relies on the duality pairings discussed
in the preceding section.

Theorem III.9.2.

Let T be an n-simplex and let r, k ∈ Z. Then the following holds:

� If k > 0 and ω ∈ P̊rΛk(T ) with dkω = 0, then there exists ξ ∈ P̊−r+1Λk−1(T )
such that dk−1ξ = ω.

� If ω ∈ P̊−r Λk(T ) with dkω = 0, then ω ∈ P̊r−1Λk(T ).

Proof. It su�ces to show that the two di�erential complexes

P̊−r+1Λk−1(T )
dk−1

−−−→ P̊rΛk(T )
dk−−−→ P̊r−1Λk+1(T ) (III.61a)

P̊−r+1Λk−1(T )
dk−1

−−−→ P̊−r+1Λk(T )
dk−−−→ P̊rΛk+1(T ) (III.61b)

are exact at the middle terms. This is the case if and only if the dual complexes

P̊−r+1Λk−1(T )′
(dk−1)

′

←−−−− P̊rΛk(T )′
(dk)

′

←−−− P̊r−1Λk+1(T )′ (III.62a)

P̊−r+1Λk−1(T )′
(dk−1)

′

←−−−− P̊−r+1Λk(T )′
(dk)

′

←−−− P̊rΛk+1(T )′ (III.62b)

are exact at the middle terms. We show that this is the case if and only if the
di�erential complexes

Pr−n+k−1Λn−k+1(T )
dk−1

←−−− P−r−n+kΛ
n−k(T )

dk←−−− P−r−n+kΛ
k−k−1(T ) (III.63a)

Pr−n+k−1Λn−k+1(T )
dk−1

←−−− Pr−n+kΛ
n−k(T )

dk←−−− P−r−n+k+1Λn−k−1(T ) (III.63b)

are exact at the middle terms. Indeed, these two di�erential complexes are exact at
the middle term, as follows by Theorem III.9.1.
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To complete the proof, we recall the isomorphisms

PrΛk(T ) ' P̊−r+k+1Λn−k(T ), P−r+1Λn−k(T ) ' P̊r+n−k+1Λk(T ),

and the corresponding duality pairings. Reindexing gives us isomorphisms

Pr−n+k−1Λn−k(T ) ' P̊−r Λk(T ), P−r−n+kΛ
n−k(T ) ' P̊rΛk(T ),

and corresponding duality pairings. With an integration by parts formula derived
from Stokes' theorem over the simplex (III.3) it is now easily veri�ed that (III.62a)
is isomorphic to (III.63a) and that (III.62b) is isomorphic to (III.63b).

Remark III.9.3.

There are many di�erent routes that prove the exactness of �nite element di�erential
complexes over simplices. Theorem (III.9.1) uses a variant of the Poincaré mapping,
which has been discussed in di�erent forms in �nite element literature [9, 109]. The
situation is considerably more complicated when boundary conditions are imposed,
and this chapter has provided a new proof. An alternative method of proof can
employ smoothed projections over simplex with boundary conditions and relies on
the exactness of the L2 de Rham complex with boundary conditions [11, 58]. On the
other hand, the exactness of the �nite element di�erential complex with boundary
conditions over simplex follows by an induction argument over the dimension that
utilizes long exact sequences on cohomology and �nite element de Rham complexes
over the boundary triangulation of a simplex [53, 56].
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In the previous chapters, we have �rst discussed simplices and then di�erential
forms over simplices. We proceed with spaces of di�erential forms over simplicial
complexes. The topic of this chapter is the construction of �nite element de Rham
complexes of higher and possibly non-uniform polynomial order. We also provide a
commuting interpolant.

We begin with the most basic example and discuss a �nite element de Rham com-
plex of lowest polynomial order in Section IV.1. Of course, this is just the di�erential
complex of Whitney forms. Whitney forms have been discussed in Whitney's mono-
graph on geometric measure theory [180], and they have been subject of research in
numerical analysis for decades (see [29, 109]). A fundamental result is the duality
of the di�erential complex of Whitney forms to the simplicial chain complex of the
underlying triangulation. This determines the cohomology spaces of this di�erential
complex: the Whitney form cohomology realizes the simplicial Betti numbers of the
triangulation. We consider a general class of boundary conditions and describe the
�nite element interpolant onto the Whitney forms.

The construction of �nite element di�erential forms of higher polynomial order is
a topic rich in structure and results which this thesis approaches with the following
intuition: global properties of a �nite element de Rham complex are described en-
tirely by its lowest-order contributions, whereas the higher-order contributions are
only local. The dissertation of Sabine Zaglmayr [183] systematically applies that
idea: to build the higher order �nite element di�erential complex, she starts with a
lowest-order �nite element di�erential complex and associates exact �nite element
di�erential complexes of higher polynomial order to each simplex with support in the
local patch of the respective simplex. This method allows for a simple construction
of �nite element de Rham complexes of non-uniform polynomial order.

We put that intuition to work a di�erent manner. As a preparation for the con-
struction of higher order �nite element de Rham complexes, we introduce the notion
of admissible sequence type in Section IV.2. We recall that the Pr-type and P−r -type
spaces of �nite element di�erential forms can be composed in di�erent manners to
�nite element de Rham complexes (see Section 3 of [9]) over single simplices, trian-
gulations, or Rn, and one may or may not impose boundary conditions. The notion
of admissible sequence type abstracts the choice of Pr- and P−r -type spaces from the
speci�c geometric ambient.

This notion also allows us to associate particular choices of �nite element de Rham
complexes to single simplices, which commences the construction of higher order �-
nite element de Rham complexes in Section IV.3. We generalize a common practice
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in the theory of hp-adaptive �nite element methods: an H1-conforming �nite ele-
ment space of non-uniform polynomial order is de�ned by associating a polynomial
order to each simplex. Similarly, we de�ne a �nite element de Rham complex of
non-uniform polynomial order by associating a admissible sequence type to each
simplex such that a compatibility condition holds.

We �nish this chapter with the commuting interpolant from piecewise smooth
de Rham complexes onto the �nite element de Rham complexes in Section IV.4.
In the case of uniform �nite element spaces, such an interpolant has been given by
Arnold, Falk, and Winther [9]. We use di�erent techniques in this thesis. Speci�-
cally, our construction follows the ideas of Demkowicz et. al. [69], whose key idea is
a Hodge decomposition of the degrees of freedom. This construction principle was
recast in the calculus of di�erential forms within the framework of element systems
(see e.g. [56, Proposition 5.44]), where we the resulting interpolant was called har-
monic interpolant .

Research e�orts in �nite element exterior calculus have focused on spaces of
uniform polynomial order [9, 10] but have given considerably less attention to spaces
with spatially varying polynomial order (but see [56, 108]). Finite element spaces
of the latter kind, however, are constitutive for p-adaptive and hp-adaptive �nite
element methods (p-FEM and hp-FEM, [68, 152, 165]). We recall that h-adaptive
methods re�ne the mesh locally but keep the polynomial order �xed, that p-adaptive
methods keep the mesh �xed but locally increase the polynomial order, and that
hp-adaptive methods combine local mesh re�nement and variation of the polynomial
order. The latter form of adaptivity allows for e�cient approximation of functions
with spatially varying smoothness or isolated singularities, for example by Lagrange
elements with non-uniform polynomial order. The theory of hp-adaptive mixed
�nite element methods in numerical electromagnetism utilizes di�erential complexes
of spaces of non-uniform polynomial order, which include generalizations of Nédélec
elements and Raviart-Thomas elements [1, 67, 143, 161]. For the most part, these
research e�orts have been formalized in terms of classical vector calculus.

Our construction of �nite element de Rham complexes of non-uniform polynomial
order may serve as a preparation towards the study of hp-adaptive methods in �nite
element exterior calculus, but this is not a part of this thesis. Instead, we regard
the aforementioned principle of constructing higher order �nite element de Rham
complexes by local augmentation of a global di�erential complex to be of general
interest in the theory of �nite element methods. Support for this assessment will
be provided in Chapter X of this thesis with an application in a posteriori error
estimation. Considering �nite element spaces of non-uniform polynomial order is
then only small addition once the basic idea has been established.

IV.1. The Complex of Whitney Forms

In this section we introduce the complex of Whitney forms as the principle ex-
ample of a �nite element de Rham complex. In particular, we discuss its relation to
the simplicial chain complex and develop a commuting interpolant. Throughout this
section, we let T be a simplicial complex and let U ⊆ T be a simplicial subcomplex.
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Before we discuss Whitney forms, we �rst consider piecewise smooth di�erential
forms. For k ∈ Z we de�ne

C∞Λk(T ) :=

{
(ωT )T∈T ∈

⊕
T∈T

C∞Λk(T )

∣∣∣∣∣ ∀T ∈ T : ∀F ∈ ∆(T ) : trkT,F ωT = ωF

}
.

We can identify this with the space of di�erential k-forms that are piecewise smooth
with respect to T and that have single-valued traces along simplex boundaries.
Henceforth, we may also write trkT ω := ωT for ω ∈ C∞Λk(T ) and T ∈ T .

Since the exterior derivatives on simplices commute with the trace operators, we
have a well-de�ned exterior derivative

dk : C∞Λk(T )→ C∞Λk+1(T ), (ωT )T∈T 7→
(
dkTωT

)
T∈T . (IV.1)

Since dk+1dkω = 0 for every ω ∈ C∞Λk(T ), we may compose a di�erential complex

. . .
dk−1

−−−→ C∞Λk(T )
dk−−−→ C∞Λk+1(T )

dk+1

−−−→ . . . (IV.2)

In order to formalize boundary conditions, we furthermore de�ne

C∞Λk(T ,U) :=

{
ω ∈ C∞Λk(T )

∣∣∣∣ ∀F ∈ U : ωF = 0

}
. (IV.3)

It is easily veri�ed that

dk
(
C∞Λk(T ,U)

)
⊆ C∞Λk+1(T ,U). (IV.4)

In particular, we may compose the di�erential complex

. . .
dk−1

−−−→ C∞Λk(T ,U)
dk−−−→ C∞Λk+1(T ,U)

dk+1

−−−→ . . . (IV.5)

Remark IV.1.1.

Constructions similar to our de�nition of C∞Λk(T ) have appeared in mathematics
before. Our de�nition is a special case of a �nite element system in the terminology
of [56]. Another variant of the idea is exempli�ed by Sullivan forms in global analysis
[79], which are piecewise �at di�erential forms in the sense of geometric measure
theory with single-valued traces along simplex boundaries.

Example IV.1.2.

We motivate these de�nitions by a practical illustration. Suppose that Ω ⊂ Rn

is a bounded polyhedral domain triangulated by a simplicial complex T . Then
the members of C∞Λk(T ) correspond to the di�erential k-forms over Ω that are
piecewise smooth with respect to T and have single-valued traces on subsimplices.
Moreover, suppose we have a subset of the boundary Γ ⊆ ∂Ω such that a simplicial
subcomplex U ⊂ T triangulates Γ. Then C∞Λk(T ,U) is the subspace of C∞Λk(T )
whose members have vanishing traces along Γ. In that way, U may be used to model
homogeneous boundary conditions.
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IV. Finite Element de Rham Complexes

We next discuss an important relation between the simplicial chains and the
piecewise smooth di�erential forms. Suppose that ω ∈ C∞Λk(T ,U) and T ∈ T k\Uk.
We then write ∫

T

ω :=

∫
T

trkT ωT

for the integral of ω over the oriented simplex T . By linear extension we obtain a
bilinear pairing ∫

: C∞Λk(T ,U)× Ck(T ,U)→ R, (ω, S)→
∫
S

ω. (IV.6)

We easily observe that∫
∂k+1S

ω =

∫
S

dkω, ω ∈ C∞Λk(T ,U), S ∈ Ck+1(T ,U).

The linear pairing (IV.6) is degenerate in general.

We will identify a di�erential subcomplex of (IV.5) restricting to which in the �rst
variable makes the bilinear pairing (IV.6) non-degenerate. Speci�cally, we employ a
�nite element de Rham complex of lowest polynomial order. To that end, we de�ne
the spaces of Whitney forms over T by

WΛk(T ) :=

{
ω ∈ C∞Λk(T )

∣∣∣∣ ∀T ∈ T : ωT ∈ P−1 Λk(T )

}
, (IV.7)

and the space of Whitney forms over T relative to U by

WΛk(T ,U) :=WΛk(T ) ∩ C∞Λk(T ,U). (IV.8)

It is an immediate consequence of de�nitions that we have a well-de�ned operator

dk :WΛk(T ,U)→WΛk+1(T ,U),

and consequently the di�erential complex of Whitney forms

. . .
dk−1

−−−→ WΛk(T ,U)
dk−−−→ WΛk+1(T ,U)

dk+1

−−−→ . . . (IV.9)

The notion of Whitney forms was originally motivated by their duality to the sim-
plicial chains, which we discuss soon.

It is of interest to point out an explicit basis for the spaces WΛk(T ). We make
recourse to the basis forms which originally have been called Whitney forms . For
every f ∈ T k we de�ne the Whitney k-form associated to φTf ∈ WΛk(T ) by setting

trkT φ
T
f :=

{
φTf if f ∈ ∆(T ),

0 otherwise,

for each T ∈ T Indeed, when T ∈ T , f ∈ ∆(T )k, and F ∈ ∆(T ), then either we
have f /∈ ∆(F ), in which case trkT,F φ

T
f = 0, or instead we have f ∈ ∆(F ), in which

case trkT,F φ
T
f = φFf . Hence φ

T
f ∈ WΛk(T ).
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1. The Complex of Whitney Forms

Lemma IV.1.3.

Let f, g ∈ T k. Then trkg φ
T
f 6= 0 if and only if f 6= g.

Proof. This follows immediately from Equation (III.8).

Lemma IV.1.4.

The Whitney forms φTf , f ∈ T k, are a basis of WΛk(T ).

Proof. The linear independence of the φTf , f ∈ T k, is an immediate consequence
of Lemma IV.1.3. To complete the proof, let φ ∈ WΛk(T ) be arbitrary but �xed.
There exist unique cTf ∈ R for each T ∈ T and f ∈ ∆(T ) such that trkT φ =∑

f∈∆(T )k c
T
f φ

T
f . For T ∈ T and g ∈ ∆(T )k we have

∫
g

trkT,g trkT φ = cTg
∫
g
φgg =

cTg /(k!), and so we conclude that cTg = cT
′

g for T, T ′ ∈ T with g ∈ ∆(T ) ∩ ∆(T ′).
This means that there exist cf ∈ R for f ∈ ∆(T ) such that for all T ∈ T we have
trkT φ =

∑
f∈∆(T )k cfφ

T
f . But then φ =

∑
f∈T k cfφf . The proof is complete.

Lemma IV.1.5.

Let φ ∈ WΛk(T ) and T ∈ T . Then trkT φ = 0 if and only if for all f ∈ ∆(T ) we
have trkf φ = 0.

Proof. There exist cf ∈ R for each f ∈ T k such that φ =
∑

f∈T k cfφf . Consequently
we have trkT φ =

∑
f∈∆(T )k cfφ

T
f . Since the k-forms φTf for f ∈ ∆(T )k are linearly

independent, we verify cf = 0 for f ∈ ∆(T ). The proof is complete.

Lemma IV.1.6.

The Whitney forms φTf , f ∈ T k \ Uk, are a basis for WΛk(T ,U).

Proof. This is a combination of Lemma IV.1.4 and Lemma IV.1.5.

Lemma IV.1.7.

The bilinear pairing∫
:WΛk(T ,U)× Ck(T ,U)→ R, (ω, S) 7→

∫
S

trkS ω (IV.10)

is non-degenerate.

Proof. This is a combination of Lemma IV.1.6 with Lemma IV.1.3.

We determine the dimension of the cohomology spaces of the complex of Whit-
ney forms. WΛk(T ,U) is linearly isomorphic to the dual space of Ck(T ,U) by
Lemma IV.1.7. The exterior derivative dk :WΛk(T ,U)→WΛk+1(T ,U) transforms
into the dual of the simplicial boundary operator ∂k+1 : Ck+1(T ,U) → Ck(T ,U)
along that isomorphism. In summary, the complex of Whitney forms over T rela-
tive to U is isomorphic to the dual complex of the simplicial chain complex of T
relative to U .

. . .
dk−1

−−−→ WΛk(T ,U)
dk−−−→ WΛk+1(T ,U)

dk+1

−−−→ . . .

'
y '

y
. . .

∂′k−−−→ Ck(T ,U)′
∂′k+1−−−→ Ck+1(T ,U)′

∂′k+2−−−→ . . .

(IV.11)
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IV. Finite Element de Rham Complexes

These two di�erential complexes are isomorphic and thus their cohomology spaces
are isomorphic. On the other hand, the cohomology spaces of the bottom complex
in (IV.11) have the same dimension as homology spaces of the simplicial chain
complex of T relative to U , and in particular their dimensions realize the simplicial
Betti numbers. In combination,

dim
ker
(
dk :WΛk(T ,U)→WΛk+1(T ,U)

)
ran
(
dk−1 :WΛk−1(T ,U)→WΛk(T ,U)

)
= dim

ker
(
∂′k+1 : Ck(T ,U)′ → Ck+1(T ,U)′

)
ran
(
∂′k : Ck−1(T ,U)′ → Ck(T ,U)′

) = bk(T ,U).

This determines the dimension of the cohomology spaces of the complex of Whitney
forms: the complex of Whitney forms realizes the simplicial Betti numbers of T
relative to U on cohomology.

Example IV.1.8.

We revisit Example IV.1.2 above, where T triangulates a compact topological mani-
foldM and U triangulates a subset Γ ⊆ ∂M of the boundary. As already mentioned
in Chapter II, the topological and simplicial Betti numbers coincide, which means
bk(T ,U) = bk(M,Γ) for all k ∈ Z. Consequently, the di�erential complex of Whitney
forms (IV.9) realizes the Betti numbers of M relative to Γ on cohomology.

We are now in a position to provide the canonical �nite element interpolant from
the space C∞Λk(T ) onto the space WΛk(T ). We de�ne

IkW : C∞Λk(T )→WΛk(T ) (IV.12)

by requiring ∫
S

IkWω =

∫
S

ω, ω ∈ C∞Λk(T ), S ∈ Ck(T ).

With Lemma IV.1.7 we see that this is well-de�ned. We also observe that

IkWω = ω, ω ∈ WΛk(T ).

So the operator IkW acts as the identity on Whitney forms.
Moreover, IkW is local in the sense that for T ∈ T and ω ∈ C∞Λk(T ) we have

ωT = 0 =⇒ trkT I
k
Wω = 0.

This is a consequence of Lemma IV.1.5. Hence, by restricting the interpolant we
obtain a well-de�ned mapping

IkW : C∞Λk(T ,U)→WΛk(T ,U).

The interpolation operator commutes with the exterior derivative,

dkIkWω = Ik+1
W dkω, ω ∈ C∞Λk(T ).
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2. Polynomial de Rham Complexes over Simplices

This is veri�ed by∫
S

Ik+1
W dkω =

∫
S

dkω =

∫
∂k+1S

ω =

∫
∂k+1S

IkWω =

∫
S

dkIkWω

for S ∈ Ck+1(T ) and ω ∈ C∞Λk(T ). So the diagram

. . .
dk−1

−−−→ C∞Λk(T ,U)
dk−−−→ C∞Λk+1(T ,U)

dk+1

−−−→ . . .

IkW

y Ik+1
W

y
. . .

dk−1

−−−→ WΛk(T ,U)
dk−−−→ WΛk+1(T ,U)

dk+1

−−−→ . . .

commutes. In particular, IkW is a morphism of di�erential complexes.

IV.2. Polynomial de Rham Complexes over Simplices

The goal of this chapter is to develop �nite element de Rham complexes of higher
polynomial order over triangulations. The previous section has served our under-
standing of the lowest-order case. Before we develop the higher order case, we gather
some results concerning higher order �nite element de Rham complexes on single
simplices. First we make the informal observation that di�erential complexes of
similar type appear throughout �nite element exterior calculus in di�erent variants.
For example, a di�erential complex of trimmed polynomial di�erential forms of �xed
order r appears as di�erential complex over a single simplex, over a triangulation,
or with boundary conditions. It is of interest to turn the idea of sequences having
a type into a rigorous mathematical notion. A particular motivation are di�erential
complexes in the theory of hp-adaptive methods, composed of �nite element spaces
of non-uniform polynomial order. In that application we wish to assign types of
polynomial de Rham complexes to each simplex to describe the local order of ap-
proximation.

We �rst introduce a set of formal symbols

S :=
{
. . . ,Pr−1,P−r ,Pr,P−r+1, . . .

}
. (IV.13)

The set S is endowed with a total order≤ that is de�ned by P−r ≤ Pr and Pr ≤ P−r+1

for each r ∈ Z.
An admissible sequence type is a mapping P : Z→ S that satis�es the condition

P(k) ∈
{
Pr,P−r

}
=⇒ P(k + 1) ∈

{
P−r ,Pr−1

}
. (IV.14)

for all k ∈ Z. We let A denote the set of admissible sequence types. The total order
on S induces a partial order ≤ on A , where for all P ,S ∈ A we have P ≤ S if
and only if for all k ∈ Z we have P(k) ≤ S(k).

If P ∈ A is an admissible sequence type and T is an n-simplex, then we de�ne
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IV. Finite Element de Rham Complexes

for each k ∈ Z the spaces

PΛk(T ) :=

{
PrΛk(T ) if P(k) = Pr,
P−r Λk(T ) if P(k) = P−r ,

(IV.15)

P̊Λk(T ) :=

{
P̊rΛk(T ) if P(k) = Pr,
P̊−r Λk(T ) if P(k) = P−r ,

(IV.16)

PΛk(T ) :=

{
PrΛk(T ) if P(k) = Pr,
P−r Λk(T ) if P(k) = P−r ,

(IV.17)

P̊Λk(T ) :=

{
P̊rΛk(T ) if P(k) = Pr,
P̊
−
r Λk(T ) if P(k) = P−r .

(IV.18)

The terminology already suggests that the symbols S describe �nite element spaces,
whereas the admissible sequence types A describe �nite element di�erential com-
plexes. To make this idea rigorous, we begin with an easy observation that follows
from (IV.14). For each admissible sequence type P ∈ A , k ∈ Z, and m-dimensional
simplex T ⊂ Rn we have

dk
(
PΛk(T )

)
⊆ PΛk+1(T ), dk

(
P̊Λk(T )

)
⊆ P̊Λk+1(T ),

dk
(
PΛk(T )

)
⊆ PΛk+1(T ), dk

(
P̊Λk(T )

)
⊆ P̊Λk+1(T ).

In the light of this, each admissible sequence type describes the composition of a
di�erential complex. Suppose that T is a simplex and that P ∈ A is an admissible
sequence type. Then we have a polynomial de Rham complex over T ,

0→ R −−−→ PΛ0(T )
d0

−−−→ . . .
dn−1

−−−→ PΛn(T )→ 0, (IV.19)

and a polynomial de Rham complex over T with boundary conditions,

0→ P̊Λ0(T )
d0

−−−→ . . .
dn−1

−−−→ P̊Λn(T )

∫
T−−−→ R→ 0. (IV.20)

We will also consider the reduced di�erential complexes

0→ PΛ0(T )
d0

−−−→ . . .
dn−1

−−−→ PΛn(T )→ 0, (IV.21)

0→ P̊Λ0(T )
d0

−−−→ . . .
dn−1

−−−→ P̊Λn(T )→ 0. (IV.22)

We establish the exactness of these di�erential complexes.

Lemma IV.2.1.

Let T be a simplex and let P ∈ A be an admissible sequence type. If 1T ∈ PΛ0(T ),
then (IV.19) is well-de�ned and exact. If volT ∈ P̊Λn(T ), then (IV.20) is exact.

Proof. With regards to the �rst sequence, it is obvious that ker d0 ∩ PΛ0(T ) is
spanned by 1T . Let k ∈ {1, . . . , n} and ω ∈ PΛk(T ) with dkω = 0. Then there
exists r ∈ Z with ω ∈ PrΛk(T ). By (III.29a), there exists ξ ∈ P−r+1Λk−1(T ) with
dk−1ξ = ω. Since P−r+1Λk−1(T ) ⊆ PΛk−1(T ), the exactness of the �rst sequence
follows.
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2. Polynomial de Rham Complexes over Simplices

With regards to the second sequence, it is obvious that ker d0 ∩ P̊Λ0(T ) is the
trivial vector space. Now let k ∈ {1, . . . , n} and ω ∈ PΛk(T ) with dkω = 0.
If k = n, the we assume additionally

∫
T
ω = 0. There exists r ∈ Z such that

ω ∈ P̊rΛk(T ). By (III.29b), we obtain η ∈ P̊−r+1Λk−1(T ) with dk−1η = ω. But we
also have P̊−r+1Λk−1(T ) ⊆ P̊Λk−1(T ). This completes the proof.

Lemma IV.2.2.

Let T be a simplex and let P be an admissible sequence type. Then (IV.21) and
(IV.22) are exact sequences.

Proof. If 1T ∈ PΛ0(T ), then PΛ0(T ) = span {1T}⊕PΛ0(T ), and if volT ∈ P̊Λn(T ),
then PΛn(T ) = span {volT} ⊕ P̊Λn(T ). The claim now follows immediately from
the preceding result.

Example IV.2.3.

The admissible sequence types describe the �nite element de Rham complexes of
�nite element exterior calculus. Over a triangle T ⊆ R2, these take one of the forms

PrΛ0(T ) −−−→ P−r Λ1(T ) −−−→ Pr−1Λ2(T ),

PrΛ0(T ) −−−→ Pr−1Λ1(T ) −−−→ Pr−2Λ2(T ),

and over a tetrahedron T ⊆ R3, these take one of the forms

PrΛ0(T ) −−−→ P−r Λ1(T ) −−−→ P−r Λ2(T ) −−−→ Pr−1Λ3(T ),

PrΛ0(T ) −−−→ P−r Λ1(T ) −−−→ Pr−1Λ2(T ) −−−→ Pr−2Λ3(T ),

PrΛ0(T ) −−−→ Pr−1Λ1(T ) −−−→ P−r−1Λ2(T ) −−−→ Pr−2Λ3(T ),

PrΛ0(T ) −−−→ Pr−1Λ1(T ) −−−→ Pr−2Λ2(T ) −−−→ Pr−3Λ3(T ).

In general, when the polynomial order of the space of 0-forms is �xed, then there
are 2n−1 di�erent di�erential complexes in the framework of �nite element exterior
calculus over an n-dimensional simplex.

Now we move our attention towards dual spaces and their representations. This
prepares the discussion of the degrees of freedom of �nite element de Rham com-
plexes in the next section. Let T be a simplex and let g be a smooth Rieman-
nian metric over T . This induces a positive de�nite bilinear form (cf. Agricola and
Friedrich [92] or the discussion in the previous chapter)

Bg : C∞Λk(T )× C∞Λk(T )→ R, (ω, η) 7→
∫
T

〈ω, η〉g.

The restriction of this bilinear form to any �nite-dimensional subspace of C∞Λk(T )
gives a Hilbert space structure on that subspace. We apply this idea to the spaces
P̊Λk(T ), since this is the special case needed in the sequel. The following lemma,
however, generalizes to the spaces of the form PΛk(T ), P̊Λk(T ) and PΛk(T ) with
minimal changes.
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Lemma IV.2.4.

Let P ∈ A , let k ∈ Z, and let T ⊂ Rn be a simplex. For every linear functional
Ψ : P̊Λk(T )→ R there exist ρ ∈ P̊Λk−1(T ) and β ∈ P̊Λk(T ) such that

Ψ(ω) =

∫
T

〈ω, dk−1ρ〉g +

∫
T

〈dkω, dkβ〉g, ω ∈ P̊Λk(T ).

Proof. Let Ψ : P̊Λk(T ) → R be linear and let ω ∈ P̊Λk(T ) be arbitrary. Since Bg

induces a Hilbert space structure on a �nite-dimensional vector space, the Riesz rep-
resentation theorem ensures the existence of η ∈ P̊Λk(T ) such that Ψ(ω) = Bg(ω, η).
We write A0 = P̊Λk(T )∩ ker dk and let A1 denote the orthogonal complement of A0

in P̊Λk(T ) with respect to the scalar product Bg. We have an orthogonal decompo-
sition P̊Λk(T ) = A0 ⊕ A1, and unique decompositions ω = ω0 + ω1 and η = η0 + η1

with ω0, η0 ∈ A0 and ω1, η1 ∈ A1. Thus

Ψ(ω) =

∫
T

〈ω, η〉g =

∫
T

〈ω0, η0〉g +

∫
T

〈ω1, η1〉g.

By the exactness of (IV.22) there exists ρ ∈ P̊Λk−1(T ) such that η0 = dk−1ρ.
Since the bilinear form Bg

(
dk·, dk·

)
is a scalar product over A1 equivalent to Bg,

we may use the Riesz representation theorem again to obtain β ∈ P̊Λk(T ) with
Bg

(
dkω1, d

kβ
)

= Bg (ω1, η1). The proof is complete.

IV.3. Higher Order Finite Element Complexes

We are in a position now to discuss the �nite element de Rham complexes of
higher and possibly non-uniform polynomial order over a simplicial complex.

Let T be a simplicial complex and let U be a (possibly empty) subcomplex of
T . We let P : T → A be a mapping that associates to each simplex T ∈ T an
admissible sequence type PT : Z→ S . We then de�ne

PΛk(T ) :=
{
ω ∈ C∞Λk(T )

∣∣ ∀T ∈ T : ωT ∈ PTΛk(T )
}
. (IV.23)

By construction, the exterior derivative preserves this class of di�erential forms,

dkPΛk(T ) ⊆ PΛk+1(T ), (IV.24)

and in particular, we have a di�erential complex

. . .
dk−1

−−−→ PΛk(T )
dk−−−→ PΛk+1(T )

dk+1

−−−→ . . . (IV.25)

We furthermore de�ne the subspaces

PΛk(T ,U) := PΛk(T ) ∩ C∞Λk(T ),

which constitute the di�erential complex

. . .
dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . . (IV.26)
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Having associated an admissible sequence type PT to each T ∈ T , we say that the
hierarchy condition holds if

∀T ∈ T : ∀F ∈ ∆(T ) : PF ≤ PT . (IV.27)

We call P hierarchical if the hierarchy condition holds. We assume the hierarchy
condition throughout this section; if P : T → A is not hierarchical, then one can
�nd P̃ : T → A satisfying the hierarchy condition and yielding the same �nite
element spaces. In order to simplify the notation, we will write PΛk(T ) := PTΛk(T )
from here on.

Example IV.3.1.

The admissible sequence types associated to each simplex describe the order of
approximation associated to each simplex. If we choose the same admissible sequence
for every simplex, then the resulting spaces PΛk(T ) are �nite element spaces of
uniform polynomial order of the kind considered originally in �nite element exterior
calculus. The most simple example is obtained by choosing for each T ∈ T the
admissible sequence type P ∈ A with P(k) = P−1 for all k ∈ Z. In the sequel we
will see that this choice leads to di�erential complexes of lowest order.

Remark IV.3.2.

The general idea of the hierarchy condition is that the polynomial order associated to
a simplex is at least the polynomial order associated to any subsimplex. Imposing
such a condition is common in the literature on hp �nite element methods [68].
Indeed, if (PT )T∈T violates the hierarchy condition, then there exists a family of
sequence types (ST )T∈T that satis�es the hierarchy condition and yields the same
space PΛk(T ). This is analogous to what is called minimum rule in the literature
(see [69]). We refer also to [56] for the corresponding concept in the theory of element
systems.

The geometric decomposition of �nite element spaces is a concept of paramount
importance. To establish geometric decompositions for the spaces PΛk(T ,U), we
recur to an idea of Chapter III and discuss extension operators. Speci�cally, we
assume to have linear local extension operators

extkF,T : P̊Λk(F )→ PΛk(T ) (IV.28)

for every F ∈ ∆(T ) with T ∈ T such that the following properties hold:

(i) for all F ∈ T we have

extkF,F ω = ω, ω ∈ P̊Λk(F ), (IV.29a)

(ii) for all T ∈ T with F ∈ ∆(T ) and f ∈ ∆(F ) we have

trkT,F extkf,T = extkf,F , (IV.29b)

(iii) for all T ∈ T and F,G ∈ ∆(T ) with F /∈ ∆(G) we have

trkT,G extkF,T = 0. (IV.29c)
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For each F ∈ T we then de�ne the associated global extension operator ,

ExtkF : P̊Λk(F )→ C∞Λk(T ), ω̊ 7→
⊕
T∈T

F∈∆(T )

extkF,T ω̊. (IV.30)

It follows from (IV.29b) that this mapping indeed takes values in C∞Λk(T ). More-
over, de�nitions imply

ExtkF

(
P̊Λk(F )

)
⊆ PΛk(T ). (IV.31)

We note that ExtkF ω for ω ∈ P̊Λk(F ) vanishes on all simplices of T that do not
contain F as a subsimplex.

Example IV.3.3.

We recall the extension operators introduced for geometric decompositions of the
spaces PrΛk(T ) and P−r Λk(T ), which were introduced in Chapter III. These were

extk,rF,T : P̊rΛk(F )→ PrΛk(T ), extk,r,−F,T : P̊−r Λk(F )→ P−r Λk(T ).

These extension operators satisfy the required properties. They are a possible choice
for the local extension operators in this section, in accordance to whether PF (k) = Pr
or PF (k) = P−r .

We can describe the geometric decomposition of PΛk(T ,U) in terms of the exten-
sion operators. The hierarchy condition is critical for that. For every ω ∈ PΛk(T )
we de�ne ωW ∈ PΛk(T ) by

ωW :=
∑
F∈T k

vol(F )−1

(∫
F

trkF ω

)
ExtkF volF . (IV.32)

We then de�ne recursively for every m ∈ {k, . . . , n}

ω̊F := trkF

(
ω − ωW −

m−1∑
l=k

ωl

)
, F ∈ T m, (IV.33)

ωm :=
∑
F∈T m

ExtkF ω̊F . (IV.34)

The following theorem shows that these de�nitions are well-de�ned and give a de-
composition of ω.

Theorem IV.3.4.

Let ω ∈ PΛk(T ). Then we have ω̊F ∈ P̊Λk(F ) for every F ∈ T and

ω = ωW +
n∑

m=k

ωm. (IV.35)

Proof. By construction of ωW , we have∫
F

trkF ω
W =

∫
F

trkF ω, F ∈ T k.
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By de�nition, trkF
(
ω − ωW

)
∈ P̊Λk(F ) for every F ∈ T k. With ωk as de�ned above,

we see

trkF
(
ω − ωW − ωk

)
= 0, F ∈ T k.

Let us now suppose that for some m ∈ {k, . . . , n− 1} we have shown

trkf

(
ω − ωW −

m∑
l=k

ωl

)
= 0, f ∈ T m.

By de�nition we have P̊Λk(F ) = P̊Λk(F ) for F ∈ T m+1, and ω̊F ∈ P̊Λk(F ) for
F ∈ T m+1. We conclude that ωm+1 is well-de�ned and that

trkF

(
ω − ωW −

m+1∑
l=k

ωl

)
= 0, F ∈ T m+1.

An induction argument then provides (IV.35). The proof is complete.

Lemma IV.3.5.

Let ω ∈ PΛk(T ) and F ∈ T . Then we have ωF = 0 if and only if trkf ω
W = 0 for all

f ∈ ∆(F ) and ω̊f = 0 for all f ∈ ∆(F )k.

Proof. For any ω ∈ PΛk(T ) and F ∈ T m we observe

ωF = trkF ω
W +

∑
k≤m≤n

∑
f∈T m

trkF Extkf ω̊f

=
∑

f∈∆(F )k

vol(F )−1

(∫
f

trkf ω

)
extkf,F volF +

∑
f∈∆(F )

extkf,F ω̊f .

If k = m, then ωF = trkF ω
W+ ω̊F , and the claims follows by this being a direct sum.

If k < m, let us assume that the claim holds for all f ∈ T with k ≤ dim f < m.
Then ωF = ω̊F , which again proves the claim. The lemma now follows from an
induction argument.

Lemma IV.3.6.

For ω ∈ PΛk(T ) we have ω ∈ PΛk(T ,U) if and only if ω̊F = 0 for all F ∈ U and
ωWF = 0 for all F ∈ Uk.

Proof. This is a simple consequence of Lemma IV.3.5.

Lemma IV.3.7.

For ω ∈ PΛk(T ) we have ω = 0 if and only if ω̊F = 0 for all F ∈ T and ωWF = 0 for
all F ∈ T k.

Proof. This follows from Lemma IV.3.6 applied to the case U = T .

Theorem IV.3.8.

We have

PΛk(T ,U) =WΛk(T ,U)⊕
⊕

F∈T \U

ExtkF P̊Λk(F ).
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IV. Finite Element de Rham Complexes

Proof. The claim is implied by Theorem IV.3.4 and Lemma IV.3.7.

A modi�cation of the geometric decomposition will be helpful in the sequel.

Lemma IV.3.9.

Let ω ∈ PΛk(T ). Then there exist unique ω̊F ∈ P̊Λk(F ) for F ∈ T such that

ω = IkWω +
n∑

m=k

∑
F∈T m

ExtkF ω̊
m
F . (IV.36)

Proof. Let ω ∈ PΛk(T ). The trace of IkWω − ω over any simplex F ∈ T k has
vanishing integral. The claim follows from applying Theorem IV.3.4 to IkW − ω.

IV.4. Commuting Interpolants

We �nish this chapter with the �nite element interpolant and study some of its
properties. The basic ideas have already been used in prior literature [56, 69], but
we apply some modi�cations and extensions. Our construction explicitly calculates
the geometric decomposition of the interpolating di�erential form. First we de�ne

JkW : C∞Λk(T )→ PΛk(T ), ω 7→
∑
F∈T k

vol(F )−1

(∫
F

ω

)
ExtkF volF . (IV.37)

Subsequently for m ∈ {k, . . . , n} we make the recursive de�nition

Jkm : C∞Λk(T )→ PΛk(T ), ω 7→
∑
F∈T m

ExtkF J
k
Fω, (IV.38)

where for each F ∈ T m we de�ne

JkF : C∞Λk(T )→ P̊Λk(F ) (IV.39)

by requiring JkFω for ω ∈ C∞Λk(T ) to be the unique solution of∫
F

〈
JkFω, d

k−1ρ
〉
g

=

∫
F

〈
trkF

(
ω − JkWω −

m−1∑
k=l

Jkl ω

)
, dk−1ρ

〉
g

, ρ ∈ P̊Λk−1(F ),

(IV.40a)∫
F

〈
dkJmF ω, d

kβ
〉
g

=

∫
F

〈
dk trkF

(
ω − JkWω −

m−1∑
k=l

Jkl ω

)
, dkβ

〉
g

, β ∈ P̊Λk(F ).

(IV.40b)

From Lemma IV.2.4 we �nd that JkFω is well-de�ned. We then set

IkP : C∞Λk(T )→ PΛk(T ), ω 7→ JkWω + Jkkω + · · ·+ Jknω. (IV.41)

We show that the operator IkP acts as the identity on PΛk(T ), and its constituents
JkF reproduce the geometric decomposition.
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4. Commuting Interpolants

Lemma IV.4.1.

For each ω ∈ PΛk(T ) we have IkPω = ω. Moreover, JkWω = ωW and JkFω = ω̊F for
each F ∈ T .

Proof. Let ω ∈ PΛk(T ). We have JkWω = ωW by de�nition. For F ∈ T k we �nd
trkF
(
ω − ωW

)
∈ P̊Λk(F ), and JkFω = ω̊F follows easily. Next, let m ∈ {k, . . . , n− 1}

and suppose that JkFω = ω̊F for F ∈ T with dimF ≤ m. Let F ∈ T m+1. From
de�nitions we conclude that

trkF

(
ω − ωW −

m−1∑
l=k

J lω

)
∈ P̊Λk(F ).

It follows that JkFω = ω̊F and hence Jkmω = ωm. An induction argument completes
the proof.

Lemma IV.4.2.

Let ω ∈ PΛk(T ). If ∫
F

trkF ω = 0, F ∈ T k, (IV.42a)∫
F

〈
trkF ω, d

k−1ρ
〉
g

= 0, ρ ∈ P̊Λk−1(F ), F ∈ T , (IV.42b)∫
F

〈
dk trkF ω, d

kβ
〉
g

= 0, β ∈ P̊Λk(F ) F ∈ T , (IV.42c)

then ω = 0.

Proof. If ω ∈ PΛk(T ) such that (IV.42), then JkWω = 0 and Jkkω = 0. Rearranging
the terms in (IV.39), an induction argument yields that Jkmω = 0 for all m ∈
{k, . . . , n}. The claim is now a consequence of Lemma IV.4.1.

An auxiliary result yields an alternative characterization of IkP .

Lemma IV.4.3.

Let ω ∈ C∞Λk(T ) and ω′ ∈ PΛk(T ). We have ω′ = IkPω if and only if∫
F

trkF ω
′ =

∫
F

trkF ω, F ∈ T k, (IV.43a)∫
F

〈
trkF ω

′, dk−1ρ
〉
g

=

∫
F

〈
trkF ω, d

k−1ρ
〉
g
, ρ ∈ P̊Λk−1(F ), F ∈ T , (IV.43b)∫

F

〈
dk trkF ω

′, dkβ
〉
g

=

∫
F

〈
dk trkF ω, d

kβ
〉
g
, β ∈ P̊Λk(F ) F ∈ T . (IV.43c)

Proof. Let ω ∈ C∞Λk(T ). We verify that IkPω satis�es (IV.43) by rearranging the
terms in (IV.39) and the assumptions on the extension operators. If ω′ ∈ PΛk(T )
is another solution to (IV.43), then we obtain ω′ = IkPω by applying Lemma IV.4.2
to ω′ − IkPω.

Lemma IV.4.4.

Let ω ∈ C∞Λk(T ) and F ∈ T . If ωF = 0 then trkF
(
IkPω

)
= 0.
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IV. Finite Element de Rham Complexes

Proof. Unfolding de�nitions we �nd

trkF
(
IkPω

)
= trkF J

k
Wω +

n∑
m=k

∑
f∈T m

trkF Extkf J
k
fω

=
∑

f∈∆(F )k

vol(F )−1

(∫
f

trkf ω

)
extkf,F volF +

∑
f∈∆(F )

extkf,F J
k
fω.

If dimF = k, then the claim follows from the direct decomposition (III.27) / (III.28).
If dimF > k, suppose that the claim has been proven for f ∈ ∆(F ). Since ωF = 0
we have ωf = 0 for f ∈ ∆(F ). Hence trkF

(
IkPω

)
= JkFω, from which trkF

(
IkPω

)
= 0

follows. An induction argument completes the proof.

Lemma IV.4.5.

If ω ∈ C∞Λk(T ,U), then IkPω ∈ PΛk(T ,U).

Proof. This is an immediate consequence of Lemma IV.4.4 above.

It remains to show that the interpolant commutes with the exterior derivative,
so we have a commuting diagram

. . .
dk−1

−−−→ C∞Λk(T ,U)
dk−−−→ C∞Λk+1(T ,U)

dk+1

−−−→ . . .

IkP

y Ik+1
P

y
. . .

dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .

This the subject of the following lemma.

Lemma IV.4.6.

We have dkIkPω = Ik+1
P dkω for ω ∈ C∞Λk(T ).

Proof. Let ω ∈ C∞Λk(T ,U). For F ∈ T k+1 we observe∫
F

trk+1
F dkIkPω =

∫
F

trk+1
F dkJkWω =

∫
F

dk trkF J
k
Wω

=

∫
∂k+1F

trkF J
k
Wω =

∫
∂k+1F

trkF ω

=

∫
F

dk trkF ω

=

∫
F

trk+1
F dkω =

∫
F

trk+1
F Jk+1

W dkω =

∫
F

trk+1
F Ik+1

P dkω.

Let F ∈ T m with k ≤ m ≤ n. For ρ ∈ P̊Λk(F ) we �nd∫
F

〈
Ik+1
P dkω, dkρ

〉
g

=

∫
F

〈
dkω, dkρ

〉
g

=

∫
F

〈
dkIkPω, d

kρ
〉
g

=

∫
F

〈
dkIkPω, d

kρ
〉
g
.
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4. Commuting Interpolants

For β ∈ P̊Λk+1(F ) we �nd∫
F

〈
dk+1Ik+1

P dkω, dk+1β
〉
g

=

∫
F

〈
dk+1dkω, dk+1β

〉
g

=

∫
F

〈
dk+1dkIkPω, d

k+1β
〉
g

= 0.

In conjunction with Lemma IV.4.3, the desired result follows.

Remark IV.4.7.

The de�nition of the interpolant and Lemma IV.4.3, implicitly use degrees of free-
dom associated with simplices of the triangulation. These functionals, however, em-
ploy an arbitrary Riemannian metric. When we restrict to �nite element de Rham
complexes of spaces of uniform polynomial order, then the degrees of freedom have
canonical representations not involving a Riemannian metric (see Section 5 of [9]).

Remark IV.4.8.

In the sequel, we want to apply the commuting interpolant to di�erential forms that
have well-de�ned traces on all subsimplices but do not necessarily have a classical
(non-distributional) exterior derivative. Although some of the degrees of freedom
in the de�nition of the commuting interpolant involve the exterior derivative of the
di�erential form to be interpolated, this is of no further concern for our intended
application. For ω ∈ C∞Λk(T ,U), a simplex F ∈ T of dimension m, and β ∈
P̊Λk(F ) we observe∫

F

〈
dk trkF ω, d

kβ
〉
g

=

∫
F

dk trkF ω ∧ ?gdkβ

= (−1)k+1

∫
F

trkF ω ∧ dm−k−1 ?g d
kβ +

∑
f∈∆(F )m−1

o(f, F )

∫
f

trkf ω ∧ trm−k−1
F,f ?gd

kβ.

Hence the presence of the exterior derivative may be traded in for taking traces on
lower-dimensional simplices.
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V. Di�erential Forms over Domains

The purpose of this chapter is to review fundamental results on the calculus of di�er-
ential forms on domains. We pay particular attention to the di�erential forms with
coe�cients in Lp spaces and coordinate transformations with Lipschitz regularity.
Finally, we discuss homogeneous boundary conditions in a setting of low regularity.

Our motivation for studying di�erential forms and coordinate transformations
of low regularity lies in the construction of the smoothed projection later in this
thesis. A component there are bi-Lipschitz coordinate transformations, which leave
only the Lp classes of di�erential forms invariant. The pullback of a Lipschitz 0-form
along a bi-Lipschitz mapping is again a Lipschitz 0-form, but this does not generalize
to arbitrary k-forms. The reason is that the pullback of a form of positive degree
involves coe�cients of the Jacobian, which generally have no stronger regularity than
being essentially bounded. Hence the pullback along mappings of low regularity is
needed for this thesis.

In this context, the class of �at di�erential forms (see Example V.3.4) may
be seen as the �smoothest� class of di�erential forms invariant under bi-Lipschitz
mappings. Another important class of di�erential forms are the L2 di�erential forms
whose exterior derivative has L2 coe�cients. These constitute the L2 de Rham
complex, which we will pay further attention to in subsequent chapters. We generally
address di�erential forms with Lp coe�cients, including but not restricted to the
important special cases p ∈ {1, 2,∞}, in order to make these results available in the
literature.

V.1. Elements of Lipschitz Analysis

We begin this chapter by establishing basic notions of Lipschitz analysis. The
reader is referred to Luukkainen and Väisälä [134] for a general reference on Lipschitz
analysis, but for speci�c results we also draw on Federer's monograph on geometric
measure theory [88]. For the duration of this chapter, let n ∈ N.

Let U ⊆ Rn and V ⊆ Rm and let Φ : U → V be a mapping. For a subset A ⊆ U ,
we let the Lipschitz constant Lip(Φ, A) ∈ [0,∞] of Φ over A be the minimum among
those L ∈ [0,∞] that satisfy

∀x, y ∈ A : ‖Φ(x)− Φ(y)‖ ≤ L‖x− y‖.

We say that Φ is Lipschitz if Lip(Φ, U) < ∞. We may write Lip(Φ) := Lip(Φ, U)
if U is understood. More generally, we say that f is locally Lipschitz or LIP if
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V. Di�erential Forms over Domains

for each x ∈ U there exists a relatively open neighborhood A ⊆ U of x such that
Φ|A : A→ Y is Lipschitz.

If Φ is invertible, then we call Φ bi-Lipschitz if both Φ and Φ−1 are Lipschitz,
and we call Φ a lipeomorphism if both Φ and Φ−1 are locally Lipschitz. If Φ : U → V
is locally Lipschitz and injective such that Φ : U → Φ(U) is a lipeomorphism, then
we call Φ a LIP embedding .

We recall some basic but useful facts. The composition of Lipschitz mappings is
again Lipschitz, and the composition of locally Lipschitz mappings is again locally
Lipschitz. If Lip(Φ, U) < ∞, then the continuous extension of Φ to U is Lipschitz
with the same Lipschitz constant Lip(Φ, U). For another observation we give a short
proof.

Lemma V.1.1 (see [94, Lemma 2.3]).
Let U ⊂ Rn be compact and let Φ : U → R be locally Lipschitz. Then Φ is Lipschitz.

Proof. Using that Φ is locally Lipschitz and that U is compact, we infer the existence
of a �nite covering U1, . . . , UN of U by relatively open subsets of U such that there
exists L ∈ [0,∞) with Lip(Φ, Ui) ≤ L for each 1 ≤ i ≤ N . By Lebesgue's number
lemma, there exists γ > 0 such that for each x ∈ U there exists 1 ≤ i ≤ N with
Bγ(x) ∩ U ⊆ Ui. Now let x, y ∈ U . If ‖x− y‖ ≤ γ, then |Φ(x)− Φ(y)| ≤ L‖x− y‖,
since x, y ∈ Ui for some 1 ≤ i ≤ N . If instead ‖x− y‖ > γ, then we see

|Φ(x)− Φ(y)| ≤ Φmax(U)− Φmin(U)

γ
‖x− y‖,

using that Φ assumes a minimum and a maximum over U . The proof is complete.

We consider a special case of speci�c interest. Let U, V ⊆ Rn be open sets
and let be Φ : U → V be bi-Lipschitz. It follows from Rademacher's theorem [88,
Theorem 3.1.6] that the Jacobians

D Φ : U → Rn×n, D Φ−1 : V → Rn×n

exist almost everywhere and are essentially bounded. One can show that

‖D Φ‖L∞(U) ≤ Lip(Φ, U), ‖D Φ−1‖L∞(V ) ≤ Lip(Φ−1, V ). (V.1)

According to [88, Lemma 3.2.8], the identities

D Φ−1
Φ(x) ·D Φx = IdU , D ΦΦ−1(y) ·D Φ−1

y = IdV (V.2)

hold for almost all x ∈ U and y ∈ V , respectively. In particular, the Jacobians have
full rank almost everywhere. Moreover, by [88, Corollary 4.1.26] the signs of the
Jacobians are essentially locally constant. In particular, if U and V are connected,
then there exists o(Φ) ∈ {−1, 1} such that

o(Φ) = sgn det D Φ, (V.3)

almost everywhere over U . One can show (see [88, Theorem 3.2.3]) that∫
U

u (Φ(x)) | det D Φx| dx =

∫
V

u(y) dy (V.4)

for every measurable u : V → R if at least one of the integrals exists.
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2. Di�erential Forms

V.2. Di�erential Forms

The monographs by Lang [126], Lee [127], and by Agricola and Friedrich [92]
introduce the calculus of di�erential forms with smooth coe�cients. Di�erential
forms with coe�cients in Lp spaces have been subject of research for a long time
(see, e.g., [100, 101, 112, 166]).

Let U ⊆ Rn be an open set. We let M(U) denote the space of measurable
functions over U . For k ∈ Z we let MΛk(U) be the vector space of measurable
di�erential k-forms over U . Note that M(U) = MΛ0(U). A speci�c subspace is the
Banach space CΛk(U) of bounded continuous di�erential k-forms over U , equipped
with the maximum norm. We let C∞Λk(U) be the space of smooth di�erential forms
over U , and we let C∞Λk(U) denote the space of those smooth di�erential forms
over U that are restrictions of members of C∞Λk(Rn). Lastly, we let C∞c Λk(U) be
the space of smooth di�erential forms with compact support in U .

For u ∈MΛk(U) and v ∈MΛl(U) we let u ∧ v ∈MΛk+l(U) denote the exterior
product of u and v, which satis�es u ∧ v = (−1)klv ∧ u.

We let e1, . . . , en be the canonical orthonormal basis of Rn. The constant 1-forms
dx1, . . . , dxn ∈ MΛ1(U) are uniquely de�ned by dxi(ej) = δij, where δij ∈ {0, 1}
denotes the Kronecker delta. More generally, the basic k-alternators are the exterior
products

dxσ := dxσ(1) ∧ · · · ∧ dxσ(k) ∈MΛk(U), σ ∈ Σ(1 : k, 1 : n),

and dx∅ := 1 in the case k = 0. The volume form over U is

volnU := dx1 ∧ · · · ∧ dxn.

Every u ∈MΛk(U) can be written uniquely as

u =
∑

σ∈Σ(1:k,1:n)

uσdx
σ, (V.5)

where uσ = u(eσ(1), . . . , eσ(k)) ∈M(U). In particular, every n-form u ∈MΛn(U) can
be written as u = uvol volnU for some unique uvol ∈ M(U). Using this observation,
we de�ne the integral of an n-form u ∈MΛn(U) over U as∫

U

u :=

∫
U

uvol dx (V.6)

whenever uvol ∈M(U) is integrable over U . Note that this de�nition presumes that
Rn carries the canonical orientation.

The pointwise `2 product pairs up two measurable di�erential k-forms to get a
measurable function,

〈u, v〉 :=
∑

σ∈Σ(1:k,1:n)

uσvσ ∈M(U), u, v ∈MΛk(U). (V.7)

Accordingly, we de�ne the pointwise `2 norm |u| ∈M(U) as

|u| :=
√
〈u, u〉, u ∈MΛk(U). (V.8)
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One can show that there exists a mapping

? : MΛk(U)→MΛn−k(U),

called the Hodge star operator , which is uniquely de�ned by the identity

u ∧ ?v = 〈u, v〉 volnU , u, v ∈MΛk(U). (V.9)

One can show that

? ? u = (−1)k(n−k)u, u ∈MΛk(U).

Furthermore, |u| = | ? u| for all u ∈MΛk(U).
We let Lp(U) denote the Lebesgue space with exponent p ∈ [1,∞], and let

LpΛk(U) denote the Banach space of di�erential k-forms with coe�cients (as in
(V.5)) in Lp(U). A compatible norm on LpΛk(U) is given by

‖u‖LpΛk(U) :=
∥∥∥√〈u, u〉∥∥∥

Lp(U)
, u ∈ LpΛk(U).

In the special case p = 2, this a Hilbert space with scalar product

〈u, v〉L2Λk(U) :=

∫
U

〈u, v〉dx, u, v ∈ L2Λk(U).

Remark V.2.1.

Our de�nition of pointwise `2 product (V.7) and the Hodge star (V.2) assume the
choice of a canonical Riemannian metric over U . More generally, these structures
can be de�ned for any choice of Riemannian metric over U . We do not explore this
idea further in this chapter.

We conclude this section with the study of pullbacks of di�erential forms along
bi-Lipschitz mappings. For the remainder of this section, we let U, V ⊆ Rn be open
sets, and let Φ : U → V be a bi-Lipschitz mapping.

The pullback Φ∗u ∈MΛk(U) of u ∈MΛk(V ) under Φ is de�ned as

Φ∗ux(ν1, . . . , νk) := uΦ(x)(D Φx · ν1, . . . ,D Φx · νk), ν1, . . . , νk ∈ Rn, x ∈ U.

By the discussion at the beginning of Section 2 of [100], the algebraic identity

Φ∗(u ∧ v) = Φ∗u ∧ Φ∗v

holds for u ∈MΛk(V ) and v ∈MΛl(V ). In particular, one can show that

(Φ∗ volnV ) = det (D Φ) · volnU , x ∈ U. (V.10)

Next we show how the integral of n-forms transforms under pullback by bi-Lipschitz
mappings.

Lemma V.2.2.

If Φ : U → V is a bi-Lipschitz mapping between connected open subsets of Rn, then∫
U

Φ∗ (u volnV ) = o(Φ)

∫
V

u volnV , u ∈M(V ), (V.11)

if any of the integrals exists.
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Proof. Using (V.3), (V.4), and (V.10), we �nd∫
U

Φ∗ (u volnV ) =

∫
U

(u ◦ Φ) · det (D Φ) volnU

=

∫
U

(u ◦ Φ) · det (D Φ) dx

=

∫
U

u ◦ Φ · sgn det D Φ · | det D Φ| dx

= o(Φ)

∫
U

u ◦ Φ · | det D Φ| dx = o(Φ)

∫
V

u dx = o(Φ)

∫
V

u volnV .

This shows the desired identity.

It can be shown that the pullback under bi-Lipschitz mappings preserves the Lp

classes of di�erential forms over U (see Theorem 2.2. of [100]). For the purpose of
this thesis, we prove that the pullback is an isomorphism of Banach spaces and we
determine the operator norm of that isomorphism. Here and in the sequel, n/∞ = 0
for n ∈ N.

Lemma V.2.3.

Let Φ : U → V be a bi-Lipschitz mapping between open sets U, V ⊆ Rn. For every
p ∈ [1,∞] and u ∈ LpΛk(V ) we have

‖Φ∗u‖LpΛk(U) ≤ ‖D Φ‖kL∞(U)

∥∥det D Φ−1
∥∥ 1
p

L∞(V ) ‖u‖LpΛk(V )

≤ ‖D Φ‖kL∞(U)

∥∥D Φ−1
∥∥np
L∞(V ) ‖u‖LpΛk(V ).

(V.12)

Proof. Let Φ : U → V and p ∈ [1,∞] be as in the statement of the theorem, and
let u ∈ LpΛk(U). For almost every x ∈ U we observe

|Φ∗u||x ≤
∥∥D Φ|x

∥∥k
2,2

√ ∑
σ∈Σ(1:k,1:n)

(
uσ|Φ(x)

)2
=
∥∥D Φ|x

∥∥k
2,2
|u||Φ(x) .

From this we easily get

‖Φ∗u‖LpΛk(U) ≤ ‖D Φ‖kL∞(U)

∥∥|u| ◦ Φ
∥∥
LpΛk(U)

.

The desired statement follows trivially if p =∞, and (V.4) gives∫
U

|u|p|Φ(x) dx ≤
∥∥det D Φ−1

∥∥
L∞(V )

∫
U

|u|p|Φ(x)

∣∣det D Φ|x
∣∣ dx

≤
∥∥det D Φ−1

∥∥
L∞(V )

∫
Φ(U)

|u|px dx

if p ∈ [1,∞). This shows the �rst estimate of (V.12). The second estimate in (V.12)
follows by Hadamard's inequality, which estimates the determinant of a matrix by
the product of the norms of its columns.
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V. Di�erential Forms over Domains

V.3. The Exterior Derivative

We now address the exterior derivative in a setting of low regularity. To begin
with, we de�ne the exterior derivative in a weak sense over di�erential forms with
locally integrable coe�cients. We then turn our attention to the W p,q spaces of dif-
ferential forms (see [97, 98, 121]). Eventually we consider a notion of homogeneous
boundary condition.

The exterior derivative dk : C∞Λk(U) → C∞Λk+1(U) over smooth di�erential
k-forms is de�ned by

dku =
∑

σ∈Σ(1:k,1:n)

n∑
i=1

(∂iuσ)dxi ∧ dxσ, u ∈ C∞Λk(U). (V.13)

One can show that dk is a linear mapping satisfying the di�erential property

dk+1dku = 0, u ∈ C∞Λk(U),

and that it relates to the exterior product by

dk+l(u ∧ v) = dku ∧ v + (−1)ku ∧ dlv, u ∈ C∞Λk(U), v ∈ C∞Λl(U). (V.14)

Moreover, dku ∈ C∞Λk+1(U) when u ∈ C∞Λk(U).
We are interested in de�ning the exterior derivative in a weak sense over dif-

ferential forms of low regularity. If u ∈ MΛk(U) and w ∈ MΛk+1(U) are locally
integrable such that∫

U

w ∧ v = (−1)k+1

∫
U

u ∧ dn−k−1v, v ∈ C∞c Λn−k−1(U), (V.15)

then w is the only member ofMΛk+1(U) satisfying (V.15), up to equivalence almost
everywhere, and we call dku := w the weak exterior derivative of u. Note that w is
unique up to equivalence almost everywhere in U , and that dku has vanishing weak
exterior derivative, since∫

U

dku ∧ dn−k−1v = (−1)k
∫
U

u ∧ dn−kdn−k−1v = 0, v ∈ C∞c Λn−k−1(U). (V.16)

The weak exterior derivative of u ∈ C∞Λk(U) agrees with the (strong) exterior
derivative almost everywhere, and hence we call weak exterior derivatives simply
exterior derivatives in the sequel. The product formula (V.14) generalizes in the
obvious manner to the weak exterior derivative, provided all required weak exterior
derivatives exist.

The Hodge star enters the de�nition of the codi�erential , which is a di�erential
operator given (in the strong sense) by

δk : C∞Λk(U)→ C∞Λk−1(U), u 7→ (−1)k(n−k)+1 ? dn−k ? u. (V.17)

A weak codi�erential can be de�ned analogously to the weak exterior derivative.
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3. The Exterior Derivative

Next we introduce a notion of Sobolev di�erential forms. For p, q ∈ [1,∞], we let
W p,qΛk(U) be the space of those di�erential k-forms in LpΛk(U) that have a weak
exterior derivative in LqΛk+1(U). The space W p,qΛk(U) is a Banach space with the
norm

‖u‖W p,qΛk(U) = ‖u‖LpΛk(U) +
∥∥dku∥∥

LqΛk+1(U)
. (V.18)

It is obvious that W p,qΛk(U) is a Banach space. Since the exterior derivative of an
exterior derivative is zero, even in the weak sense, we observe

dkW p,qΛk(U) ⊆ W q,rΛk+1(U), p, q, r ∈ [1,∞].

Hence one may study de Rham complexes of the form

· · · dk−1

−−−→ W p,qΛk(U)
dk−−−→ W q,rΛk+1(U)

dk+1

−−−→ · · · (V.19)

Remark V.3.1.

The choice of the Lebesgue exponents determines analytical and algebraic properties
of the de Rham complexes of the form (V.19). This is not subject of research in this
thesis, but we refer to [102] for corresponding results over smooth manifolds without
boundary. De Rham complexes of the above form with a Lebesgue exponent p �xed,

· · · dk−1

−−−→ W p,pΛk(U)
dk−−−→ W p,pΛk+1(U)

dk+1

−−−→ · · · (V.20)

are known as Lp de Rham complexes (see [139]).

Example V.3.2.

The space W 1,1Λk(U) contains all integrable di�erential k-forms over U with inte-
grable weak exterior derivative. If U is bounded, then W 1,1Λk(U) contains all the
other spaces W p,qΛk(U) as embedded subspaces.

Example V.3.3.

The space HΛk(U) := W 2,2Λk(U), consisting of those L2 di�erential k-forms that
have a weak exterior derivative with L2 integrable coe�cients, is a Hilbert space
with the scalar product

〈u, v〉HΛk(U) = 〈u, v〉L2Λk(U) + 〈dku, dkv〉L2Λk+1(U), u, v ∈ HΛk(U).

We write ‖·‖HΛk(U) for the corresponding norm. Note that ‖·‖W 2,2Λk(U) and ‖·‖HΛk(U)

are equivalent but not identical norms on HΛk(U). These spaces constitute the L2

de Rham complex

· · · dk−1

−−−→ HΛk(U)
dk−−−→ HΛk+1(U)

dk+1

−−−→ · · ·

which has received considerable attention in global and numerical analysis.

Example V.3.4.

The space W∞,∞Λk(U) of �at di�erential forms is spanned by those di�erential
forms with essentially bounded coe�cients that have a weak exterior derivative with
essentially bounded coe�cients. These spaces constitute the �at de Rham complex

· · · dk−1

−−−→ W∞,∞Λk(U)
dk−−−→ W∞,∞Λk+1(U)

dk+1

−−−→ · · ·
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V. Di�erential Forms over Domains

Flat di�erential forms have been studied extensively in geometric integration theory
[88, 180]; see in particular Theorem 1.5 of [100]. Furthermore, if U is bounded, then
W∞,∞Λk(U) is a subspace of W p,qΛk(U) for all p, q ∈ [1,∞].

Di�erential forms with smooth coe�cients are dense in W p,qΛk(U) for p, q ∈
[1,∞). This has been proven in [100, Lemma 1.3] using de Rham regularizers. We
give a di�erent proof, which uses standard techniques in functional analysis (see
[86]). In Chapter VII, a generalization of this result will accommodate boundary
conditions.

Lemma V.3.5.

Let U ⊆ Rn be open and let p, q ∈ [1,∞). Then C∞Λk(U) ∩W p,qΛk(U) is dense in
W p,qΛk(U).

Proof. Let u ∈ W p,qΛk(U) and write w := dku. Then (u,w) ∈ LpΛk(U)×LqΛk+1(U).
We let ũ ∈ LpΛk(Rn) and w̃ ∈ LqΛk+1(Rn) denote the extension by zero of u and
w, respectively, onto Rn. For ε > 0 we let ũε := µε ? ũ and w̃ε := µε ? w̃ denote
the respective convolutions with the scaled molli�er. The di�erential forms ũε and
w̃ε have smooth coe�cients (see [27, Corollary 3.9.5]). The scaled molli�ers µε have
unit integral, and via Young's inequality (see [27, Theorem 3.9.4]) we thus �nd

‖ũε‖LpΛk(U) ≤ ‖u‖LpΛk(U), ‖w̃ε‖LqΛk+1(U) ≤ ‖w‖LqΛk+1(U).

Furthermore, we recall that ũε|U converges to u in LpΛk(U) and that w̃ε|U converges
to w in LqΛk+1(U), as follows from well known results on the convolution with the
standard molli�er (see [27, Theorem 4.2.4]). Let us assume that u has compact
support in U . Then ũε and w̃ε have compact support in U for ε small enough. We
then get dkũε = w̃ε.

To treat the case of general u, we �x a countable locally �nite covering (Ui)i∈N of
U by bounded open subsets and a countable smooth partition of unity (χi)i∈N over
U such that suppχi is compactly contained in Ui for each i ∈ N.

Now χiu has compact support in Ui for each i ∈ N, and hence it can be approx-
imated by a smooth di�erential k-form compactly supported in Ui. Consequently,
for every ε > 0 we can �x ui ∈ C∞c Λk(Ui) for every i ∈ N such that

‖χiu− ui‖LpΛk(U) +
∥∥dk (χiu)− dkui

∥∥
LqΛk+1(U)

<
ε

2i
, i ∈ N, ε > 0.

Let us write u? =
∑

i∈N ui and w? =
∑

i∈N d
kui. Since the covering (Ui)i∈N is locally

�nite, we conclude that u? ∈ C∞Λk(U) and w? ∈ C∞Λk+1(U). Additionally, the
triangle inequality gives

‖u− u?‖LpΛk(U) + ‖w − w?‖LqΛk+1(U) ≤
∞∑
i=1

ε

2i
= ε.

This completes the proof.

We now study the behavior of the weak exterior derivative under bi-Lipschitz
coordinate changes. Suppose that U, V ⊆ Rn are open sets, and let Φ : U → V
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3. The Exterior Derivative

be a bi-Lipschitz mapping. If follows from Theorem 2.2 of [100] that whenever
u ∈ W p,qΛk(V ) with p, q ∈ [1,∞], then we also have Φ∗u ∈ W p,qΛk(U) and

dkΦ∗u = Φ∗dku. (V.21)

In particular, the pullback along bi-Lipschitz mappings preserves the W p,q classes
of di�erential forms.

In this thesis we are particularly interested in spaces of di�erential forms that
satisfy homogeneous boundary conditions along a subset Γ of the boundary ∂U . We
call these partial boundary conditions . We de�ne homogeneous boundary conditions
in the manner of De�nition 3.3 of [99], which does not explicitly require assumptions
on the regularity of ∂U . Thus we avoid the technicalities of generalized boundary
traces.

Assume that Γ ⊆ ∂U is a relatively open subset of ∂U . We de�ne the space
W p,qΛk(U,Γ) as the subspace of W p,qΛk(U) whose members adhere to the following
condition: we have u ∈ W p,qΛk(U,Γ) if and only if for all x ∈ Γ there exists r > 0
such that∫

U∩Br(x)

u ∧ dn−k−1v = (−1)k+1

∫
U∩Br(x)

dku ∧ v, v ∈ C∞c Λn−k−1
(
B̊r(x)

)
.

(V.22)

The de�nition implies that W p,qΛk(U,Γ) is a closed subspace of W p,qΛk(U), and
hence a Banach space of its own. We also say that u ∈ W p,qΛk(U,Γ) satis�es partial
boundary conditions along Γ.

Remark V.3.6.

The identity (V.22) resembles the integration by parts identity in the de�nition of
the weak exterior derivative. Our de�nition of homogeneous boundary conditions is
based on the idea that the trivial extension of any u ∈ W p,qΛk(U,Γ) outside of U
should have a weak exterior derivative locally along Γ. For example, W p,qΛk(U, ∂U)
is the subspace of W p,qΛk(U) whose member's extension to Rn by zero gives a mem-
ber of W p,qΛk(Rn). If the domain has a boundary of su�cient regularity, then an
equivalent notion of homogeneous boundary conditions uses generalized trace oper-
ators [139, 177]. This thesis does not address inhomogeneous boundary conditions.

Another property of the W p,q classes of di�erential forms with homogeneous
boundary conditions is that they are closed under taking the exterior derivative.
Unfolding de�nitions we �nd

dkW p,qΛk(U,Γ) ⊆ W q,rΛk+1(U,Γ), p, q, r ∈ [1,∞]. (V.23)

In other words, di�erential forms satisfying homogeneous boundary conditions along
Γ have exterior derivatives satisfying homogeneous boundary conditions along Γ.
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VI. Weakly Lipschitz Domains

The theoretical and numerical analysis of partial di�erential equations is a�ected
by the properties of the geometric ambient. The aim of this chapter is to prepare
this geometric ambient. We discuss the class of weakly Lipschitz domains and the
geometry of boundary partitions.

A domain is weakly Lipschitz if its boundary can be �attened locally by a bi-
Lipschitz coordinate transformation. The class of weakly Lipschitz domains can
thus be regarded as a Lipschitz analogue to the class of smoothly bounded domains,
whose boundaries can be �attened locally by a di�eomorphism. The terminology
suggests that weakly Lipschitz domains are compared to the more common notion of
Lipschitz domains, which are then also called strongly Lipschitz domains. A domain
is (strongly) Lipschitz if its boundary is locally the graph of a Lipschitz function in
an orthogonal coordinate system.

The notion of Lipschitz domain is standard in numerical analysis, but it is easy
to see why weakly Lipschitz domains are worth being studied in the context of �nite
element methods. Every strongly Lipschitz domain is a weakly Lipschitz domain,
but the converse is not true, and counterexamples include polyhedral domains in
R3. For instance, the �crossed bricks domain� is not Lipschitz but weakly Lipschitz.
We will prove that every polyhedral domain in R3 is weakly Lipschitz.

Even though the class of weakly Lipschitz domains is larger than the class of
strongly Lipschitz domains, research has established that many analytical results
known for more regular domains still remain true when considered on weakly Lip-
schitz domains [15, 38, 99, 106, 110, 151]. For example, one can show that the
di�erential complex

H1(Ω)
grad−−−→ H(curl,Ω)

curl−−−→ H(div,Ω)
div−−−→ L2(Ω) (VI.1)

over a bounded three-dimensional weakly Lipschitz domain Ω satis�es Poincaré-
Friedrichs inequalities and realizes the Betti numbers of the domain on cohomology.
Furthermore, a vector �eld version of a Rellich-type compact embedding theorem
is valid, and the scalar and vector Laplacians over Ω have a discrete spectrum.
Recasting this in the calculus of di�erential forms, one establishes the analogous
properties for the L2 de Rham complex

HΛ0(Ω)
d0

−−−→ HΛ1(Ω)
d1

−−−→ · · · dn−1

−−−→ HΛn(Ω) (VI.2)

over a bounded weakly Lipschitz domain Ω ⊂ Rn.
Another concept of numerical analysis over strongly Lipschitz domains are collar

neighborhoods. A collar neighborhood of a domain Ω is a neighborhood of its
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boundary ∂Ω that is homeomorphic to the topological space ∂Ω× (−1, 1) such that
∂Ω × (−1, 0) corresponds to the collar neighborhood's part inside the domain and
∂Ω × (0, 1) corresponds to the collar neighborhood's part outside the domain. For
a strongly Lipschitz domain, such a collar neighborhood can be constructed using
a transversal vector �eld along the ∂Ω, and the corresponding homeomorphism
can be chosen as bi-Lipschitz (see [56, 105, 160] for details). But this approach
does not transfer to the case of weakly Lipschitz domains, the reason being that
such a transversal vector �eld does not necessarily exist. Instead, we rely on the
notion of Lipschitz collar from Lipschitz topology. We prove that the boundary
of weakly Lipschitz domains allows for a bi-Lipschitz collar neighborhood. This
collar neighborhood will be used later in the construction of an extension operator
in Chapter VII.

Moreover, for the purpose of addressing partial di�erential equations with mixed
boundary conditions later in this thesis, we discuss the geometric prerequisites of
admissible boundary partitions and admissible boundary patches for weakly Lip-
schitz domains (based on [99]).

This chapter is structured in the following manner. In Section VI.1 we introduce
weakly and strongly Lipschitz domains, and Lipschitz collars. In Section VI.2 we
discuss admissible boundary partitions, and in Section VI.3 we prove that polyhedral
domains in R3 are weakly Lipschitz.

VI.1. Classes of Domains

We commence this chapter with the classical notion of Lipschitz domain, which
we also call strongly Lipschitz domain in this thesis. An open set Ω ⊆ Rn is a strongly
Lipschitz domain if for each x ∈ ∂Ω there exists a closed neighborhood Ux ⊆ Rn of
x, positive numbers ε > 0 and h > 0, an isometry ζ : Ux → [−ε, ε]n−1 × [−h, h] with
ζ(x) = 0, and a Lipschitz-continuous function γ : [−ε, ε]n−1 → (−h, h) such that

ζ (Ω ∩ Ux) =
{

(y′, yn)
∣∣ y′ ∈ [−ε, ε]n−1, yn ∈ [−h, h], yn < γ(y′)

}
, (VI.3a)

ζ (∂Ω ∩ Ux) =
{

(y′, yn)
∣∣ y′ ∈ [−ε, ε]n−1, yn ∈ [−h, h], yn = γ(y′)

}
, (VI.3b)

ζ (Ωc ∩ Ux) =
{

(y′, yn)
∣∣ y′ ∈ [−ε, ε]n−1, yn ∈ [−h, h], yn > γ(y′)

}
. (VI.3c)

More generally, we call Ω a weakly Lipschitz domain if for all x ∈ ∂Ω there exist a
closed neighborhood Ux of x in Rn and a bi-Lipschitz mapping ϕx : Ux → [−1, 1]n

such that ϕx(x) = 0 and such that

ϕx(Ω ∩ Ux) = [−1, 1]n−1 × [−1, 0), (VI.4a)
ϕx(∂Ω ∩ Ux) = [−1, 1]n−1 × {0}, (VI.4b)

ϕx(Ω
c ∩ Ux) = [−1, 1]n−1 × (0, 1]. (VI.4c)

In other words, a strongly Lipschitz domain is an open subset Ω of Rn whose bound-
ary ∂Ω can be written locally as the graph of a Lipschitz function in some orthogonal
coordinate system. A weakly Lipschitz domain is a domain whose boundary can be
�attened locally by a bi-Lipschitz coordinate transformation. As the name already
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suggests, every strongly Lipschitz domain is also a weakly Lipschitz domain. The
converse is generally false.

Lemma VI.1.1.

Let Ω ⊆ Rn be a strongly Lipschitz domain. Then Ω is a weakly Lipschitz domain.

Proof. Let x ∈ ∂Ω. There exist Ux, ε, h, ζ, and γ as in the de�nition of strongly
Lipschitz domains. For y ∈ (−h, h) we let ςy : [−h, h] → [−h, h] be the unique
piecewise a�ne mapping with

ςy(−h) = −h, ςy(0) = y, ςy(h) = h.

We then have a bi-Lipschitz mapping ϕγ : [−ε, ε]n−1 × [−h, h] → [−1, 1]n de�ned
by ϕγ(y

′, yn) := (y′/ε, ςγ(y′)(yn)/h). Hence ϕx := ϕγζx is a bi-Lipschitz mapping
from Ux to [−1, 1]n that satis�es the conditions (VI.4) in the de�nition of weakly
Lipschitz domain. The proof is complete.

Example VI.1.2.

The converse statement to Lemma VI.1.1 is generally false, and a counterexample
is easily found. The crossed bricks domain ΩCB (see Figure VI.1) is given by

ΩCB := (−1, 1)× (0, 1)× (0,−1) ∪ (0, 1)× (0,−1)× (−1, 1)

∪ (0, 1)× {0} × (0,−1).
(VI.5)

The domain ΩCB is not a Lipschitz domain because at the origin it is not possible
to write ∂ΩCB as the graph of a Lipschitz function in any orthogonal coordinate
system. If such a coordinate system existed, then the epigraph of the function
describing the boundary would contain line segments in two opposite directions,
which is not possible.

But ΩCB is a weakly Lipschitz domain. This follows from Theorem VI.3.2 later
in this chapter, but it is easy to verify in the particular example of ΩCB. We �rst
observe that near every non-zero x ∈ ∂ΩCB we can write ∂ΩCB as a Lipschitz graph,
from which we can easily construct a suitable Lipschitz coordinate chart around x as
we have done in the proof of Lemma VI.1.1. But this approach does not work at the
origin. As a possible remedy, we deform ΩCB into a strongly Lipschitz domain by a
bi-Lipschitz mapping. Now it is easy to construct the desired bi-Lipschitz coordinate
chart around the origin in which ∂ΩCB is �attened.

A variant of the crossed bricks domain is displayed in the monograph of Monk
[145, Figure 3.1, p.39], and another variant is discussed in [38]. For a generalization
of this example, we refer to Example 2.2 in [12].

Remark VI.1.3.

A motivation for considering the class of weakly Lipschitz domains in �nite element
theory is the following observation: every bounded domain Ω ⊂ R3 with a �nite
triangulation is a weakly Lipschitz domain. We prove that statement at the end of
this chapter, using the results of Chapter II.

Remark VI.1.4.

A di�erent access towards the idea originates from di�erential topology: a weakly
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Figure VI.1: Left : polyhedral domain in 3D that is not the graph of a Lipschitz
function at the marked point. Right : bi-Lipschitz transformation of that domain
into a strongly Lipschitz domain.

Lipschitz domain is an n-dimensional locally �at Lipschitz submanifold of Rn in the
sense of [134]. This idea has inspired the notion of weakly Lipschitz domains inside
abstract Lipschitz manifolds [99].

At this point we gather several observations about weakly Lipschitz domains.

Lemma VI.1.5.

Let Ω ⊂ Rn be open. Then Ω is a weakly Lipschitz domain if and only if Ω
c
is a

weakly Lipschitz domain.

Proof. This can easily be seen from the de�nition of weakly Lipschitz domains.

Lemma VI.1.6.

Let Ω ⊆ Rn be a bounded weakly Lipschitz domain. Then there exists a �nite
family of closed sets U1, . . . , Um ⊆ Ω that cover Ω, and a �nite family ϕ1, . . . , ϕm of
bi-Lipschitz mappings ϕi : Ui → [−1, 1]n. Moreover, we can assume that the relative
interiors of the Ui in Ω constitute a �nite covering of Ω.

Proof. The claim follows easily from de�nitions and compactness of Ω.

Lemma VI.1.7.

Let Ω ⊆ Rn be a weakly Lipschitz domain. Then for each x ∈ ∂Ω there exists a
closed set Vx ⊆ ∂Ω and a bi-Lipschitz mapping θx : Vx → [−1, 1]n−1 with θx(x) = 0
such that the relative interiors of Vx in ∂Ω constitute a covering of ∂Ω.

Proof. From de�nitions we �nd that for each x ∈ ∂Ω there exists a closed set
Ux ⊆ Ω and a bi-Lipschitz mapping ϕx : Ux → [−1, 1]n such that ϕx(x) = 0 and
(VI.4) holds. Then (Ux ∩ ∂Ω)x∈∂Ω is the desired covering of ∂Ω by closed sets whose
relative interiors are again a covering. Furthermore, each ϕx|Ux∩∂Ω is a bi-Lipschitz
mapping from Ux ∩ ∂Ω onto [−1, 1]n−1.

The above lemmas have been simple observations, but they prepare a much
stronger result, namely the discussion of Lipschitz collars along the boundaries of
weakly Lipschitz domains. A Lipschitz collar of a domain Ω is a LIP embedding

Ψ : ∂Ω× [−1, 1]→ Rn
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such that Ψ(z, 0) = z for all z ∈ ∂Ω, and such that Ψ maps ∂Ω × [−1, 0) into Ω
and ∂Ω × (0, 1] into Ωc. We show that every weakly Lipschitz domain allows for a
Lipschitz collar.

Theorem VI.1.8.

Let Ω ⊆ Rn be a bounded weakly Lipschitz domain. Then there exists a LIP
embedding Ψ : ∂Ω× [−1, 1]→ Rn such that Ψ(x, 0) = x for x ∈ ∂Ω, and

Ψ (∂Ω× [−1, 0)) ⊆ Ω, Ψ (∂Ω× (0, 1]) ⊆ Ω
c
. (VI.6)

Moreover, we may assume that for every t ∈ (0, 1) the sets Ω \ Ψ (∂Ω, [−t, 0)) and
Ω ∪Ψ (∂Ω, (0, t)) are weakly Lipschitz domains.

Proof. We �rst prove a one-sided version of the result. By Lemma VI.1.7 and the
compactness of ∂Ω we obtain the existence of a collection {Vi}i∈N of relatively open
subsets of ∂Ω that constitute a covering of ∂Ω, and a collection {ψi}i∈N of LIP
embeddings ψi : Vi × [0, 1) → Ω such that for each i ∈ N we have ψi(x, 0) = x
for each x ∈ ∂Ω. It follows that {(Vi, ψi)}i∈N is a local LIP collar in the sense of
De�nition 7.2 in [134]. By Theorem 7.4 in [134], and a successive reparametrization,
there exists a LIP embedding Ψ−(x, t) : ∂Ω× [0, 1]→ Ω such that Ψ−(x, 0) = x for
all x ∈ ∂Ω.

We recall Lemma VI.1.5 to see that Ω
c
is a weakly Lipschitz domain. By the

same arguments, there exists a LIP embedding Ψ+(x, t) : ∂Ω× [0, 1]→ Ωc such that
Ψ+(x, 0) = x for all x ∈ ∂Ω. We combine these two LIP embeddings. Let

Ψ : ∂Ω× [−1, 1]→ Rn, (x, t) 7→


Ψ−(x,−t) if (x, t) ∈ ∂Ω× [−1, 0),

x if (x, t) ∈ ∂Ω× {0},
Ψ+(x, t) if (x, t) ∈ ∂Ω× (0, 1].

Then Ψ is well-de�ned, bijective, and (VI.6) holds. Moreover, there exists C ≥ 1
such that for all x1, x2 ∈ ∂Ω, for all t−1 , t

−
2 ∈ [−1, 0], and for all t+1 , t

+
2 ∈ [0, 1] we

have

1

C

(
‖x1 − x2‖+

∣∣t−2 − t−1 ∣∣) ≤ ∥∥Ψ(x1, t
−
1 )−Ψ(x2, t

−
2 )
∥∥

≤ C
(
‖x1 − x2‖+

∣∣t−2 − t−1 ∣∣) , (VI.7)

1

C

(
‖x1 − x2‖+

∣∣t+2 − t+1 ∣∣) ≤ ∥∥Ψ(x1, t
+
1 )−Ψ(x2, t

+
2 )
∥∥

≤ C
(
‖x1 − x2‖+

∣∣t+2 − t+1 ∣∣) (VI.8)

It remains to prove that Ψ is a LIP embedding, for which it su�ces to show that

1

C
(‖x1 − x2‖+ |t2 − t1|) ≤ ‖Ψ(x1, t1)−Ψ(x2, t2)‖

≤ C (‖x1 − x2‖+ |t2 − t1|)
(VI.9)

for all x1, x2 ∈ ∂Ω and t1, t2 ∈ [−1, 1]. If t1 and t2 are both non-negative or both
non-positive, then (VI.7) or (VI.8) apply. To treat the case t1 < 0 < t2, we �rst
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VI. Weakly Lipschitz Domains

observe that

‖Ψ(x1, t1)−Ψ(x2, t2)‖
≤ ‖Ψ(x1, t1)− x1‖+ ‖x1 − x2‖+ ‖x2 −Ψ(x2, t2)‖
= ‖Ψ(x1, t1)−Ψ(x1, 0)‖+ ‖x1 − x2‖+ ‖Ψ(x2, 0)−Ψ(x2, t2)‖
≤ C|t1|+ C|t2|+ ‖x1 − x2‖
≤ C |t1 − t2|+ ‖x1 − x2‖.

On the other hand, we �x z ∈ ∂Ω on the straight line segment from Ψ(x1, t1) to
Ψ(x2, t2) and �nd

‖Ψ(x1, t1)−Ψ(x2, t2)‖ = ‖Ψ(x1, t1)− z‖+ ‖z −Ψ(x2, t2)‖
= ‖Ψ(x1, t1)−Ψ(z, 0)‖+ ‖Ψ(z, 0)−Ψ(x2, t2)‖

≥ 1

C
(|t1|+ |t2|+ ‖x1 − z‖+ ‖z − x2‖)

=
1

C
(|t1 − t2|+ ‖x1 − x2‖) .

Thus (VI.9) follows. Restricting and reparameterizing Ψ completes the proof.

Remark VI.1.9.

Our Theorem VI.1.8 realizes the following idea from di�erential topology in a Lip-
schitz setting: if a surface is locally collared, then it is also globally collared. Such
a result is well-known in the topological or smooth sense, but it seems to be only
folklore in the Lipschitz sense. Notably, the result is mentioned in the unpublished
preprint [94]. We have provided a proof for formal completeness.

VI.2. Admissible Boundary Partitions

One major topic of this thesis are mixed boundary conditions. To set up the
geometric background, we discuss classes of boundary partitions in the context of
weakly Lipschitz domains. Our main source is a publication by Gol'dshtein, Mitrea,
and Mitrea [99].

Let Ω ⊆ Rn be a weakly Lipschitz domain. An open set ΓT ⊆ ∂Ω is called an
admissible boundary patch if ΓT is a topological submanifold of ∂Ω of dimension
n − 1 with boundary such that the following additional condition is satis�ed: for
each x ∈ ∂ΓT there exists a closed neighborhood Vx of x in ∂Ω and a bi-Lipschitz
mapping θx : Vx → [−1, 1]n−1 such that

θx(x) = 0, (VI.10a)
θx(ΓT ∩ Vx) = [−1, 1]n−2 × [−1, 0), (VI.10b)
θx(∂ΓT ∩ Vx) = [−1, 1]n−2 × {0}, (VI.10c)

θx((∂Ω \ ΓT ) ∩ Vx) = [−1, 1]n−2 × (0, 1]. (VI.10d)

If ΓT is an admissible boundary patch, then ΓN := ∂Ω \ ΓT is also an admissible
boundary patch, called complementary to ΓT . We can rewrite (VI.10d) as

θx(ΓN ∩ Vx) = [−1, 1]n−2 × (0, 1].
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2. Admissible Boundary Partitions

The admissible boundary patch ΓT and its complementary boundary patch are topo-
logical manifolds with the same boundary ΓI within ∂Ω. Note that ΓI is a topological
submanifold of ∂Ω of dimension n−2 without boundary. We have ΓI = ∂ΓT = ∂ΓN .
We call (ΓT ,ΓI ,ΓN) an admissible boundary partition.

Figure VI.2: Schematic depiction of a domain Ω (shaded area), an admissible bound-
ary patch ΓT (thick line), its complementary boundary patch ΓN (dashed line), and
the interface ΓI (dots) between the patches.

We provide an equivalent characterization of admissible boundary partitions.
Assume that ΓT , ΓI , and ΓN are subsets of ∂Ω, such that the following condition
is satis�ed: for any x ∈ ΓI , we can pick a closed neighborhood Ux ⊂ Rn of x
and a bi-Lipschitz function ϕx : Ux → [−1, 1]n such that (VI.4) is satis�ed and we
additionally have

ϕx(ΓT ∩ Ux) = [−1, 1]n−2 × [−1, 0)× {0}, (VI.11a)
ϕx(ΓI ∩ Ux) = [−1, 1]n−2 × {0} × {0}, (VI.11b)
ϕx(ΓN ∩ Ux) = [−1, 1]n−2 × (0, 1]× {0}. (VI.11c)

Then ΓT and ΓN are mutually complementary admissible boundary patches with
common boundary ΓI , and the tuple (ΓT ,ΓI ,ΓN) is an admissible boundary parti-
tion.

Remark VI.2.1.

A weakly Lipschitz domain is a locally �at n-dimensional Lipschitz submanifold
of Rn with boundary. In particular, ∂Ω is a locally �at Lipschitz submanifold of
dimension n − 1 without boundary. The tuple (ΓT ,ΓI ,ΓN) being an admissible
boundary partition means that ΓT and ΓN are locally �at Lipschitz submanifolds of
dimension n− 1 of ∂Ω with common boundary ΓI := ∂ΓT = ∂ΓN . In turn, ΓI is a
Lipschitz submanifold of dimension n − 2 without boundary of ∂Ω. Our de�nition
is in accordance with De�nition 3.7 of [99], when Remark 3.2 in that reference is
taken into account. It also complies to the de�nition of Lipschitz manifolds in [134].

Weakly Lipschitz domains and admissible boundary partitions provide the ge-
ometric background to discuss the L2 de Rham complex over a weakly Lipschitz
domain. Even in our geometric setting of low regularity, this de Rham complex
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VI. Weakly Lipschitz Domains

satis�es a Poincaré-Friedrichs inequality, a compact embedding result, and the har-
monic spaces are isomorphic to the homology spaces of the domain (see Chapter VIII
for details). It will be of interest, however, the discuss domains with additional reg-
ularity as a special case. This leads us back the class of strongly Lipschitz domains,
for which a specialized class of boundary partitions is known.

Assume that Ω is a strongly Lipschitz domain and that (ΓT ,ΓI ,ΓN) is an ad-
missible partition of ∂Ω. We call the tuple (Ω,ΓT ,ΓI ,ΓN) a creased domain if
the following assumptions are satis�ed: for every x ∈ ΓI there exists a closed
neighborhood Ux ⊆ Rn of x, positive numbers ε > 0 and h > 0, an isometry
ζ : Ux → [−ε, ε]n−1 × [−h, h] with ζ(x) = 0, and a Lipschitz-continuous function
γ : [−ε, ε]n−1 → [−h, h] such that the conditions (VI.3) hold and additionally there
exists a Lipschitz-continuous function χ : [−ε, ε]n−2 → R with χ(0) = 0 and

ζ (ΓT ∩ Ux) =

{
(y′′, yn−1, 0)

∣∣∣∣ y′′ ∈ [−ε, ε]n−2, yn−1 ∈ [−ε, ε],
yn−1 < χ(y′′)

}
, (VI.12a)

ζ (∂Ω ∩ Ux) =

{
(y′′, yn−1, 0)

∣∣∣∣ y′′ ∈ [−ε, ε]n−2, yn−1 ∈ [−ε, ε],
yn−1 = χ(y′′)

}
, (VI.12b)

ζ (ΓN ∩ Ux) =

{
(y′′, yn−1, 0)

∣∣∣∣ y′′ ∈ [−ε, ε]n−2, yn−1 ∈ [−ε, ε],
yn−1 > χ(y′′)

}
, (VI.12c)

and furthermore there exists a positive number κ > 0 such that

∀(y′′, yn−1) ∈ (−ε, ε)n−2 × (−ε, χ(y′′)) : ∂n−1ζ(y′′, yn−1) ≥ κ,

∀(y′′, yn−1) ∈ (−ε, ε)n−2 × (χ(y′′), ε) : ∂n−1ζ(y′′, yn−1) ≤ κ,

where the derivative is taken almost everywhere.

Remark VI.2.2.

The notion of creased domain was introduced by Brown [41] in studying the well-
posedness of the Poisson problem with mixed boundary conditions in spaces of higher
regularity. It has been applied in context of di�erential forms for Jakab, Mitrea and
Mitrea [113]. A creased domain is obviously not smoothly bounded.

VI.3. Polyhedral Domains

We close this chapter with a discussion of polyhedral domains and show that (in
R3) they are weakly Lipschitz domains. The content of this section is not central to
the remainder of this thesis but contributes additional motivation and context.

A polyhedral domain is an open set Ω ⊆ Rn such that Ω is a n-dimensional
topological manifold with boundary such that Ω is the interior of that manifold,
and such that there exists a simplicial complex T that triangulates Ω.

Remark VI.3.1.

The above de�nition rules out several pathological cases. For example, the slit
domain ΩS := (−1, 1)2 \ [0, 1) × {0} is not a polyhedral domain in our de�nition,
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3. Polyhedral Domains

because Ω is not the interior of Ω. On the other hand, our de�nition of polyhedral
domain captures many other domains of practical interest, such as the crossed bricks
domain ΩCB in Example VI.1.2.

Every polyhedral domain in R2 is a strongly Lipschitz domain, but this is no
longer true in higher dimensions. Instead, a weaker statement holds: every polyhe-
dral domain in R3 is a weakly Lipschitz domain.

Theorem VI.3.2.

Let Ω ⊆ R3 be a bounded polyhedral domain. Then Ω is a weakly Lipschitz domain.

Proof. To prove the statement, we need to �nd for each x ∈ ∂Ω a compact neigh-
borhood Ux ⊆ R3 of x and a bi-Lipschitz mapping ϕx : Ux → [−1, 1]3 such that
ϕx(x) = 0 and the conditions (VI.4) in the de�nition of weakly Lipschitz domains
are satis�ed. Since Ω is bounded and polyhedral, there exists a �nite simplicial
complex T that triangulates Ω.

Consider �rst the case that x is not a vertex of T . Then x is either contained in
the interior of a triangular boundary face of T , or in the interior of an edge between
two adjacent boundary triangles of T . In both cases, we may choose Ux := Br(x)
for r > 0 small enough, and ϕx : Ux → [−1, 1]3 is easily constructed.

It remains to consider the case that x is a vertex. Let r > 0 be so small that
Br(x) intersects T ∈ T 3 if and only if x ∈ T . We observe that ∂Br(x) ∩ ∂Ω is
a simple closed curve in ∂Br(x) composed of �nitely many spherical arcs. Indeed,
∂Br(x)∩Ω has only one connected component and every point in ∂Br(x)∩ ∂Ω is in
the intersection of at most two triangular faces of T . Hence ∂Br(x) ∩ ∂Ω is locally
�at in the sense of [134, p.100]

By the Schoen�ies theorem in the Lipschitz category (see Theorem 7.8 of [134]),
there exists a bi-Lipschitz mapping

ϕ0
x : ∂Br(x)→ ∂B1(0) ⊂ R3

which maps ∂Br(x) ∩ ∂Ω onto ∂B1(0) ∩ {x ∈ R3 | x3 = 0}. By radial continuation,
we extend this to a bi-Lipschitz mapping

ϕIx : Br(x)→ B1(0) ⊂ R3

which maps Br(x)∩Ω onto B1(0)∩{x ∈ R3 | x3 < 0} and which satis�es ϕIx(x) = 0.
Moreover, there exists a bi-Lipschitz mapping

ϕII : B1(0)→ [−1, 1]3

which maps B1(0)∩{x ∈ R3 | x3 < 0} onto [−1, 1]2×[−1, 0) and satis�es ϕII(0) = 0.
Speci�cally, we may set ϕII(0) = 0 and

ϕII(y) := ‖y‖−1
`2 ‖y‖`∞y, y ∈ B1(0) \ {0}.

Since all norms on R3 are equivalent, ϕII is a bi-Lipschitz mapping from the unit
ball in the Euclidean norm to the unit ball in the `∞ norm. Eventually, we may pick

Ux := Br(x), ϕx := ϕIIϕIx.

The proof is complete.
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VI. Weakly Lipschitz Domains

Remark VI.3.3.

One may conjecture that Theorem VI.3.2 can be generalized to higher-dimensional
polyhedral domains, but we make no attempt at a proof here. The preceding proof
critically relied on the generalized Schoen�ies theorem in the Lipschitz category,
which has been considered �rst in the topological category (see [40, 61, 182]). Gen-
eralizing this technique requires the discussion of spherical triangulations, which are
beyond the scope of this thesis.
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VII. Smoothed Projections

In previous chapters we have explored spaces of �nite element di�erential forms over
triangulations and Sobolev spaces of di�erential forms over domains. In this chapter
we begin connecting these di�erent �elds of theory and develop a concept central to
�nite element exterior calculus: smoothed projections. These are projections from
Sobolev de Rham complexes onto �nite element de Rham complexes that commute
with the exterior derivative and that satisfy bounds uniform in the discretization
parameters.

The precise role of the smoothed projections in instantiating the abstract Galerkin
theory of Hilbert complexes will be described in the next chapter; our main task
in this chapter is their construction alone. We draw inspiration from earlier pub-
lications on smoothed projections ([9, 58]) but we also put considerable e�ort into
extending the scope of applications.

One innovation of this thesis is that we address the Hodge Laplace equation over
weakly Lipschitz domains. As a motivation, let us �x a bounded weakly Lipschitz
domain Ω ⊆ Rn. When f ∈ L2(Ω), then the weak formulation of the Poisson
problem with right-hand side f is to �nd u ∈ H1(Ω) such that∫

Ω

gradu · grad v dx =

∫
Ω

fv dx, v ∈ H1(Ω).

The well-posedness of this problem, up to constant functions, is easily proven with
the Poincaré inequality, and the Rellich-Kondrachov theorem follows with a partition
of unity and locally �attening the boundary. As for the numerical analysis, there is
no di�culty in showing the well-posedness of the primal �nite element method for
the Poisson equation. But proving the well-posedness of the mixed �nite element
method for the Poisson equation using a commuting projection (as in �nite element
exterior calculus) is not as trivial: after all, commuting projections have only been
studied over strongly Lipschitz domains in the literature.

In order to generalize the existent literature on �nite element exterior calculus
we therefore need a smoothed projection over weakly Lipschitz domains. This is not
entirely trivial because the original construction in [9] (see also [160]) for strongly
Lipschitz domains utilized a transversal unit vector �eld along the boundary. Such a
construction is not available for weakly Lipschitz domains, and hence di�erent tools
from Lipschitz topology are used in this chapter.

Another innovation of thesis is that we address the numerical analysis of the
Hodge Laplace equation when mixed boundary conditions are imposed. Here, we
speak of mixed boundary conditions when essential boundary conditions are imposed
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VII. Smoothed Projections

on one part of the boundary, while natural boundary conditions are imposed on
the complementary boundary part. Special cases are the Poisson equation with
mixed Dirichlet and Neumann boundary conditions [148] and the vector Laplace
equation with mixed tangential and normal boundary conditions [89]. It is known
in the theory of partial di�erential equations that the Hodge Laplace equation with
mixed boundary conditions arises from Sobolev de Rham complexes with partial
boundary conditions [99, 113]. These are composed of spaces of Sobolev di�erential
forms in which boundary conditions are imposed only on a part of the boundary
(corresponding to the essential boundary conditions).

Mixed boundary conditions for partial di�erential equations in vector analysis
are a non-trivial topic, and even more so in numerical analysis. For an overview,
we start with the Poisson problem with mixed boundary conditions. Suppose for
simplicity that Ω is a bounded strongly Lipschitz domain with outward normal �eld
~n along ∂Ω. We assume that ΓD ⊆ ∂Ω is an admissible boundary patch and that
ΓN is its complementary boundary patch. Given a function f , the Poisson problem
with mixed boundary conditions is �nding the solution u of

−∆u = f, u|ΓD = 0, ∇u|ΓN · ~n = 0. (VII.1)

Here, we impose a homogeneous Dirichlet boundary condition along ΓD and a ho-
mogeneous Neumann boundary condition along ΓN . If f ∈ L2(Ω), then a weak
formulation characterizes the solution as the unique minimizer of the energy

J (u) :=
1

2

∫
Ω

| gradu|2 dx−
∫

Ω

fu dx (VII.2)

overH1(Ω,ΓD), the subspace ofH1(Ω) whose members satisfy the (essential) Dirich-
let boundary condition along ΓD. The well-posedness of this variational problem
follows by a Friedrichs inequality with partial boundary conditions [148]. More-
over, the compactness of the embedding H1(Ω,ΓD) → L2(Ω) is crucial in proving
the compactness of the solution operator. A typical �nite element method seeks a
discrete approximation of u by minimizing J over a space of Lagrange elements in
H1(Ω,ΓD). This Galerkin method is standard in the literature [32]. But still we can-
not approach the Poisson problem with mixed boundary conditions by the current
means of �nite element exterior calculus due to the lack of a smoothed projection.

The natural generalization to vector-valued problems in three dimensions is given
by the vector Laplace equation with mixed boundary conditions. This equation
appears in electromagnetism or �uid dynamics. The analysis of this vector-valued
partial di�erential equation, however, is considerably more complex. Given the
vector �eld f , we seek a vector �eld u that solves

curl curl u− grad div u = f (VII.3)

over the domain Ω. Moreover, we assume that ΓT and ΓN are mutually complemen-
tary admissible boundary patches of Ω. The boundary conditions on u are

u|ΓT × ~n = 0, (curl u)|ΓT · ~n = 0, u|ΓN · ~n = 0, (div u)|ΓN = 0. (VII.4)

112



Here we impose homogeneous tangential boundary conditions on u along a boundary
part ΓT , and homogeneous normal boundary conditions on u along the complemen-
tary boundary part ΓN . When f ∈ L2(Ω,R3), then a variational formulation seeks
the solution by minimizing the energy functional

J (u) :=
1

2

∫
Ω

| div u|2 + | curl u|2 dx−
∫

Ω

f · u dx (VII.5)

over the space H(div,Ω,ΓN) ∩H(curl,Ω,ΓT ). Here H(div,Ω,ΓN) is the subspace
of H(div,Ω) satisfying normal boundary conditions along ΓN , and H(curl,Ω,ΓT ) is
the subspace of H(curl,Ω) satisfying tangential boundary conditions along ΓT .

The additional complexity in comparison to the scalar-valued case begins with
the correct de�nition of tangential and normal boundary conditions in a setting of
low regularity [43, 44, 99, 176, 177]. When non-mixed boundary conditions are im-
posed, i.e. when either ΓT = ∅ or ΓT = ∂Ω, then Rellich-type compact embeddings
H(div,Ω,ΓN) ∩ H(curl,Ω,ΓT ) → L2(Ω) and vector-valued Poincaré-Friedrichs in-
equalities have been known for a long time [64, 151, 175, 181]. Mixed boundary
conditions in vector analysis, however, have only recently been addressed systemat-
ically [6, 15, 114, 115, 125].

Additional di�culties arise in numerical analysis. Minimizing (VII.5) over a
�nite element subspace of H(div,Ω,ΓN) ∩ H(curl,Ω,ΓT ) generally does not lead
to a consistent �nite element method [11, 62]. But mixed �nite element methods,
which introduce either div u or curl u as auxiliary variables, have been studied with
great success [30, 68, 109, 145]. Mixed boundary conditions for the vector Laplace
equation, however, have not yet received much attention in numerical analysis (but
see [105, 159]). In a mixed �nite element method for the vector Laplace equation
with mixed boundary conditions we may only incorporate the essential boundary
conditions along ΓT into the �nite element space.

In Chapter VIII we attend particularly to a phenomenon that signi�cantly a�ects
the theoretical and numerical analysis of the vector Laplace equation but remains
absent in the scalar-valued theory: the presence of non-trivial harmonic vector �elds
in H(div,Ω,ΓN) ∩H(curl,Ω,ΓT ). For a motivational example, let H(Ω,ΓT ,ΓN) be
the subspace of H(div,Ω,ΓN) ∩H(curl,Ω,ΓT ) whose members have vanishing curl
and vanishing divergence. This space has physical relevance; in �uid dynamics,
for example, those vector �elds describe the incompressible irrotational �ows that
satisfy given boundary conditions. In the case of non-mixed boundary conditions,
their dimension corresponds to topological properties of the domain [138], and in
particular that dimension is zero on contractible domains. But in the case of mixed
boundary conditions, this dimension depends on the topology of both the domain
Ω and the boundary part ΓT . Thus H(Ω,ΓT ,ΓN) may have positive dimension if
ΓT has a su�ciently complicated topology even if Ω itself is contractible [99, 124].
This dimension can be calculated exactly from a given triangulation of Ω and ΓT .
In a �nite element method, the subspace H(Ω,ΓT ,ΓN) must be approximated by
discrete harmonic �elds, i.e. the kernel of the �nite element vector Laplacian.

It is instructive to study these partial di�erential equations in a uni�ed manner
using the calculus of di�erential forms. Both the Poisson problem and the vector
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VII. Smoothed Projections

Laplace equation with mixed boundary conditions are special cases of the Hodge
Laplace equation with mixed boundary conditions. The Hodge Laplace equation
has been studied extensively over Sobolev spaces of di�erential forms [12, 42, 125,
139, 140, 141, 166, 176, 177]. The case of mixed boundary conditions has been
a recent subject of research in the �eld of analysis on manifolds [99, 113]. As a
theoretical basis, one studies de Rham complexes with partial boundary conditions,

. . .
dk−1

−−−→ HΛk(Ω,ΓT )
dk−−−→ HΛk+1(Ω,ΓT )

dk+1

−−−→ . . . (VII.6)

The choices ΓT = ∅ and ΓT = ∂Ω correspond to the widely studied special cases
of either imposing no boundary conditions at all or boundary conditions along the
entire boundary, respectively.

Moving towards the numerical analysis of mixed �nite element methods for the
Hodge Laplace equation with mixed boundary conditions, we adopt the framework
of �nite element exterior calculus. The calculus of di�erential forms has attracted
interest as a unifying framework for mixed �nite element methods [8, 9, 11, 72, 87,
109]. The numerical analysis of mixed �nite element methods for the Hodge Laplace
equation can be formulated in terms of �nite element de Rham complexes, which
mimic the di�erential complex (VII.6) on a discrete level. For an outline of the idea,
we let T be a triangulation of Ω that also contains a triangulation U of ΓT . The
construction in Chapter IV provides a �nite element de Rham complex

. . .
dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . . (VII.7)

that features these essential boundary conditions along ΓT . Indeed we have

PΛk(T ,U) = PΛk(T ) ∩HΛk(Ω,ΓT ).

Smoothed projections from Sobolev de Rham complexes onto �nite element
de Rham complexes play a central role in the a priori error analysis within �nite
element exterior calculus. They are the main requirement to enable the abstract
Galerkin theory of Hilbert complexes [11], which produces the stability and con-
vergence of mixed �nite element methods. Previous contributions [9, 58] provided
the corresponding smoothed projections in the special cases of either fully essential,
ΓT = ∂Ω, or fully natural boundary conditions, ΓT = ∂Ω, in �nite element exterior
calculus, but the general case of mixed boundary conditions has remained open. In
order to overcome this limitation we need a smoothed projection that preserves par-
tial boundary conditions. Already in the two special cases ΓT = ∂Ω and ΓT = ∂Ω
one could observe that the smoothed projection depends on the boundary condi-
tions, and hence we expect the same to be true in the treatment of general mixed
boundary conditions.

What we speci�cally need is a projection πk : HΛk(Ω,ΓT ) → PΛk(T ,U) onto
the �nite element space that satis�es uniform L2 bounds and that commutes with
the di�erential operator. In particular, the following diagram commutes:

. . .
dk−1

−−−→ HΛk(Ω,ΓT )
dk−−−→ HΛk+1(Ω,ΓT )

dk+1

−−−→ . . .

πk

y πk+1

y
. . .

dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .

(VII.8)
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Given such a projection, we obtain a priori convergence results for mixed �nite el-
ement methods [11]. Smoothed projections have been developed in �nite element
exterior calculus [9, 58, 130] for non-mixed boundary conditions.

The agenda of this chapter is to construct such a smoothed projection. In par-
ticular, we prove the following main result.

Theorem.

Let Ω ⊆ Rn be a bounded weakly Lipschitz domain, and let ΓT ⊆ ∂Ω be an ad-
missible boundary patch. Let T be a simplicial triangulation of Ω that contains a
simplicial triangulation U of ΓT , and let (VII.7) be a di�erential complex of �nite ele-
ment spaces of di�erential forms as in Chapter IV with essential boundary conditions
along ΓT . Then there exist bounded linear projections πk : L2Λk(Ω) → PΛk(T ,U)
such that the following diagram commutes:

HΛ0(Ω,ΓT )
d0

−−−→ HΛ1(Ω,ΓT )
d1

−−−→ · · · dn−1

−−−→ HΛn(Ω,ΓT )

π0

y π1

y πn

y
PΛ0(T ,U)

d0

−−−→ PΛ1(T ,U)
d1

−−−→ · · · dn−1

−−−→ PΛn(T ,U).

(VII.9)

Moreover, πku = u for u ∈ PΛk(T ,U). The L2 operator norm of πk is bounded
uniformly in terms of the maximum polynomial order of (VII.7), the shape measure
of the triangulation, and geometric properties of Ω and ΓT .

The smoothed projection enables the abstract Galerkin theory of Hilbert com-
plexes for the numerical analysis of the Hodge Laplace equation with mixed bound-
ary conditions over weakly Lipschitz domains. This applies to a large class of mixed
�nite element methods. As an immediate consequence, to be elaborated in the
subsequent chapter, the a priori error estimates of �nite element exterior calculus
provide quasi-optimal convergence for mixed �nite element methods for a large class
of Hodge Laplace problems.

Constructing and analyzing such a smoothed projection requires signi�cant tech-
nical e�ort. Even though we largely follow ideas in published literature [9, 58] we in-
troduce signi�cant technical modi�cations. The smoothed projection is constructed
in several stages, which we give an outline of here. Suppose that u ∈ L2Λk(Ω) is a
square-integrable di�erential k-form over Ω.

First, an operator Ek : L2Λk(Ω)→ L2Λk(Ωe) extends u over a neighborhood Ωe

of Ω. The basic idea is extending the di�erential form by re�ection across the bound-
ary. For strongly Lipschitz domains, such a parametrization can be constructed us-
ing the �ow along a smooth vector �eld transversal to the boundary [9, 58], but for
weakly Lipschitz domains such a transversal vector �eld does not necessarily exist.
Instead we obtain the desired parametrized tubular neighborhood via a variant of
the collaring theorem in Lipschitz topology [134]. Furthermore, in order to accom-
modate partial boundary conditions along ΓT , we extend u by zero over a �bulge�
attached to the domain along ΓT . This is inspired by work of Gopalakrishnan and
Qiu [105], who used a similar idea for strongly Lipschitz domains and boundary
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VII. Smoothed Projections

partitions with a piecewise C1-interface. The resulting operator Ek commutes with
the exterior derivative on HΛk(Ω,ΓT ).

Next, we construct a distortion D% : Ωe → Ωe which moves a neighborhood of
the bulge into the latter but which is the identity outside of a small neighborhood
of the bulge. We locally control the amount of distortion via a function %. The
pullback D∗%E

ku of Eku along D% vanishes in a neighborhood of ΓT and commutes
with the exterior derivative.

Subsequently, a molli�cation operator Rk
% : L2Λk(Ωe) → C∞Λk(Ω) smooths the

di�erential form D∗%E
ku to a smooth di�erential form over Ω that vanishes in a

neighborhood of ΓT . This is based on the idea of taking the convolution with a
smooth bump function. In order to guarantee uniform bounds for shape-regular
families of meshes, the molli�cation radius is locally controlled by a function %.
This is similar to [58], but we elaborate the details of the construction and make a
minor correction; see also Remark VII.8.12. We �nd that the molli�ed di�erential
form has well-de�ned degrees of freedom.

The regularized di�erential form has well-de�ned degrees of freedom, and thus
the interpolant IkP : C∞Λk(Ω) → PΛk(T ) can be applied. Since the regularized
di�erential form vanishes near ΓT , the interpolation gives an element of PΛk(T ,U).
In combination, this yields a smoothed interpolant Qk : L2Λk(Ω)→ PΛk(T ,U) that
commutes with the exterior derivative on HΛk(Ω,ΓT ). In making the molli�ca-
tion radius depending on the local mesh size we can prove uniform bounds for the
smoothed interpolant. But Qk is generally not idempotent. We can, however, con-
trol the interpolation error over the �nite element space. To enforce idempotence,
we prove a bound on the interpolation error over the �nite element space and apply
the �Schöberl trick� [159]. If the smoothed interpolant is su�ciently close to the
identity over the �nite element space, then a commuting and uniformly bounded
discrete inverse exists. The composition of this discrete inverse with the smoothed
interpolant gives the desired smoothed projection.

In order to derive the aforementioned interpolation error estimate over the �nite
element space, we call on geometric measure theory [88, 180]. The principle moti-
vation in utilizing geometric measure theory is the low regularity of the boundary,
which requires new techniques in �nite element theory. A key observation, which
seems to be of independent interest, is the identi�cation of the degrees of freedom
as �at chains in the sense of geometric measure theory. The desired estimate of the
interpolation error over the �nite element space is proven eventually with distortion
estimates on �at chains. To the author's best understanding, our results close a gap
in some proofs in the literature; see also Remark VII.8.9.

Most of the literature on commuting projections focuses on the L2 theory (but
see also [56] or [82]). We consider di�erential forms with coe�cients in general Lp

spaces, following [100], which includes the W p,q classes of di�erential forms in par-
ticular.

Commuting projections are a standard tool in �nite element analysis, and the
calculus of di�erential forms has been promoted as a unifying language for �nite ele-
ment methods for problems in vector analysis [109]. A bounded projection operator
that commutes with the exterior derivative up to a controllable error was derived in
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[52]. A bounded commuting projection operator for the de Rham complex without
boundary conditions has been derived in [9] in the case of quasi-uniform triangu-
lations, which was subsequently generalized in [58] to shape-uniform triangulations
and de Rham complexes with full boundary conditions. The existence of a smoothed
projection that respects partial boundary conditions has been an unproven assump-
tion in [28]. Commuting projections have been derived in [56] and [82] with di�erent
methods. We mention the local bounded interpolant in [160], given in the language
of classical vector analysis, as one of the �rst contributions to research on commuting
interpolants and projections. This interpolant was only later generalized to di�er-
ential forms in [72], and a variant of that preserves partial boundary condition was
given in [105]. A commuting projection for spaces with weighted norms that arise
in the numerical analysis of axisymmetric Maxwell's equation was given in [104]. A
local commuting projection was given in [87].

In addition to this research in numerical analysis, we address a topic that is of
purely analytical interest. Speci�cally, we prove that smooth di�erential forms over
a weakly Lipschitz domain Ω which vanish near an admissible boundary patch ΓT are
dense in W p,qΛk(Ω,ΓT ) for p, q ∈ [1,∞). When Ω is a (strongly) Lipschitz domain
and ΓD ⊆ ∂Ω is a suitable boundary patch, then the density of C∞(Ω)∩H1(Ω,ΓD)
in H1(Ω,ΓD) (see [76, 77]) and analogous density result for di�erential forms with
partial boundary conditions over strongly Lipschitz domains (see [113]) have been
available in the literature before. In this chapter we generalize these results to
Sobolev spaces of di�erential forms over weakly Lipschitz domains. Speci�cally, we
prove the following theorem.

Theorem.

Let Ω be a bounded weakly Lipschitz domain and let ΓT be an admissible bound-
ary patch. Then the smooth di�erential k-forms in C∞Λk(Ω) that vanish near ΓT
constitute a dense subset of W p,qΛk(Ω,ΓT ) for all p, q ∈ [1,∞).

VII.1. Extension Operators

For the duration of this entire chapter, we let Ω ⊂ Rn be a bounded weakly
Lipschitz domain and n ≥ 2. Additionally, we assume that ΓT ⊆ ∂Ω is a �xed
admissible boundary patch. The reader may assume ΓT = ∅ in a simpli�ed read-
ing. We let ΓN := ∂Ω \ ΓT denote the complementary boundary patch and we let
ΓI = ΓT ∩ ΓN be the interface between ΓT and ΓN . In other words, (ΓT ,ΓI ,ΓN) is
assumed to be an admissible boundary partition.

In this section we make use of Lipschitz collars in the construction of extension
operators. The basic idea is to re�ect a di�erential form over Ω along the boundary
onto the exterior of Ω. But to accommodate partial boundary conditions, we �rst
extend the di�erential form by zero onto a �bulge� attached at ΓT . The original idea
of re�ection is then applied to the domain with the bulge attached. The resulting
extension operator commutes with the exterior derivative.
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By an application of Theorem VI.1.8, the bounded weakly Lipschitz domain Ω
admits a Lipschitz collar Ψ0. We recall that this is a LIP embedding

Ψ0 : ∂Ω× [−1, 1]→ Rn

such that Ψ0(x, 0) = x for x ∈ ∂Ω and such that

Ψ0 (∂Ω× [−1, 0)) ⊂ Ω, Ψ0 (∂Ω× (0, 1]) ⊂ Ω
c
.

Based on this, we de�ne the auxiliary domains

Υ := Ψ0 (ΓT × (0, 1/2)) , Ωb := Ω ∪ ΓT ∪Υ. (VII.10)

We think of Υ as a bulge attached to the domain Ω along ΓT , which results in the
combined domain Ωb. The following lemma is easily veri�ed.

Lemma VII.1.1.

The domains Υ and Ωb as de�ned above are bounded weakly Lipschitz domains.

Proof. The proof is not very di�cult but we give the technical details. We want to
construct the coordinate charts that �atten the boundaries of Υ and Ωb as in the
de�nition of weakly Lipschitz domains.

Consider x ∈ ΓT . By Lemma VI.1.7 there exists a neighborhood Vx of x in ∂Ω
and a bi-Lipschitz mapping θx : Vx → [−1, 1]n−1 with θx(x) = 0. If x ∈ ΓT , then
we assume without loss of generality that Vx is contained in ΓT . If instead x ∈ ΓI ,
then we assume additionally that Vx and θx satisfy the properties (VI.10) stated in
the de�nition of admissible boundary patches.

For t0 ∈ (−1, 1) and ε > 0 small enough we let

Ux,t0 := Φ0

(
Vx × [t0 − ε, t0 + ε]

)
and de�ne a bi-Lipschitz mapping ϕx,t0 : Ux,t0 → [−1, 1]n by setting

ϕx,t0

(
Φ0(θx(z), t)

)
:=
(
z, (t− t0) /ε

)
.

If x ∈ ΓT , then this easily produces the required �attenings of the boundary for
t = 1

2
and t = 0. If x ∈ ΓI and t ∈ (−1

2
, 1

2
), then the required coordinate chart

is found similarly. In the special case that x ∈ ΓI and t ∈ {−1
2
, 1

2
} we obtain the

desired coordinate chart with another bi-Lipschitz transformation ϕ applied after
ϕx,t0 , where ϕ depends only on t and whether we consider Υ or Ωb. This completes
the construction.

We de�ne the extension operator

Ek
0 : MΛk(Ω)→MΛk(Ωb) u 7→

{
u over Ω,
0 over Υ.

(VII.11)

The properties of Ek
0 are stated in the following lemma.
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1. Extension Operators

Figure VII.1: Domain Ω (gray) with a bulge Υ (shaded) attached. The thick line
is the boundary part ΓN of the original domain, and the contact line between Ω
and Υ is the boundary part ΓT . The thinner lines inside and outside of the domain
indicate the inner and outer boundaries, respectively, of a Lipschitz collar.

Theorem VII.1.2.

We have a bounded linear operator

Ek
0 : LpΛk(Ω)→ LpΛk(Ωb), p ∈ [1,∞].

Moreover, for p, q ∈ [1,∞] we have

u ∈ W p,qΛk(Ω,ΓT ) =⇒ Ek
0u ∈ W p,qΛk(Ωb)

and

dkEk
0u = Ek+1

0 dku, u ∈ W p,qΛk(Ω,ΓT ).

Proof. It is clear that Ek
0 is bounded. That Ek

0 mapsW p,qΛk(Ω,ΓT ) intoW p,qΛk(Ωb)
and commutes with the exterior derivative is easily seen from the de�nition of
W p,qΛk(Ω,ΓT ).

Remark VII.1.3.

It is evident that Ek
0u is generally not a member of W p,qΛk(Ωb) for arbitrary u ∈

W p,qΛk(Ω) unless ΓT = ∅.

We return to the original idea of extending a di�erential form by re�ection along
the boundary. Since Ωb is a bounded weakly Lipschitz domain, we may apply The-
orem VI.1.8 again to obtain a LIP embedding

Ψb : ∂Ωb × [−1, 1]→ Rn

such that Ψb(x, 0) = x for x ∈ ∂Ωb and such that

Ψb

(
∂Ωb × [−1, 0)

)
⊂ Ωb, Ψb

(
∂Ωb × (0, 1]

)
⊂ Rn \ Ωb.
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VII. Smoothed Projections

The Lipschitz collar of Ωb allows us to re�ect points across the boundary. We write

CΩb := Ψb

(
∂Ωb × (−1, 1)

)
, (VII.12)

C−Ωb := Ψb

(
∂Ωb × (−1, 0)

)
, C+Ωb := Ψb

(
∂Ωb × (0, 1)

)
, (VII.13)

Ωe := Ωb ∪ C+Ωb. (VII.14)

The domain CΩb is an open neighborhood of ∂Ω. The domains C−Ωb and C+Ωb

represent the interior and exterior parts of the collar neighborhood CΩb, respectively.
Finally, Ωe is an extension of the domain Ωb. In particular, Ω is compactly contained
in Ωe. Furthermore, in accordance with Theorem VI.1.8 we can assume without loss
of generality that Ωe is a weakly Lipschitz domain.

For every x ∈ CΩb there exist unique x0 ∈ ∂Ωb and t ∈ [−1, 1] such that x =
Ψb(x0, t). Hence we may de�ne a bi-Lipschitz mapping

R : C+Ωb → C−Ωb, Ψb(x, t)→ Ψb(x,−t). (VII.15)

This formalizes the idea of re�ecting a point across the boundary. Using the pullback
along R, we introduce the extension operator

Ek
r : MΛk(Ωb)→MΛk(Ωe), u 7→

{
u over Ωb,

R∗u over C+Ωb.
(VII.16)

We gather some properties of the extension operator Ek
r . For future use, we de�ne

Cb := max

{
Lip

(
R, C+Ωb

)
,Lip

(
R−1, C−Ωb

)}
.

It is easily seen that Cb ≥ 1. We �rst show that Ek
r satis�es local estimates:

Lemma VII.1.4.

Let p ∈ [1,∞]. We have a bounded linear operator

Ek
r : LpΛk(Ωb)→ LpΛk(Ωe), u 7→ Ek

ru.

Moreover, for 0 ≤ s ≤ t ≤ 1 and A ⊆ ∂Ωb closed we have

‖Ek
r u‖LpΛkΨb(A×[s,t]) ≤ C

k+n
p

b ‖u‖LpΛkΨb(A×[−t,−s]), u ∈ LpΛk(Ωb). (VII.17)

Proof. Let p ∈ [1,∞], let A ⊆ ∂Ωb be closed, let 0 ≤ s ≤ t ≤ 1, and let u ∈
LpΛk(Ωb). We apply Lemma V.2.3 to �nd

‖Ek
r u‖LpΛkΨb(A×[s,t]) = ‖R∗u‖LpΛkΨb(A×[s,t])

≤ ‖DR‖kL∞(C+Ωb)‖DR−1‖
n
p

L∞(C−Ωb)
‖u‖LpΛkΨb(A×[−t,−s]).

Hence (VII.17) holds. Setting A× [s, t] = ∂Ωb × [0, 1], we �nd

‖Ek
ru‖LpΛk(Ωe) ≤ ‖u‖LpΛk(Ωb) + ‖Ek

r u‖LpΛk(C+Ωb)

≤ ‖u‖LpΛk(Ωb) + C
k+n

p

b ‖u‖LpΛk(C−Ωb)

≤
(

1 + C
k+n

p

b

)
‖u‖LpΛk(Ωb).

Hence Ek
r is bounded from LpΛk(Ωb) to LpΛk(Ωe).
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We show that Ek
r commutes with the exterior derivative.

Lemma VII.1.5.

Let p, q ∈ [1,∞] and let u ∈ W p,qΛk(Ωb). Then Ek
ru ∈ W p,qΛk(Ωe) with Ek+1

r dku =
dkEk

ru.

Proof. Because Ω is bounded, it su�ces to consider the case p = q = 1. Let us
assume that u ∈ W 1,1Λk(Ωb). We have Ek

ru ∈ L1Λk(Ωe) and Ek+1
r dku ∈ L1Λk+1(Ωe)

by Lemma VII.1.4. To prove that Ek
r u ∈ W 1,1Λk(Ωe) with Ek+1

r dku = dkEk
r u, it

su�ces to show that there exists a covering (Ui)i∈N of Ωe by open subsets Ui ⊆ Ωe

such that Ek
r u|Ui ∈ W 1,1Λk(Ui) and Ek+1

r dku = dkEk
r u over Ui.

From the de�nition of weakly Lipschitz domains we easily see that there exists
a family (θi)i∈N of LIP embeddings θi : (−1, 1)n−1 → ∂Ωb whose images cover ∂Ωb.
We de�ne

ϕi : (−1, 1)n → CΩb, (y, t) 7→ Ψb (θi(y), t) .

These are a family of LIP embeddings whose images Ui := ϕi ((−1, 1)n) cover CΩb.
Together with Ωb we thus have a �nite covering of Ωe.

We recall that Ek
r u|Ωb ∈ W 1,1Λk(Ωb) with Ek+1

r dku = dkEk
r u over Ωb. It remains

to show that Ek
r u|Ui ∈ W 1,1Λk(Ui) and Ek+1

r dku = dkEk
r u over Ui for i ∈ N. We

de�ne

ui := ϕ∗i
(
Ek
r u|Ui

)
, wi := ϕ∗i

(
Ek+1
r dku|Ui

)
.

It su�ces to show ui ∈ W 1,1Λk((−1, 1)n) and dkui = wi over (−1, 1)n. We let

R : (−1, 1)n−1 × (0, 1)→ (−1, 1)n−1 × (−1, 0)

be the re�ection by the n-th coordinate. It is evident that

ui|(−1,1)n−1×(0,1) = R∗ui|(−1,1)n−1×(−1,0)

wi|(−1,1)n−1×(0,1) = R∗wi|(−1,1)n−1×(−1,0) = R∗dkui|(−1,1)n−1×(−1,0).

By Lemma V.3.5 there exists a sequence (uji )j∈N of smooth di�erential k-forms over
(−1, 1)n−1 × (−1, 0) that converge to ui over (−1, 1)n−1 × (−1, 0) in the W 1,1Λk

norm for j → ∞. We let
‖
uji be the extension of uji from (−1, 1)n−1 × (−1, 0) to

(−1, 1)n by pullback along R. Then
‖
uji is a locally integrable di�erential k-form over

(−1, 1)n with locally integrable weak exterior derivative. It is easy to observe that
‖
uji

converges to ui in L1Λk ((−1, 1)n) and dk
‖
uji converges to wi in L

1Λk+1 ((−1, 1)n) for
j →∞. Hence ui ∈ W 1,1Λk ((−1, 1)n) with dkui = wi. The proof is complete.

We can now verify that the extension operator Ek
r has the following properties.

Theorem VII.1.6.

We have bounded linear operators

Ek
r : LpΛk(Ωb)→ LpΛk(Ωe), p ∈ [1,∞].
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For p, q ∈ [1,∞] we have

Ek
r

(
W p,qΛk(Ωb)

)
⊆ W p,qΛk(Ωe),

with

dkEk
ru = Ek+1

r dku, u ∈ W p,qΛk(Ωb).

Proof. This is a combination of Lemma VII.1.4 and Lemma VII.1.5.

Combining these two operators, we introduce

Ek : MΛk(Ω)→MΛk(Ωe), u 7→ Ek
rE

k
0u. (VII.18)

The following theorem summarizes the above observations.

Theorem VII.1.7.

We have a bounded operator

Ek : LpΛk(Ω)→ LpΛk(Ωe), p ∈ [1,∞].

Moreover, for u ∈ LpΛk(Ω) with p ∈ [1,∞] we have

suppEku ∩Υ = ∅.

For p, q ∈ [1,∞] we have a bounded operator

Ek : W p,qΛk(Ω,ΓT )→ W p,qΛk(Ωe), p, q ∈ [1,∞],

such that

dkEku = Ek+1dku, u ∈ W p,qΛk(Ω,ΓT ).

Proof. This is a combination of Theorem VII.1.2 and Theorem VII.1.6.

In the sequel, we will require several local bounds of these extension operators.
This is accomplished with the following lemma.

Lemma VII.1.8.

There exists LE ≥ 1, depending only on Ψb, such that for all p ∈ [1,∞], for all
δ > 0, and all closed sets A ⊂ Ω we have

‖Eku‖LpΛk(Bδ(A)∩Ωe) ≤
(

1 + C
k+n

p

b

)
‖u‖LpΛk(BδLE (A)∩Ω), u ∈ LpΛk(Ωb). (VII.19)

Proof. Let δ ∈ R+
0 , let p ∈ [1,∞], and let A ⊂ Ω be closed. Then

‖Eku‖LpΛk(Bδ(A)∩Ωe) = ‖Ek
rE

k
0u‖LpΛk(Bδ(A)∩Ωe)

≤ ‖Ek
0u‖LpΛk(Bδ(A)∩Ωb) + ‖Ek

rE
k
0u‖LpΛk(Bδ(A)∩C+Ωb)

= ‖u‖LpΛk(Bδ(A)∩Ω) + ‖Ek
rE

k
0u‖LpΛk(Bδ(A)∩C+Ωb).
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We set G+ := Bδ(A) ∩ C+Ωb and G− = R(G+). Using Lemma VII.1.4, we �nd

‖Ek
rE

k
0u‖LpΛk(G+) ≤ C

k+n
p

b ‖Ek
0u‖LpΛk(G−) = C

k+n
p

b ‖u‖LpΛk(G−∩Ω).

Let x ∈ Bδ(A) ∩ C+Ωb be �xed but arbitrary. There exist z ∈ A with ‖z − x‖ ≤ δ,
and y ∈ ∂Ωb on the straight line segment between x and z. Since x ∈ C+Ωb, there
exist x0 ∈ ∂Ωb and t ∈ [0, 1] with x = Ψb(x0, t). It is easily seen that

‖R(x)− x‖ = ‖Ψb(x,−t)−Ψb(x, t)‖ ≤ 2 Lip(Ψb) · t

and

|t| ≤
√
‖x0 − y‖2 + |t|2 ≤ Lip(Ψ−1

b ) ‖Ψ(x0, t)−Ψ(y, 0)‖ = Lip(Ψ−1
b ) ‖x− y‖ .

We then �nd that

‖R(x)− z‖ ≤ ‖R(x)− x‖+ ‖x− z‖
≤ 2 Lip(Ψb) Lip(Ψ−1

b )‖x− y‖+ ‖x− z‖
≤
(
1 + 2 · Lip(Ψb) Lip(Ψ−1

b )
)
δ.

We choose LE :=
(
1 + 2 Lip(Ψb) Lip(Ψ−1

b )
)
. Hence G− ∩ Ω ⊆ BLEδ(A) ∩ Ω. This

completes the proof.

Remark VII.1.9.

In the special case that ΓT = ∅, we have Υ = ∅ and Ω = Ωb. The operator Ek
0 does

not enter the construction then. On the other hand, in the special case ΓT = ∂Ω, the
set Υ wraps around the whole of Ω. The construction of Ek can then be simpli�ed
as follows: We set Ωe = Rn and pick Ek

r as the trivial extension onto Rn.

Remark VII.1.10.

Whenever we say in the sequel that a quantity depends only on Ω, then the quantity
may depend also on the arbitrary choice of Lipschitz collars at several points. This
use of terminology will simplify the exposition in the sequel.

VII.2. A Distortion Theorem

In this section we discuss a geometric result that enters the construction of the
smoothed projection and is also of independent interest. The basic idea is as follows:
given a domain Υ ⊆ Rn, we search for a homeomorphism of Rn that moves ∂Υ into
Υ and that is the identity outside of a neighborhood of ∂Υ. Moreover, we want
to take the metric structure of Rn into account: the homeomorphism should be a
lipeomorphism, and we want to control locally how far the homeomorphism moves
the boundary into the domain. Speci�cally, we prove the following result.

Theorem VII.2.1.

Let Υ ⊆ Rn be a bounded weakly Lipschitz domain. Then there exist constants
δD > 0 and LD ≥ 1, depending only on Υ, with the following signi�cance. For any
non-negative function % : Rn → R+

0 satisfying

Lip(%,Rn) < δD, %max(Rn) < δD, (VII.20)
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there exists a bi-Lipschitz mapping D% : Rn → Rn with the following properties.
We have

Lip (D%) ≤ LD (1 + Lip(%)) , Lip
(
D−1
%

)
≤ LD (1 + Lip(%)) . (VII.21a)

We have

D%(Υ) ⊆ Υ. (VII.21b)

For all x ∈ Rn we have

‖x−D%(x)‖ ≤ LD%(x). (VII.21c)

For every x ∈ Rn we have x = D%(x) if

dist (x, ∂Υ) ≥ LD%(x). (VII.21d)

For all x ∈ ∂Υ we have

D%

(
B%(x)/LD(x)

)
⊆ Υ. (VII.21e)

Remark VII.2.2.

We discuss the meaning and application of Theorem VII.2.1 before we give the
proof. The mapping D% is a distortion of Rn which moves Υ into itself. The
function % controls the amount of distortion near Υ. The distortion D% contracts a
neighborhood of Υ into the domain.

Speci�cally, we interpret the properties (VII.21) in the following manner. Prop-
erty (VII.21b) formalizes that the distortion moves ∂Υ into Υ; in particular, Υ
is mapped into itself. Property (VII.21d) formalizes that the homeomorphism is
the identity outside of a neighborhood of ∂Υ. By Property (VII.21c) the amount
of distortion is locally bounded by %, and Property (VII.21e) formalizes that the
distortion is proportional to % near the boundary.

Remark VII.2.3.

In our application, Υ will be the bulge attached to the domain Ω, as introduced in
the previous section. Moreover we will set % := ερ, where ρ : Rn → R+

0 will be a
non-negative Lipschitz continuous function that indicates the local mesh size of a
triangulation of Ω, and where ε > 0 is a parameter to be chosen so small that the
conditions of Theorem VII.2.1 are satis�ed. If a di�erential form vanishes over Υ,
then the pullback along D% will vanish in a neighborhood of Υ.

Proof of Theorem VII.2.1. Since Υ ⊆ Rn is a bounded weakly Lipschitz domain, we
may apply Theorem VI.1.8 to deduce the existence of a LIP embedding

Ξ : ∂Υ× [−1, 1]→ Rn

such that Ξ(x, 0) = x for x ∈ ∂Υ and such that Ξ (∂Υ, [0, 1]) ⊂ Υ. In particular,
there exist constants cΞ, CΞ > 0 such that

‖Ξ(x1, t1)− Ξ(x2, t2)‖ ≤ CΞ

√
‖x1 − x2‖2 + |t1 − t2|2,√

‖x1 − x2‖2 + |t1 − t2|2 ≤ cΞ ‖Ξ(x1, t1)− Ξ(x2, t2)‖
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2. A Distortion Theorem

for x1, x2 ∈ ∂Υ and t1, t2 ∈ [−1, 1]. We note in particular that

c−1
Ξ Lip(%) ≤ Lip (%Ξ) ≤ CΞ Lip(%).

For α ∈ [0, 1/5] we consider the parametrized mappings

ζα : [−1, 1]→ [−1, 1], t 7→
∫ t

−1

1 + χ[−2α,α] −
2

3
χ[α,3α] dλ− 1,

ζ−1
α : [−1, 1]→ [−1, 1], t 7→

∫ s

−1

1− 2

3
χ[−2α,α] + 2χ[3α,4α] dλ− 1,

where χI denotes the indicator function of the interval I ⊆ [−1, 1]. As the notation
already suggests, these two mappings are mutually inverse for α �xed. We easily see
that they are strictly monotonically increasing, and that their Lipschitz constants
are uniformly bounded for α ∈ [0, 1/5]. In particular ζα and ζ−1

α are bi-Lipschitz.
Moreover, for α ∈ [0, 1/5] we observe that

ζα(t) = ζ−1
α (t) = t, t /∈ [−2α, 4α], (VII.22)

ζα ([−α, α]) = [α, 3α]. (VII.23)

We now write ζ(t;α) = ζα(t) and ζ−1(t;α) = ζ−1
α (t) for (t, α) ∈ [−1, 1] × [0, 1/5].

Assume from now on that

%max (Rn) < 1/5, Lip(%,Rn) < min
{

1,Lip(Ξ)−1
}
. (VII.24)

The latter implies that Lip(%Ξ) < 1. We de�ne homeomorphisms

D% : Rn → Rn, D−1
% : Rn → Rn,

in the following manner. Assume that x ∈ Rn. If there exist x0 ∈ ∂Υ and t ∈ [−1, 1]
such that x = Ξ(x0, t), then we set

D%(x) := Ξ (x0, t
′) , t′ := ζ

(
t;
%(x0)

8

)
, (VII.25)

D−1
% (x) := Ξ (x0, t

′′) , t′′ := ζ−1

(
t;
%(x0)

8

)
. (VII.26)

Otherwise, we set D%(x) := x. It follows from the construction that D% and D−1
%

are bi-Lipschitz and mutually inverse. In particular, (VII.21a) is implied by

Lip (D%) ≤ 1 +
CΞ

cξ
(1 + Lip (ζ) Lip(%)) ,

Lip
(
D−1
%

)
≤ 1 +

CΞ

cξ

(
1 + Lip

(
ζ−1
)

Lip(%)
)
.

From the construction we immediately see that (VII.21b) holds, since D% maps
Ξ (∂Υ, [0, 1]) into itself. Moreover, D% and D−1

% act like the identity outside of
Ξ (∂Υ, [−1, 1]).
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VII. Smoothed Projections

Let us assume for the remainder of this proof that x = Ξ(x0, t) for x0 ∈ ∂Υ and
t ∈ [−1, 1]. Using (VII.22) and (VII.25), we see thatD%(x) 6= x implies |t| ≤ %(x0)/2.
Thus

|%(x0)− %(x)| = |%(Ξ(x0, 0))− %(Ξ(x0, t))| ≤
Lip(%Ξ)%(x0)

2
≤ %(x0)

2
.

This shows that %(x0) ≤ 2%(x). By the de�nition of ζ and D% we then see

‖x−D%(x)‖ ≤ Lip(Ξ)

∣∣∣∣t− ζ (t; %(x0)

8

)∣∣∣∣ ≤ 6

8
Lip(Ξ)%(x0) ≤ 3

2
Lip(Ξ)%(x),

proving (VII.21c). Furthermore, using (VII.22) we note that x 6= D%(x) implies

dist (x, ∂Υ) ≤ ‖x− x0‖ ≤ Lip(Ξ)|t| ≤ Lip(Ξ)

2
%(x0) ≤ Lip(Ξ)%(x).

Conversely, this means that x = D%(x) is implied by

dist(x, ∂Υ) ≥ Lip(Ξ)%(x),

which proves (VII.21d).
It remains to prove (VII.21e). Let x0 ∈ ∂Υ and de�ne A ⊆ ∂Υ× [−1, 1] by

A :=
(
B%(x0)/8(x0) ∩ ∂Υ

)
×
(
− 7

64
%(x0),

7

64
%(x0)

)
.

If y ∈ ∂Υ with |x0 − y| ≤ %(x0)/8, then |%(x0) − %(y)| ≤ %(x0)/8 since we assume
Lip(%) < 1. In particular, %(y) ≥ 7%(x0)/8 follows. Via (VII.22) we thus �nd
D%(Ξ(A)) ⊆ Υ. Furthermore, we observe that A contains a ball around x0 of
radius 7%(x0)/64 in ∂Υ × [−1, 1]. Hence Ξ(A) contains a ball around x0 of radius
7c−1

Ξ %(x0)/64. This shows (VII.21e), and completes the proof.

VII.3. Smoothing Operators

In this section we construct a smoothing operator for di�erential forms on weakly
Lipschitz domains. We de�ne the smoothed di�erential form at each point by aver-
aging the original di�erential form in a small neighborhood of that point. A technical
di�erence to the classical molli�cation operator is that we let the molli�cation radius
vary across the domain.

We let % : Ωe → R+ be a non-negative smooth function that assumes a positive
minimum over Ω. We introduce the mapping

Φ% : Ω×B1(0)→ Rn, (x, y) 7→ x+ %(x)y. (VII.27)

When we regard the second variable as a parameter, then we have a family of
mappings

Φ%,y : Ω→ Rn, x 7→ Φ%(x, y).
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3. Smoothing Operators

Here and in the sequel, we let B%(A) for any A ⊆ Ωe be de�ned as the union of the
balls B%(x)(x) for x ∈ A.

We study some properties of Φ%,y. When y ∈ B1(0) and x1, x2 ∈ Ω, then

‖Φ%,y(x1)− Φ%,y(x2)‖ ≤ (1 + Lip(%)) ‖x1 − x2‖ . (VII.28)

Moreover, for any y ∈ B1(0) and x ∈ Ω we have

‖Φ%,y(x)− x‖ ≤ %(x). (VII.29)

The latter inequality implies that for % small enough we have

Φ%,y

(
Ω
)
⊆ Ωe. (VII.30)

Under the additional condition that Lip(%) < 1/2, we observe for y ∈ B1(0) and
x1, x2 ∈ Ω that

‖Φ%,y(x1)− Φ%,y(x1)‖ = ‖x1 − x2 + (%(x1)− %(x2)) y‖

≥
∣∣∣ ‖x1 − x2‖ − Lip(%) ‖x1 − x2‖

∣∣∣ ≥ 1

2
‖x1 − x2‖ .

(VII.31)

We conclude that for % and Lip(%) small enough, the mapping

Φ%,y : Ω→ Ωe

is a LIP embedding for every y ∈ B1(0).

Remark VII.3.1.

Similarly as in Remark VII.2.3, we have % = ερ in applications, where ρ is a �xed
smooth function with positive minimum over Ω and ε > 0 is a parameter to be
chosen small enough.

The smoothing operator in this section uses the standard molli�er µ as a building
block and can be seen as a generalization of the classical smoothing by convolution.
For every u ∈ L1Λk(Ωe) we de�ne

Rk
%u|x :=

∫
Rn
µ(y)(Φ∗%,yu)|xdy, x ∈ Ω. (VII.32)

We �rst show that Rk
% maps into C∞Λk(Ω) and satis�es a local bound. In particular,

it is a bounded mapping into CΛk(Ω) with respect to the maximum norm.

Lemma VII.3.2.

Suppose that we have LIP embeddings Φ%,y : Ω→ Ωe for all y ∈ B1(0). The operator

Rk
% : LpΛk(Ωe)→ C∞Λk(Ω), p ∈ [1,∞],

is well-de�ned and linear. Moreover, for every p ∈ [1,∞], u ∈ LpΛk(Ωe), and
measurable set A ⊆ Ω we have

‖Rk
%u‖CΛk(A) ≤ voln(B1(0))

(1 + Lip(%))k

%inf(A)
n
p

‖u‖LpΛk(Φ%(A,B1)). (VII.33)
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VII. Smoothed Projections

Proof. Let p ∈ [1,∞] and let u ∈ LpΛk(Ωe). Under the assumptions on % we
have a LIP embedding Φ%,y : Ω → Ωe for every y ∈ B1(0). Hence µ(y)(Φ∗%,yu)|x is
measurable in y for every x ∈ Ω, and the integral (VII.32) is well-de�ned. Using
elementary results, we �nd for every x ∈ Ω that∣∣Rk

%u
∣∣
|x ≤

∫
Rn
µ(y) ‖Dx Φ%,y‖k2,2|x |u|Φ%,y(x)

≤ Lip(Φ%,y,Ω)k
∫
Rn
µ(y)|u|Φ%,y(x)

≤ (1 + Lip(%))k
∫
Rn
µ(y)|u|Φ%,y(x).

A substitution of variables and Hölder's inequality give∫
Rn
µ(y)|u|x+%(x)y dy =

∫
Rn

µ(%(x)−1y)

%(x)n
∣∣u (x+ y)

∣∣dy ≤ voln(B1(0))

%(x)
n
p

‖u‖Lp(B%(x)(x)).

These estimates in combination yield (VII.33). In order to prove the smoothness of
Rk
%u over Ω, we �rst change the form of the integral. By a substitution of variables

we �nd for x ∈ Ωe that

Rk
%u|x =

∑
σ∈Σ(1:k,0:n)

∫
Rn
µ(y)uσ (x+ %(x)y) (Φ∗%,ydx

σ)|xdy

=
∑

σ∈Σ(1:k,0:n)

∫
Rn
µ%(x) (y − x)uσ(y)

(
Φ∗%,%(x)−1(y−x)dx

σ
)
|x

dy.

We know that uσ ∈ L1(Ω), that % and Φ% are smooth, and that Ω is compact. The
desired smoothness of Rk

%u over Ω is now a simple consequence of the dominated
convergence theorem. Furthermore, Rk

%u ∈ C∞Λk(Ω), as can easily be seen when
picking x in a su�ciently small open neighborhood of Ω.

Lemma VII.3.3.

Suppose that Φ%,y : Ω→ Ωe is a LIP embedding for all y ∈ B1(0). We then have

dkRk
%u = Rk+1

% dku, u ∈ W p,qΛk(Ωe), p, q ∈ [1,∞].

Proof. Let v ∈ C∞c Λn−k−1(Ω). By Fubini's theorem we have∫
Ω

Rk
%u ∧ dn−k−1v =

∫
Ω

∫
Rn
µ(y)Φ∗%,yu dy ∧ dn−k−1v

=

∫
Ω

∫
Rn
µ(y)Φ∗%,yu ∧ dn−k−1v dy

=

∫
Rn
µ(y)

∫
Ω

Φ∗%,yu ∧ dn−k−1v dy,

and similarly∫
Ω

Rk
%d

ku ∧ v =

∫
Ω

∫
Rn
µ(y)Φ∗%,yd

ku dy ∧ v =

∫
Rn
µ(y)

∫
Ω

Φ∗%,yd
ku ∧ v dy.
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4. Commuting Approximation

Since Φ%,y : Ω→ Ωe is a LIP embedding for every y ∈ B1(0), we obtain∫
Ω

Φ∗%,yu ∧ dn−k−1v = (−1)k+1

∫
Ω

dkΦ∗%,yu ∧ v = (−1)k+1

∫
Ω

Φ∗%,yd
ku ∧ v.

By de�nition, dkRk
%u = Rk+1

% dku. The proof is complete.

VII.4. Commuting Approximation

We are now in the position to combine the extension operator of Section VII.1,
the distortion operator of Section VII.2, and smoothing operator of the preceding
section. We let % ∈ C∞(Ωe) be a smooth function whose exact properties we will
stipulate soon and let δ > 0 be a small parameter to be determined below. We then
de�ne

Mk
% : LpΛk(Ω)→ C∞Λk(Ω), u 7→ Rk

δ%D
∗
%E

ku, p ∈ [1,∞]. (VII.34)

The properties of Mk
% are summarized as follows.

Theorem VII.4.1.

Assume that % satis�es the conditions of Lemma VII.3.2 and Theorem VII.2.1 ap-
plied to Υ, and that D% maps Ωe into itself. Assume also that δ ∈ (0, 1) with
δ−1 > 2LD. Then Mk

% is well-de�ned. Moreover, there exist CM
n,k,p > 0 and LM > 0,

not depending on %, such that for all measurable A ⊆ Ω we have

‖Mk
% u‖CΛk(A) ≤ CM

n,k,p

(1 + Lip(%))k+n
p

%inf(A)
n
p

‖u‖LpΛk(BLM (1+Lip(%))%sup(A)(A)∩Ω). (VII.35)

Additionally, if p, q ∈ [1,∞] and u ∈ W p,qΛk(Ω,ΓT ) then

Mk+1
% dku = dkMk

% u, (VII.36)

and Mk
% u vanishes in a neighborhood of ΓT .

Proof. We combine Theorem VII.1.7, Theorem VII.2.1 together with (V.21), and
Theorem VII.3.2. We then have a linear mapping

Rk
δ%D

∗
%E

k : LpΛk(Ω)→ C∞Λk(Ω), p ∈ [1,∞].

By the same token we immediately deduce (VII.36).
Next we prove (VII.35). Assume that u ∈ LpΛk(Ω) and that A ⊆ Ω is measur-

able. Via Theorem VII.3.2 we �nd

‖Rk
δ%D

∗
%E

ku‖CΛk(A) ≤ voln(B1(0))
(1 + Lip(%))k

(δ%inf(A))
n
p

‖D∗%Eku‖LpΛk(Φδ%(A,B1)),

By Theorem VII.2.1 and Lemma V.2.3 we have

‖D∗%Eku‖LpΛk(Φδ%(A,B1)) ≤ L
k+n

p

D (1 + Lip(%))k+n
p ‖Eku‖LpΛk(D%Φδ%(A,B1)).
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VII. Smoothed Projections

For x ∈ A and y ∈ Bδ%(x)(x) we �nd

|%(y)− %(x)| ≤ Lip(%)‖y − x‖ ≤ δ Lip(%)%(x).

By (VII.21c) we then observe

‖D%(y)− y‖ ≤ LD%(y) ≤ LD (%(x) + δ Lip(%)%(x)) .

Consequently,

D%Φδ%(A,B1) ⊆ ΦLD(1+δ Lip(%))%(A,B1) ∩ Ωe ⊆ BLD(1+δ Lip(%))%sup(A)(A) ∩ Ωe.

Applying Lemma VII.1.8, we thus obtain

‖Eku‖LpΛk(D%Φδ%(A,B1)) ≤
(

1 + C
k+n

p

b

)
‖u‖LpΛk(BLELD(1+δ Lip(%))%sup(A)(A)∩Ω).

This provides the desired local estimate.
We consider the special case A = BLip(%)−1%(x)(x) ∩ Ω for x ∈ ΓT . We have

δ%(y) ≤ δ%(x) + δ Lip(%)‖y − x‖ ≤ 2δ%(x)

for all y ∈ A, and thus

Bδ%sup(A) (A) ⊆ B2δ%(x)(x).

In particular

‖Rk
δ%D

∗
%E

ku‖CΛk(A) ≤ voln(B1(0))
(1 + δ Lip(%))k

(δ%inf(A))
n
p

‖D∗%Eku‖LpΛk(B2δ%(x)(x))

and

‖D∗%Eku‖LpΛk(B2δ%(x)(x)) ≤ L
k+n

p

D (1 + δ Lip(%))k+n
p ‖Eku‖LpΛk(D%B2δ%(x)(x)).

We now assume 2δ < 1/LD. In combination with Theorem VII.2.1 we conclude

D%B2δ%(x)(x) ⊆ Υ.

HenceMk
% u vanishes in an open neighborhood of ΓT in Ω. The proof is complete.

Remark VII.4.2.

The proof of Theorem VII.4.1 shows that LM ≤ LDLE and that

CM
n,k,p ≤ voln(B1(0))δ−

n
pL

k+n
p

D

(
1 + C

k+n
p

b

)
.

In the remainder of this chapter, we instantiateMk
% with a speci�c choice of % for

an application in �nite element exterior calculus, where % relates to the local mesh
size of a triangulation. But another speci�c choice of %, namely choosing it constant
near Ω, enables a new density result for Sobolev spaces of di�erential forms over
weakly Lipschitz domains, which is of general interest for functional analysis.
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4. Commuting Approximation

Theorem VII.4.3.

Let Ω be a bounded weakly Lipschitz domain and let ΓT be an admissible bound-
ary patch. Then the smooth di�erential k-forms in C∞Λk(Ω) that vanish near ΓT
constitute a dense subset of W p,qΛk(Ω,ΓT ) for all p, q ∈ [1,∞).

Proof. Let p, q ∈ [1,∞) and u ∈ W p,qΛk(Ω,ΓT ). We let χ : Ωe → R be a non-
negative smooth function with compact support that equals 1 in an open neighbor-
hood of Ω in Ωe. For ε > 0 small enough, Theorem VII.4.1 provides an operator
Mk

εχ : LpΛk(Ω)→ C∞Λk(Ω). We de�ne

Yε := Ω ∩BLDε (∂Ω) , Zε := Ω \ Yε.
On the one hand,∥∥u−Mk

εχu
∥∥
LpΛk(Yε)

≤ ‖u‖LpΛk(Yε)
+
∥∥Mk

εχu
∥∥
LpΛk(Yε)

.

For ε small enough, we use Young's inequality for convolutions (see [27, Theo-
rem 3.9.4] again), Lemma V.2.3, and Lemma VII.1.8 to see∥∥Mk

εχu
∥∥
LpΛk(Yε)

≤
∥∥D∗εχEku

∥∥
LpΛk(Y2ε)

≤ 2L
k+n

p

D

∥∥Eku
∥∥
LpΛk(Y3ε)

≤ 2L
k+n

p

D

(
1 + C

k+n
p

b

)
‖u‖LpΛk(YLE3ε∩Ω) .

This is again a bound in terms of an integral over a neighborhood of ∂Ω. There
exists C > 0 such that for ε small enough

YLE3ε ∩ Ω ⊂ Ψ0 (∂Ω× [−CLE3ε, 0]) .

The volume of the latter set is bounded by

voln
(

Ψ0 (∂Ω× [−CLE3ε, 0])
)
≤ CLE Lip(Ψ0)n voln−1(∂Ω) · 3ε

and thus converges to zero as ε converges to zero. We conclude

lim
ε→0

∥∥u−Mk
εχu
∥∥
W p,qΛk(Yε)

= 0.

On the other hand, we have∥∥u−Mk
εχu
∥∥
LpΛk(Zε)

= ‖u− µδε ? u‖LpΛk(Zε)
≤ ‖u− µδε ? u‖LpΛk(Ω) .

By basic results on molli�cations, the last expression converges to zero as ε converges
to zero. Since Ω = Yε ∪ Zε for all ε > 0, and since Mk+1

εχ dku = dkMk
εχu, the

combination of both observations provides

lim
ε→0

∥∥u−Mk
εχu
∥∥
W p,qΛk(Ω)

= 0.

We observe that Mk
εχu ∈ C∞Λk(Ω) with support having a positive distance from ΓT

for all ε > 0. The proof is complete.

Remark VII.4.4.

The preceding approximation theorem generalizes Theorem V.3.5 in the case of
weakly Lipschitz domains. The smooth di�erential k-forms over Ω that are contained
in W p,qΛk(Ω) and vanish in an open neighborhood of ΓT are a dense subset of the
space W p,qΛk(Ω,ΓT ). This result apparently has not been available in the literature
before. The idea of proving a commuting molli�cation operator, however, is inspired
by previous works in global analysis [100].
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VII. Smoothed Projections

VII.5. Elements of Geometric Measure Theory

Before we continue to develop the smoothed projection, we need to prepare
de�nitions and results in geometric measure theory. This is non-standard material
in the context of numerical analysis. Our exposition in this section is speci�cally
targeted towards applications later in this chapter.

Whitney's monograph [180] is our main reference. Our motivation for studying
geometric measure theory lies in proving Theorem VII.8.7 later in this chapter. The
key observation is that �nite element di�erential forms are �at di�erential forms,
and that the degrees of freedom are �at chains (see Lemma VII.5.2). This allows us
to estimate Lipschitz deformations of degrees of freedom (Lemma VII.5.4), which is
of critical importance in the construction of the smoothed projection.

We begin with basic notions of chains and cochains in geometric measure theory,
which can be found in Sections 1-3 of Chapter V in [180]. Throughout this section,
we �x for each simplex S ⊆ Rn an orientation. We may identify each positively
oriented simplex S with the indicator function χS : Rn → R. Let k ∈ Z be arbitrary.
To each �nite formal sum

∑
i aiSi of (oriented) k-simplices with real coe�cients we

may associate the function
∑

i aiχSi . We call two such �nite formal sums
∑

i aiSi
and

∑
j bjTj equivalent , and write

∑
i aiSi ∼

∑
j bjTj, if the associated functions∑

i aiχSi and
∑

j bjχTj agree almost everywhere with respect to the k-dimensional
Hausdor� measure.

The boundary ∂kS of a positively oriented k-simplex S ⊆ Rn is de�ned as

∂kS =
∑

F∈∆(S)k−1

o(F, S)F. (VII.37)

By linear extension, ∂k
∑

i aiSi =
∑

i ai∂kSi, which de�nes a linear operator on the
�nite formal sums of positively oriented k-simplices. Furthermore, it is apparent
that this operation preserves the equivalence relation.

The space Cpol
k (Rn) of polyhedral k-chains in Rn is the vector space of �nite

real formal sums of positively oriented k-simplices with the equivalence relation
factored out. If S ∈ Cpol

k (Rn), then we write S ∼
∑

i aiSi if the latter formal
sum represents S. We may identify a polyhedral k-chain S ∼

∑
i aiSi in Rn by the

function χS =
∑

i aiχSi whenever convenient. The boundary operator (VII.37) gives
rise to a linear mapping ∂k : Cpol

k (Rn)→ Cpol
k−1(Rn).

The mass |S|k of a polyhedral k-chain S in Rn is de�ned as the L1 norm of
the associated function χS with respect to the k-dimensional Hausdor� measure.i

Hence, if S ∼
∑

i aiSi with the simplices Si being essentially disjoint with respect
to the k-dimensional Hausdor� measure, then

|S|k =
∑
i

|ai| volk(Si).

It is easy to see that | · |k is a norm on the polyhedral chains, called mass norm. We
write Cmass

k (Rn) for the Banach space that results by taking the completion of the
polyhedral chains with respect to the mass norm.

iWe assume the convention that the k-dimensional Hausdor� volume of a k-simplex S equals
its k-dimensional volume volk(S).
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5. Elements of Geometric Measure Theory

The �at norm ‖S‖k,[ of a polyhedral k-chain S ∈ Cpol
k (Rn) is de�ned as

‖S‖k,[ := inf
Q∈Cpol

k+1(Rn)

(
|S − ∂kQ|k + |Q|k+1

)
. (VII.38)

As the name already suggest, one can show that ‖ · ‖k,[ is a norm on the polyhedral
chains. The Banach space C[k(Rn) is de�ned as the completion of Cpol

k (Rn) with
respect to the �at norm. It is apparent from the de�nition that

‖S‖k,[ ≤ |S|k, S ∈ Cpol
k (Rn).

In particular, Cmass
k (Rn) is densely embedded in C[k(Rn).

We show that the boundary operator is bounded with respect to the �at norm.
To see this, let S ∈ Cpol

k (Rn) let ε > 0, and let Q ∈ Cpol
k+1(Rn) such that |S−∂k+1Q|k+

|Q|k+1 ≤ ‖S‖k,[ + ε. We then observe that

‖∂kS‖k−1,[ ≤ |∂kS − ∂k(S − ∂k+1Q)|k−1 + |S − ∂k+1Q|k
≤ |S − ∂k+1Q|k
≤ ‖S‖k,[ + ε.

By taking ε to zero in the limit, we have ‖∂kS‖k−1,[ ≤ ‖S‖k,[. Using the density of
Cpol
k (Rn) in C[k(Rn), we �nd

‖∂kα‖k−1,[ ≤ ‖α‖k,[, α ∈ C[k(Rn).

We remark that the boundary operator is generally not bounded with respect to the
mass norm. This can be seen by shrinking a single simplex: the surface measure
scales di�erently than the volume.

Remark VII.5.1.

The space Cmass
k (Rn) is a subspace of the Banach space of functions over Rn integrable

with respect to the k-dimensional Hausdor� measure. The members of Cpol
k (Rn) play

a similar role as the simple functions in the theory of the Lebesgue measure. The
Banach space C[k(Rn) can be motivated by the following example: for r > 0 small,
consider the two opposing longer sides of the rectangle [0, r]× [0, 1]. The mass norm
of these two edges is 2 regardless of r > 0. But in the �at norm for r small enough,
their norm is r, corresponding to area of the original rectangle. In this sense, the
�at norm takes into account the distance between simplices.

The chains in the space Cmass
k (Rn) are the most important ones in this chapter.

We discuss the space C[k(Rn) to utilize some technical tools in geometric measure
theory that are stated for �at chains in the literature.

The Banach space C[k(Rn) of �at chains has a dual space, which is called the
Banach space of �at cochains . The space of �at cochains can be represented by a
class of di�erential forms: to every cochain we associate a di�erential form such that
evaluating the cochain on a simplex is equal to integrating the associated di�erential
form over that simplex. This is another instance of a recurrent idea throughout
di�erential geometry. Speci�cally, the space of �at cochains can be represented
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VII. Smoothed Projections

by the space of �at di�erential forms. Flat forms were studied in Whitney's book
[180], there mainly as representations of �at cochains, and in functional analysis (see
[100]). For the following facts, we refer to Section 2 of [100] and Chapters IX and
X of Whitney's book [180].

Flat di�erential forms have well-de�ned traces on simplices. More precisely, for
each m-simplex S ⊂ Rn there exists a bounded linear mapping

trkS : W∞,∞Λk(Rn)→ W∞,∞Λk(S),

which extends the trace of smooth forms. In particular, for u ∈ W∞,∞Λk(Rn) the
trace trkS u depends only on the values of u near S. We write∫

S

u :=

∫
S

trkS u

for the integral of u ∈ W∞,∞Λk(Rn) over a k-simplex S. This induces a bilinear
pairing between Cmass

k (Rn) and W∞,∞Λk(Rn). We have∣∣∣∣∫
S

u

∣∣∣∣ ≤ |S|k‖u‖W∞,∞Λk(Rn), S ∈ Cmass
k (Rn), u ∈ W∞,∞Λk(Rn). (VII.39)

This pairing furthermore extends to �at chains. We have∣∣∣∣∫
α

u

∣∣∣∣ ≤ ‖α‖k,[‖u‖W∞,∞Λk(Rn), α ∈ C[k(Rn), u ∈ W∞,∞Λk(Rn). (VII.40)

The exterior derivative between spaces of �at forms is dual to the boundary operator
between spaces of �at chains. We have∫

∂kα

u =

∫
α

dku, α ∈ C[k(Rn), u ∈ W∞,∞Λk(Rn), (VII.41)

as a generalized Stokes' theorem.

Many results in geometric measure theory are invariant under Lipschitz map-
pings. We recall some basic facts about pushforwards of chains and pullbacks of
di�erential forms along Lipschitz mappings. Here we refer to Paragraph 7 in Chap-
ter X of Whitney's book [180].

Let ϕ : Rm → Rn be a Lipschitz mapping. Then there exists a mapping

ϕ∗ : C[k(Rm)→ C[k(Rn), (VII.42)

called the pushforward along ϕ, which commutes with the boundary operator,

∂kϕ∗α = ϕ∗∂kα, α ∈ C[k(Rm), (VII.43)

and which satis�es the norm estimates

‖ϕ∗α‖k,[ ≤ max
{

Lip(ϕ,Rm)k,Lip(ϕ,Rm)k+1
}
‖α‖k,[, α ∈ C[k(Rm), (VII.44)

|ϕ∗S|k ≤ Lip(ϕ,Rm)k|S|k, S ∈ Cmass
k (Rm). (VII.45)
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The pushforward of chains is dual to the pullback of di�erential forms. We recall
that this is a mapping

ϕ∗ : W∞,∞Λk(Rn)→ W∞,∞Λk(Rm) (VII.46)

which commutes with the exterior derivative,

dkϕ∗u = ϕ∗dku, u ∈ W∞,∞Λk(Rn), (VII.47)

and satis�es the norm estimate

‖ϕ∗u‖L∞Λk(Rm) ≤ Lip(ϕ,Rn)k‖u‖L∞Λk(Rn), u ∈ W∞,∞Λk(Rn). (VII.48)

The pushforward and the pullback are related by the identity∫
ϕ∗α

u =

∫
α

ϕ∗u, u ∈ W∞,∞Λk(Rn), α ∈ C[k(Rm). (VII.49)

Lastly, if ϕ : Rm → Rn and ψ : Rl → Rm are Lipschitz mappings, then ϕψ : Rl → Rn

is a Lipschitz mapping, and we have (ϕψ)∗ = ϕ∗ψ∗ and (ϕψ)∗ = ψ∗ϕ∗ over the spaces
of chains and di�erential forms, respectively.

Having outlined basic concepts of geometric measure theory, we provide a new
result which makes these notions interesting for �nite element theory: the degrees
of freedom in �nite element exterior calculus are �at chains.

Lemma VII.5.2.

Let F ⊂ Rn be a closed oriented m-simplex and let η ∈ C∞Λm−k(F ). Then there
exists a �at chain α(F, η) ∈ C[

k(Rn) such that for all u ∈ W∞,∞Λk(Rn) we have∫
F

trkF u ∧ η =

∫
α(F,η)

u. (VII.50)

Moreover, α(F, η) ∈ Cmass
k (Rn) and ∂kα(F, η) ∈ Cmass

k−1 (Rn).

Proof. We �rst assume that dimF = n, and that F is positively oriented. We use
Theorem 15A of [180, Chapter IX] to deduce the existence of α(F, η) ∈ C[

k(Rn) such
that ∫

F

trkF u ∧ η =

∫
α(F,η)

u, u ∈ W∞,∞Λk(Rn),

and such that

|α(F, η)|k = ‖η‖L1Λm−k(F ).

In particular, we even have α(F, η) ∈ Cmass
k (Rn).

Now assume that dimF = m < n. There exists a simplex F0 ⊆ Rm and an
isometric inclusion ϕ : Rm → Rn which maps F0 onto F . Recall that the pullback
of a �at form along a Lipschitz mapping is well-de�ned. We have∫

F

trkF u ∧ η =

∫
ϕ∗F0

trkF u ∧ η =

∫
F0

ϕ∗ trkF u ∧ ϕ∗η

=

∫
α(F0,ϕ∗η)

ϕ∗ trkF u =

∫
ϕ∗α(F0,ϕ∗η)

u
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for u ∈ W∞,∞Λk(Rn). Thus we may choose α(F, η) = ϕ∗α(F0, ϕ
∗η) ∈ Cmass

k (Rn). It
remains to show that ∂k−1α(F, η) ∈ Cmass

k−1 (Rn). For u ∈ W∞,∞Λk−1(Rn), we have∫
∂kα(F,η)

u

=

∫
α(F,η)

dk−1u =

∫
F

η ∧ trkF dk−1u

= (−1)m−k+1

∫
F

dm−kη ∧ trk−1
F u+ (−1)m−k

∑
f∈∆(F )m−1

o(f, F )

∫
f

trm−kF,f η ∧ trk−1
f u

= (−1)m−k+1

∫
α(F,dm−kη)

u+ (−1)m−k
∑

f∈∆(F )m−1

o(f, F )

∫
α(f,trm−kF,f η)

u.

In particular, ∂kα ∈ Cmass
k−1 (Rn). The proof is complete.

Remark VII.5.3.

The degrees of freedom in �nite element exterior calculus can be described in terms
of integrals over simplices weighted against polynomial di�erential forms (see, e.g.,
Chapter IV). Hence Lemma VII.5.2 can be applied to identify the degrees of freedom
with �at chains.

We �nish this section with an estimate on the deformation of �at chains by
Lipschitz mappings. This result is applied later in this chapter and constitutes the
rationale for considering geometric measure theory.

Lemma VII.5.4.

Let F ⊆ Rn be an m-simplex and let η ∈ C∞Λm−k(F ). Let α(F, η) ∈ C[
k(Rn) be the

associated �at chain in the manner of Lemma VII.5.2. Let r > 0 be �xed and let
ϕ : B2r(F )→ B3r(F ) be a Lipschitz mapping that maps Br(F ) into B2r(F ). Then

‖ϕ∗α− α‖k,[ ≤ ‖ϕ− Id ‖L∞(B2r(F ),Rn)

(
Lk|α|k + Lk−1|∂kα|k−1

)
, (VII.51)

where L := sup{Lip(ϕ,B2r(F )), 1}.

Proof. To prove this result, we gather several additional notions of Whitney's mono-
graph. For any open set U ⊆ Rn, a polyhedral chain S ∼

∑
i aiSi ∈ C

pol
k (Rn) is in

U if all Si are contained in U , and S is of U if there exists an open set V ⊆ Rn

compactly contained in U such that S is a chain in V (see [180]).
The support of a �at chain α ∈ C[k(Rn) is the set of all points x ∈ Rn such that

for all ε > 0 there exists u ∈ C∞Λk(Rn) with support in Bε(x) such that
∫
α
S 6= 0.

It follows from De�nition (1) in Section I.13 of [180, p.52] and the discussion in
Section V.10 of [180] up to Theorem V.10A that our de�nition of support agrees
with the de�nition of support in [180, Section VII.3]

Having established these additional notions, the claim is now an application
of Theorem 13A in Chapter X in [180] together with Equation VIII.1.(7) in [180,
p.233].
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6. Review of Triangulations

VII.6. Review of Triangulations

Up to now, we have only addressed topics of purely analytical interest in this
chapter. Towards our goal of smoothed projections onto �nite element spaces, we
brie�y discuss triangulations. This builds upon the concepts of Chapter II.

Let T be a triangulation of the bounded weakly Lipschitz domain Ω, and let U
be a simplicial subcomplex of T that triangulates ΓT . We equip the simplices of
T with �xed but arbitrary orientations, except for n-simplices, which we assume to
be equipped with the Euclidean orientation of Rn. We have de�ned the geometric
shape measure of T by

µ(T ) = max
T∈T

diam(T )n

voln(T )
.

Several other relevant quantities can be bounded in terms of µ(T ) and the ambient
dimension, as has been demonstrated in Chapter II. This includes the constant
µN(T ), which bounds the numbers of simplices adjacent to a given simplex, and
the constant µlqu(T ), which measures how the (generalized) diameters of adjacent
simplices compare. We also recall the constant µr(T ), but for the purpose of this
chapter, we will use µr(T ) only in the de�nition of another quantity. We de�ne

µb(T ) := sup
T∈T

sup { ε > 0 | BεhT (T ) ⊆ [T (T )] } . (VII.52)

Lemma VII.6.1.

There exists a lower bound for µb(T ) that depends only on µr(T ) and Ω.

Proof. Since Ω is a weakly Lipschitz domain, there exists a �nite covering U1, . . . , UN
of Ω by closed subsets together with a family ϕ1, . . . , ϕN of bi-Lipschitz mappings
ϕi : Ui → [−1, 1]n. By Lebesgue's number lemma, there exists γ > 0 such that for
all x ∈ Ω there exists 1 ≤ i ≤ N such that Bγ(x) ∩ Ω ⊆ Ui.

Let x ∈ Ω and let y ∈ Bγ(x) ∩ Ω. Let 1 ≤ i ≤ N such that Bγ(x) ∩ Ω ⊆ Ui. A
path from x to y is a continuous mapping p : [0, 1]→ Ω with p(0) = x and p(1) = y.
Let T be the set of all �nite ordered subsets t0, . . . , tM of [0, 1] that contain 0 and 1.
We de�ne the length L(p) of a path p from x to y as

L(p) := sup
{t0,...,tM}∈T

M∑
i=1

‖p(ti)− p(ti−1)‖ .

It is obvious that ‖x − y‖ ≤ L(p). Furthermore, there exists a path p from x to
y such that L(p) ≤ Lip(ϕi) Lip(ϕ−1

i )‖x − y‖, namely the image of the straight line
segment from ϕi(x) to ϕi(y) under ϕ−1

i .
For r > 0 we let Br(x) be the set of all points in Ω such that a path from x to y

of length r is contained in Ω. We also see that Br(x) ⊆ Br(x). Hence, if r < γ, then

B r

Lip(ϕi) Lip(ϕ−1
i

)
(x) ⊆ Br(x).
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Now, let T ∈ T with x ∈ T . We write

C = min
1≤i≤N

Lip(ϕi)
−1 Lip(ϕ−1

i )−1.

Let ε > 0. The de�nition of µr(T ) implies that BεhT (x) ⊂ [T (T )] for ε < µr(T ). If
additionally εdiam(Ω) < γ, then BCεhT (x) ⊂ [T (T )]. This completes the proof.

Remark VII.6.2.

The underlying principle of the proof is that the inner path metric is equivalent to
the Euclidean metric over Ω.

Additionally, we introduce the constant εΩ > 0 as the supremum

εΩ := sup { ε > 0 | ∀T ∈ T : B2εhT (T ) ⊆ Ωe } . (VII.53)

We have de�ned εΩ such that the hT εΩ-neighborhood of every T ∈ T is compactly
contained in Ωe. Since hT ≤ diam(Ω), there exists a lower bound for εΩ that is
independent of the triangulation T .

Finally, for each n-simplex T ∈ T n of the triangulation, we �x an a�ne transfor-
mation ϕT (x) = MTx+bT where bT ∈ Rn andMT ∈ Rn×n are such that ϕT (∆n) = T .
Each matrix MT is invertible, and

‖MT‖2,2 ≤ cMhT , ‖M−1
T ‖2,2 ≤ CMh

−1
T (VII.54)

for constants cM , CM > 0 that depend only on µ(T ) and n.

VII.7. Review of Interpolants

We de�ne the �nite element spaces on the background of Chapter IV. To every
simplex F ∈ T of the triangulation we associate an admissible sequence type PT ∈
A . Moreover, we assume that the hierarchy condition holds, i.e., we have

∀T ∈ T : ∀F ∈ ∆(T ) : PF ≤ PT .

This family of admissible sequence types describes a �nite element de Rham complex

. . .
dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .

In Chapter IV we have also introduced the commuting interpolant IkP , which maps
from the space C∞Λk(T ,U) onto the space PΛk(T ,U). In particular, we have a
commuting diagram

. . .
dk−1

−−−→ C∞Λk(T ,U)
dk−−−→ C∞Λk+1(T ,U)

dk+1

−−−→ . . .

IkP

y Ik+1
P

y
. . .

dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .

We will now combine these ideas with results in geometric measure theory that
we have presented in the preceding section. We begin with the following basic
observation.
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Lemma VII.7.1.

We have C∞Λk(T ,U) ⊆ W∞,∞Λk(T ,U).

Proof. Let u ∈ C∞Λk(T ,U). As described in Section IV.1, we may identify u with a
di�erential form over Ω. Since the triangulation is �nite and trkT u is the restriction
of a member of C∞Λk(Rn) for each T ∈ T n, we conclude that u ∈ L∞Λk(Ω) and
dku ∈ L∞Λk+1(Ω), where the exterior derivative is taken in the sense of Section IV.1.

Next, let v ∈ C∞c Λn−k−1(Ω). We calculate∫
Ω

u ∧ dn−k−1v

=
∑
T∈T n

∫
T

uT ∧ dn−k−1v

= (−1)k
∑
T∈T n

F∈∆(T )n−1

o(F, T )

∫
F

uF ∧ trn−k−1
F v + (−1)k+1

∑
T∈T n

∫
T

dkuT ∧ v

= (−1)k+1
∑
T∈T n

∫
T

dkuT ∧ v

= (−1)k+1

∫
Ω

dku ∧ v

with integration by parts and using that u has single-valued traces. This shows that
u ∈ W∞,∞Λk(Ω).

Finally, suppose that x ∈ ΓT and let r > 0 be so small that Br(x) intersects ∂Ω
only along ΓT . Let v ∈ C∞c Λn−k−1(Rn) with support compactly contained in Br(x).
Then u ∈ W∞,∞Λk(Ω,ΓT ) follows as above via integration by parts, using that u
has single-valued traces on subsimplices and vanishing traces over simplices in U .
The proof is complete.

We have seen in Chapter IV that the degrees of freedom of the �nite element
de Rham complexes, which enter the de�nition of the �nite element interpolant, are
de�ned in terms of the integrals over simplices of T against polynomial di�erential
forms over those simplices. By the results of Section VII.5 these are �at chains of
�nite mass. Speci�cally, to each simplex F ∈ T we associate a �nite-dimensional
vector space PCFk of linear functionals over C∞Λk(T ). After �xing an arbitrary
smooth Riemannian metric g over F , the space PCFk can be written as the span of
the following three types of functionals:

� For each simplex F ∈ T , the space PCFk includes the functional

u 7→
∫
F

u.

� For each simplex F ∈ T and ρ ∈ P̊Λk−1(F ), the space PCFk includes the
functional

u 7→
∫
F

u ∧ ?gdk−1ρ.
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� For each simplex F ∈ T and β ∈ P̊Λk(F ), the space PCFk includes the func-
tional

u 7→
∫
F

dku ∧ ?gdkβ.

It follows from Theorem VII.5.2 that PCFk is a �nite-dimensional space of �at chains
with �nite mass whose boundaries have �nite mass too. In the case of the third
class of functionals, we take Remark IV.4.8 into account in order to see that.

Correspondingly, we de�ne the spaces of �at chains

PCk(T ) :=
⊕
F∈T

PCFk .

These observations allow us to extend the �nite element interpolant to a contin-
uous mapping over �at di�erential forms. We have a linear operator

IkP : W∞,∞Λk(Ω)→ PΛk(T )

that is uniquely de�ned by setting∫
S

IkPu =

∫
S

u, u ∈ W∞,∞Λk(Ω), S ∈ PCk(T ).

For u ∈ W∞,∞Λk(Ω) and S ∈ PCk(T ) we additionally observe that∫
S

Ik+1
P dku =

∫
S

dku =

∫
∂kS

u =

∫
∂kS

IkPu =

∫
S

dkIkPu. (VII.55)

This implies that

Ik+1
P dku = dkIkPu, u ∈ W∞,∞Λk(Ω).

Furthermore, we observe that for all F ∈ T we have trkF I
k
Pu = 0 if trkF u = 0. As a

consequence, the mapping IkP maps W∞,∞Λk(Ω,ΓT ) into PΛk(T ,U). In particular,
we have a commuting diagram

. . .
dk−1

−−−→ W∞,∞Λk(Ω,ΓT )
dk−−−→ W∞,∞Λk+1(Ω,ΓT )

dk+1

−−−→ . . .

IkP

y Ik+1
P

y
. . .

dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .

from the di�erential complex of �at di�erential forms over Ω with partial boundary
conditions along ΓT onto the �nite element de Rham complex over T relative to U .

In addition to that, IkP can be extended to a bounded operator over the space
CΛk(Ω) of di�erential k-forms over Ω with continuous coe�cients. We have a
bounded linear mapping

IkP : CΛk(Ω)→ PΛk(T )
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uniquely de�ned ∫
S

IkPu =

∫
S

u, u ∈ CΛk(Ω), S ∈ PCk(T ).

Similar as above, we observe that for all F ∈ T we have trkF I
k
Pu = 0 if trkF u = 0.

Hence IkP maps members of CΛk(Ω) whose trace on simplices in U vanish into the
space PΛk(T ,U).

We �nish this section with the discussion of several inverse inequalities . These
follow easily from scaling arguments and the equivalence of norms on �nite-dimen-
sional vector spaces. They build upon the fact that the �nite element spaces over
each triangle are contained within the pullback of a �nite-dimensional vector space
over a reference triangle.

By construction, the pullbacks ϕ∗Tu|T lie in a common �nite-dimensional vector
space as u ∈ PΛk(T ) and T ∈ T n vary. For example, this can be a �xed space of
di�erential forms with polynomial coe�cients of su�ciently high order. Hence for
each p ∈ [1,∞] there exists a constant C[

n,k,p > 0 such that

‖ϕ∗Tu‖W∞,∞Λk(∆n) ≤ C[
n,k,p‖ϕ∗Tu‖LpΛk(∆n), u ∈ PΛk(T ), T ∈ T n. (VII.56)

The constant C[
n,k,p depends only on p, n, and the maximal polynomial order in the

�nite element de Rham complex.
Another inverse inequality applies to the degrees of freedom. By Lemma VII.5.2,

each degree of freedom can be identi�ed with a �at chain of �nite mass whose
boundary is again a �at chain of �nite mass. In general, the boundary operator is an
unbounded operator as a mapping between spaces of polyhedral chains with respect
to the mass norm. But in the present setting, the pushforward of the degrees of
freedom onto the reference simplex takes values in a �nite-dimensional vector space.
We conclude that there exists C∂ > 0 such that

|ϕ−1
T∗∂kS|k−1 ≤ C∂|ϕ−1

T∗S|k, S ∈ PCFk , F ∈ ∆(T ), T ∈ T n. (VII.57)

Again, the constant C∂ depends only on n and the maximal polynomial order in the
�nite element de Rham complex.

Finally, we have a local bound for the interpolant. We observe that there exists
a constant CI > 0 such that for T ∈ T n and u ∈ CΛk(Ω) we have

‖ϕ∗T IkPu‖L∞Λk(∆n) ≤ CI sup
F∈∆(T )

S∈PCFk

|ϕT∗S|−1
k

∫
ϕ−1
T∗S

ϕ∗Tu. (VII.58)

Similar as above, CI depends only on n and the maximal polynomial order in the
�nite element de Rham complex. Note that this inequality immediately implies

‖ϕ∗T IkPu‖L∞Λk(∆n) ≤ CI‖ϕ∗Tu‖CΛk(∆n), u ∈ CΛk(Ω). (VII.59)

Remark VII.7.2.

The existence of constants C[
n,k,p, C∂, and CI as above follows trivially if the tri-

angulation T and the maximal polynomial order of the �nite element spaces are
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�xed. But in applications we consider families of triangulations with associated �-
nite element de Rham complexes. We then demand uniform bounds for the three
constants. Such uniform bounds hold if the triangulations are shape-regular and the
�nite element spaces have uniformly bounded polynomial order. This thesis does
not address estimates that are uniform in the polynomial order, as would be relevant
for p- and hp-methods.

VII.8. Construction of the Smoothed Projection

In this section we complete the agenda of this chapter and devise the smoothed
projection from a Sobolev de Rham complex with partial boundary conditions onto
a conforming �nite element de Rham complex.

In order to instantiate the smoothing operator of Section VII.4, we need to
specify a function controlling the smoothing radius. For our particular application,
that function should indicate the local mesh size. First we prove the existence of a
mesh size function H with Lipschitz regularity and then the existence of a mesh size
function h that is smooth.

Lemma VII.8.1.

There exists LΩ > 0, depending only on Ω, and a Lipschitz continuous function
H : Ω→ R+

0 such that

∀F ∈ T : µlqu(T )−1hF ≤ H|F ≤ µlqu(T )hF , (VII.60)

Lip(H,Ω) ≤ µlqu(T )LΩ. (VII.61)

Proof. We de�ne H : Ω → R+
0 as follows. If V ∈ T 0, then we set H(V ) = hV . We

then extend H to each T ∈ T by a�ne interpolation between the vertices of T . With
this de�nition, H is continuous, and (VII.60) follows from de�nitions. It remains to
prove (VII.61). Obviously, Lip(H, T ) ≤ µlqu(T ) for T ∈ T n.

Since Ω is a bounded weakly Lipschitz domain, there exists be a �nite family
(Ui)1≤i≤N of open sets Ui ⊆ Ω such that the union of all Ui equals Ω, and such that
there exist ϕi : Ui → (−1, 1)n bi-Lipschitz for each 1 ≤ i ≤ N (see Lemma VI.1.6).
By Lebesgue's number lemma, and the precompactness of Ω, we may pick γ > 0 so
small that for each x ∈ Ω there exists 1 ≤ i ≤ N such that Bγ(x) ∩ Ω ⊆ Ui.

First assume that x, y ∈ Ω with 0 < ‖x − y‖ ≤ γ. Then there exists 1 ≤
i ≤ N with x, y ∈ Ui. For M ∈ N, consider a partition of the line segment in
(−1, 1)n from ϕ(x) to ϕ(y) into M subsegments of equal length with points ϕi(x) =
z0, z1, . . . , zM = ϕi(x). Let xm := ϕ−1

i (zm) ∈ Ui. For M large enough, the straight
line segment between xm−1 and xm is contained in Ui for all 1 ≤ m ≤ M . After
a further subpartitioning, not necessarily equidistant, we may assume to have a
sequence x = w0, . . . , wM ′ = y for some M ′ ∈ N such that for all 1 ≤ m ≤ M ′ the
points wm−1 and wm are connected by a straight line segment in Ui and such that
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8. Construction of the Smoothed Projection

there exists Fm ∈ T with wm−1, wm ∈ Fm. We observe

|H(y)− H(x)| ≤
M ′∑
m=1

|H(wm)− H(wm−1)|

≤ µlqu(T )
M ′∑
m=1

‖wm − wm−1‖

= µlqu(T )
M∑
m=1

‖xm − xm−1‖

≤ µlqu(T ) Lip(ϕ−1
i )

M∑
m=1

‖ϕi(xm)− ϕi(xm−1)‖

≤ µlqu(T ) Lip(ϕ−1
i ) · ‖ϕi(y)− ϕi(x)‖

≤ µlqu(T ) Lip(ϕ−1
i ) Lip(ϕi) · ‖y − x‖.

If we instead assume that x, y ∈ Ω with ‖x− y‖ ≥ γ, then

|H(y)− H(x)| ≤ diam(Ω) ≤ diam(Ω)

γ
‖y − x‖.

Hence Lip(H,Ω) ≤ µlqu(T )LΩ with

LΩ := sup
{
γ−1diam(Ω), Lip(ϕ−1

1 ) Lip(ϕ1), . . . , Lip(ϕ−1
N ) Lip(ϕN)

}
.

Thus Lip(H,Ω) ≤ µlqu(T )LΩ because any Lipschitz continuous function is Lipschitz
continuous over the closure of its domain with the same Lipschitz constant.

Lemma VII.8.2.

There exist a compactly supported smooth function h : Ωe → R+
0 and constants

Ch > 0 and Lh > 0, depending only on Ω and µlqu(T ), such that

Lip(h,Ωe) ≤ Lh, (VII.62)

and such that for all F ∈ T and x ∈ F we have

C−1
h hF ≤ h(x) ≤ ChhF . (VII.63)

Moreover, supp h depends only on Ω.

Proof. Let H : Ω → R+
0 as in the previous lemma. Consider the Lipschitz collar

Ψ0 : ∂Ω× [−1, 1]→ Rn introduced in Section VII.1, and write G := Ψ0(∂Ω, (0, 1)).
For x ∈ Ω ∪G we de�ne

He(x) :=

{
H(x) if x ∈ Ω,

H (Ψ0(x0,−t)) if x = Ψ(x0, t), (x0, t) ∈ ∂Ω× (0, 1).
(VII.64)

It is easy to see that Lip(He,Ω ∪ G) ≤ (1 + C0) Lip(He,Ω) for a constant C0 that
depends only on Ψ0. Note that He is just the extension by re�ection of H along the
Lipschitz collar. We extend He trivially to a function over Rn.
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VII. Smoothed Projections

Next we let χ : Ωe → R be a smooth non-negative function that assumes its
maximum 1 over an open neighborhood of Ω and has support compactly contained
in Ωe. Then

(χHe)|Ω = H|Ω, (χHe)max (Ωe) ≤ Hmax(Ω),

Lip(χHe,Ωe) ≤ µlqu(T )LΩ + Hmax(Ω) Lip(χ).

For r > 0 yet to be determined, we let h := µr ? χH
e. Then h is smooth. For r > 0

small enough, supp h is compactly contained in Ωe and

Lip(h,Ωe) ≤ µlqu(T )LΩ + Hmax(Ω) Lip(χ),

which gives the constant in (VII.62). Note that h(x) is contained in the convex hull
of all values of χHe in Br(x). We �nd for all x ∈ Ω that

h(x) =

∫
Br(x)∩Ω

µr(y)H(x+ y) dy +

∫
Br(x)\Ω

µr(y)He(x+ y) dy.

Hence for r > 0 small enough there exists C > 0 such that for all x ∈ Ω the value
h(x) lies in the convex combination of the values of H over BCr(x). In particular, if
r < µb(T )hmin, where hmin is the shortest edge length in T , then (VII.63) holds for
F ∈ T and x ∈ F . The proof is complete.

Remark VII.8.3.

The existence of Lipschitz-continuous mesh size functions was used before in the
literature [58]. We mention that the existence of a smooth mesh size function is also
used in [56].

We have given close attention to estimating the Lipschitz constant Lip(H). An
interesting observation in the light of Lemma VII.8.1 is that Lip(H) is the product of
µlqu(T ), which depends only on the shape of the simplices, and LΩ, which depends
only the geometry. Conceptually, LΩ compares the inner path metric of Ω to the
Euclidean metric over Ω. The equivalence of these two metrics is non-trivial in
general but holds for bounded weakly Lipschitz domains.

We will use the smooth mesh size function h, but we will generally need to rescale
it by a �xed parameter ε > 0 in the sequel. Our goal is to choose ε > 0 so small
that the conditions of Theorem VII.4.1 are satis�ed by % = εh. This enables us to
work with the smoothing operator Mεh in this section.

Lemma VII.8.4.

There exists ε0 > 0, depending only on Ω and µ(T ), such that for all ε ∈ (0, ε0) the
function % = εh satis�es the conditions of Theorem VII.4.1.

Proof. First, we let ε > 0 be so small that for each T ∈ T we have BεhT /Ch(T ) ⊆ Ωe.
It su�ces that ε/Ch < εΩ. Under that condition, Ψεh, de�ned as in Section VII.3,
maps Ω into Ωe. If additionally εLh < 1/2, then the conditions of Lemma VII.3.2
are satis�ed. Second, we choose ε so small that εLh < δD and εhmax(Rn) < δD. For
the latter it su�ces that εdiam(Ω) < δD. Then the conditions of Theorem VII.2.1
are satis�ed. Lastly, we write r := diam(Ω)LD and choose ε so small that the εr-
neighborhood of supp h is contained in Ωe, which depends only on Ω. It follows via
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8. Construction of the Smoothed Projection

(VII.21c) that Dεh maps Ωe bijectively into itself. Under these assumptions % := εh
satis�es the required properties, and the proof is complete.

In the sequel, we call a quantity uniformly bounded if it can be bounded in terms
of the geometry, the mesh regularity, and the maximal polynomial degree of the
�nite element space. We remind the reader that bounds uniform in the polynomial
degree are not subject of this thesis.

Towards the de�nition of the smoothed projection, we �rst de�ne a smoothed
interpolant. Let ε > 0 be small enough; we assume in particular ε < ε0. We de�ne

Qk
ε : LpΛk(Ω)→ PΛk(T ,U) ⊆ LpΛk(Ω), u 7→ IkPM

k
εhu, p ∈ [1,∞]. (VII.65)

We show that Qk
ε satis�es uniform local bounds and commutes with the exterior

derivative:

Theorem VII.8.5.

Let ε > 0 be small enough. We have a bounded linear operator

Qk
ε : LpΛk(Ω)→ PΛk(T ,U) ⊆ LpΛk(Ω), p ∈ [1,∞].

For each p ∈ [1,∞] there exists uniformly bounded CQ,p > 0 such that

‖Qk
εu‖LpΛk(T ) ≤ CQ,pε

−n
p ‖u‖LpΛk(T (T )), u ∈ LpΛk(Ω), T ∈ T n, (VII.66)

and

‖Qk
εu‖LpΛk(Ω) ≤ C

1
p

NCQ,pε
−n
p ‖u‖LpΛk(Ω), u ∈ LpΛk(Ω). (VII.67)

Moreover, we have

dkQk
εu = Qk+1

ε dku, u ∈ W p,qΛk(Ω), p, q ∈ [1,∞]. (VII.68)

Proof. Let u ∈ LpΛk(Ω) and T ∈ T n. Then

‖Qk
εu‖LpΛk(T ) = ‖IkPMk

εhu‖LpΛk(T )

≤ voln(T )
1
p‖IkPMk

εhu‖L∞Λk(T ) ≤ h
n
p

T ‖I
k
PM

k
εhu‖L∞Λk(T ).

Estimate (VII.59) gives

‖IkPMk
εhu‖L∞Λk(T ) = ‖ϕ−∗T ϕ∗T I

k
PM

k
εhu‖L∞Λk(T )

≤ Ck
Mh
−k
T ‖ϕ

∗
T I

k
PM

k
εhu‖L∞Λk(∆n)

≤ CIC
k
Mh
−k
T ‖ϕ

∗
TM

k
εhu‖L∞Λk(∆n)

≤ CIc
k
MC

k
M‖Mk

εhu‖CΛk(T ).

For ε > 0 small enough, we may apply Theorem VII.4.1 with % = εh to �nd

‖Mk
εhu‖CΛk(T ) ≤ CM

n,k,p

(1 + εLip(h))k+n
p

(εhmin(T ))
n
p

‖u‖LpΛk(BεLM (1+εLip(h))hmax(T )(T )∩Ω)

≤ CM
n,k,p

C
n
p

h (1 + εLh)
k+n

p

ε
n
p h

n
p

T

‖u‖LpΛk(BεChLM (1+εLh)hT
(T )∩Ω)
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VII. Smoothed Projections

Under the condition that ε is so small that εChLM(1 + εLh) < µb(T ) we observe

BεChLM (1+εLh)hT (T ) ∩ Ω ⊆ T (T ).

Thus the local bound (VII.66) follows. The global bound (VII.67) is obtained via

‖Qk
εu‖

p
LpΛk(Ω)

=
∑
T∈T n

‖Qk
εu‖

p
LpΛk(T )

≤ Cp
Q,p

∑
T∈T n

‖u‖p
LpΛk(T (T ))

≤ Cp
Q,pµN(T )

∑
T∈T n

‖u‖p
LpΛk(T )

≤ Cp
Q,pµN(T )‖u‖p

LpΛk(Ω)

for p ∈ [1,∞), and for p =∞ similarly.
Next, if F ∈ T with F ⊆ ΓT , then Mk

εhu vanishes near F . By the properties
of IkP we conclude that Qk

εu ∈ PΛk(T ,U). Finally, the commutativity with the
exterior derivative (VII.68) follows from Theorem VII.4.1 and the commutativity of
the �nite element interpolant on �at di�erential forms.

Remark VII.8.6.

For the preceding lemma, it su�ces that ε > 0 is so small that εLCh(1+εLh) < µb(T )

and Lemma VII.8.4 applies. We may assume CQ,p ≤ CM
n,k,pC

n/p
h (1 + Lh)

k+n
p .

The smoothed interpolant Qk
ε is local and satis�es uniform bounds. Although

Qk
ε generally does not reduce to the identity over PΛk(T ,U), we can show that, for

ε > 0 small enough, it is close to the identity and satis�es a local error estimate.

Theorem VII.8.7.

Let ε > 0 be small enough. Then for every p ∈ [1,∞] there exists a uniformly
bounded constant Ce,p > 0 such that

‖u−Qk
εu‖LpΛk(T ) ≤ εCe,p‖u‖LpΛk(T (T )), u ∈ PΛk(T ,U), T ∈ T n.

Proof. We prove the statement by a series of inequalities. Let u ∈ PΛk(T ,U) and
let T ∈ T n. Then

‖u−Qk
εu‖LpΛk(T ) ≤ voln(T )

1
p‖u−Qk

εu‖L∞Λk(T )

≤ h
n
p

T ‖u−Q
k
εu‖L∞Λk(T )

≤ h
n
p

T ‖E
ku−Qk

εu‖L∞Λk(T )

≤ Ck
Mh

n
p
−k

T ‖ϕ∗T IkP(Eku−Mk
εhu)‖L∞Λk(ϕ−1

T T ).

By (VII.58) and (VII.49), we have

‖ϕ∗T IkP(Eku−Rk
εhE

ku)‖L∞Λk(ϕ−1
T T ) ≤ CI sup

F∈∆(T )

S∈PCFk

|ϕ−1
T∗S|

−1
k

∫
S

Eku−Rk
δεhD

∗
εhE

k.

We need to bound the last expression. Fix F ∈ ∆(T ) and S ∈ PCFk . We see that∫
S

Eku−Rk
δεhD

∗
εhE

ku =

∫
S

∫
Rn
µ(y)

(
Eku− Φ∗δεh,yD

∗
εhE

ku
)

dy.
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8. Construction of the Smoothed Projection

We want to change the order of integration between those two integrals. As a tech-
nical tool, we use Theorem VI.7A of [180], which implies that integrable continuous
di�erential k-forms over Rn are densely embedded in the space of �at chains over
Rn, such that the pairing of the induced �at chain with a �at di�erential form is the
usual scalar product between k-forms. Consider a sequence of continuous integrable
di�erential k-forms (Si)i∈N such that Si → S in C[k(Rn). We then �nd with Fubini's
theorem and theorem of dominated convergence that∫

S

∫
Rn
µ(y)Φ∗δεh,yD

∗
εhE

ku dy

= lim
i→∞

∫
Rn

〈
Si,

∫
Rn
µ(y)Φ∗δεh,yD

∗
εhE

ku dy

〉
dx

=

∫
Rn
µ(y) lim

i→∞

∫
Rn

〈
Si,Φ

∗
δεh,yD

∗
εhE

ku
〉

dx dy

=

∫
Rn
µ(y)

∫
S

Φ∗δεh,yD
∗
εhE

ku dy.

Using these observations and (VII.49) again, we have∫
Rn
µ(y)

∫
S

Eku− Φ∗δεh,yD
∗
εhE

kudy =

∫
Rn
µ(y)

∫
ϕ−1
T∗S−ϕ

−1
T∗Dεh∗Φδεh,y∗S

ϕ∗TE
ku dy.

Before we proceed with bounding this term, we gather some auxiliary estimates.
For λ > 0 we �nd that

sup
x̂∈Bλ(ϕ−1

T F )

sup
y∈B1(0)

∥∥x̂− ϕ−1
T DεhΦδεh,y(ϕT x̂)

∥∥
≤ sup

x̂∈Bλ(ϕ−1
T F )

sup
y∈B1(0)

CMh
−1
T ‖ϕT (x̂)−DεhΦδεh,y(ϕT x̂)‖

≤ sup
x̂∈Bλ(ϕ−1

T F )

sup
y∈B1(0)

CMh
−1
T ‖ϕT (x̂)−Dεh(ϕT x̂)‖

+ CMh
−1
T ‖Dεh(ϕT x̂)−DεhΦδεh,y(ϕT x̂)‖

≤ sup
x̂∈Bλ(ϕ−1

T F )

sup
y∈B1(0)

CMh
−1
T LDεh(ϕT x̂) + CMh

−1
T LD (1 + εLh) δεh(ϕT x̂)

≤ sup
x̂∈Bλ(ϕ−1

T F )

sup
y∈B1(0)

CMh
−1
T LD (2 + εLh) εh(ϕT x̂).

Since x̂ ∈ Bλ(ϕ
−1
T F ), we have ϕT (x̂) ∈ BhT cMλ(F ). Assuming cMλ < µb(T ), we

moreover have ϕT x̂ ∈ T (F ), and hence h(ϕT x̂) ≤ µlqu(T )ChhT . For cMλ < µb(T )
we thus conclude

sup
x̂∈Bλ(ϕ−1

T F )

sup
y∈B1(0)

∥∥x̂− ϕ−1
T DεhΦδεh,y(ϕT x̂)

∥∥ ≤ CMLD (2 + εLh) εµlqu(T )Ch.

We observe that

sup
y∈B1(0)

Lip
(
ϕ−1
T DεhΦδεh,yϕT , Bλ(ϕ

−1
T F )

)
≤ cMCMLD (1 + εLh)

2 .
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We introduce the constants

K := cMCMLD (1 + Lh)
2 , L := CMLD (2 + Lh)µlqu(T )Ch

and henceforth assume that ε < 1.
We proceed with the main part of the proof. With (VII.40), it follows that∫

ϕ−1
T∗S−ϕ

−1
T∗Dεh∗Φδεh,y∗S

ϕ∗TE
ku dsdy

≤ sup
y∈B1(0)

‖ϕ−1
T∗S − ϕ

−1
T∗Dεh∗Φδεh,y∗S‖k,[ · ‖ϕ∗TEku‖W∞,∞Λk(BLε(∆n)),

We need to bound this product.
We begin with the second factor. For ε small enough we observe

‖ϕ∗TEku‖W∞,∞Λk(BLε(∆n)) ≤
(

1 + C
k+1+n

p

b

)
ck+1
M Ck+1

M ‖ϕ∗Tu‖W∞,∞Λk(ϕ−1
T T (T )).

To see this, assume that LELε < µb(T ). Applying Lemma VII.1.8 gives

‖ϕ∗TEku‖L∞Λk(BLε(∆n)) ≤ ckMh
k
T‖Eku‖L∞Λk(BLεhT

(T ))

≤
(

1 + C
k+n

p

b

)
ckMh

k
T‖u‖L∞Λk(BLELεhT

(T )∩Ω)

≤
(

1 + C
k+n

p

b

)
ckMh

k
T‖u‖L∞Λk(T (T ))

≤
(

1 + C
k+n

p

b

)
ckMC

k
M‖ϕ∗Tu‖L∞Λk(ϕ−1

T T (T ))

and, similarly,

‖ϕ∗TEk+1dku‖L∞Λk+1(BLε(∆n)) ≤ ck+1
M hk+1

T ‖E
k+1dku‖L∞Λk+1(BLεhT

(T ))

≤
(

1 + C
k+1+n

p

b

)
ck+1
M hk+1

T ‖d
ku‖L∞Λk+1(BLELεhT

(T )∩Ω)

≤
(

1 + C
k+1+n

p

b

)
ck+1
M hk+1

T ‖d
ku‖L∞Λk+1(T (T ))

≤
(

1 + C
k+1+n

p

b

)
ck+1
M Ck+1

M ‖ϕ∗Tdku‖L∞Λk+1(ϕ−1
T T (T )).

The inverse inequality (VII.56) gives

‖ϕ∗Tu‖W∞,∞Λk(ϕ−1
T T (T )) ≤ C[

n,k,p‖ϕ∗Tu‖LpΛk(ϕ−1
T T (T )).

Another pullback estimate then provides

‖ϕ∗Tu‖LpΛk(ϕ−1
T T (T )) ≤ ckMC

n
p

Mh
k−n

p

T ‖u‖LpΛk(T (T )).

On the other hand, we apply Lemma VII.5.4 to bound the remaining factor. Let
λ > 0 as above. By applying Lemma VII.5.4 with r = λ/3, we then estimate

sup
y∈B1(0)

‖ϕ−1
T∗S − ϕ

−1
T∗Dεh∗Φδεh,y∗S‖k,[

= sup
y∈B1(0)

‖ϕ−1
T∗S − ϕ

−1
T∗Dεh∗Φδεh,y∗ϕT∗ϕ

−1
T∗S‖k,[

≤ ε · L ·max(1,K)k ·
(
|ϕ−1
T∗S|k + |∂kϕ−1

T∗S|k−1

)
.
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The inverse inequality (VII.57) gives

|∂kϕ−1
T∗S|k−1 ≤ C∂|ϕ−1

T∗S|k.

This completes the proof.

Remark VII.8.8.

With the notation as in the proof of Theorem VII.8.7, we have

Ce,p := Ck
MCI

(
1 + C

k+1+n
p

b

)
ck+1
M Ck+1

M C[
n,k,pc

k
MC

n
p

M(1 + C∂)L ·max(1,K)k.

It su�ces that LELε < µb(T ) and ε < 1.

Remark VII.8.9.

Our Theorem VII.8.7 resembles Lemma 5.5 in [9] and Lemma 4.2 in [58]. We give a
brief motivation why our method of proof di�ers from theirs. In order to obtain the
interpolation error estimate over simplices T ∈ T , the authors of the aforementioned
references suppose that �nite element di�erential forms are piecewise Lipschitz near
T . This holds if T is an interior simplex but not if T touches the boundary of
Ω. In what appears to be a gap in the proof, it is not clear how their method
applies for such T . The reason is that their extension operator, like ours, involves
a pullback along a bi-Lipschitz mapping, so the extended �nite element di�erential
form is not necessarily Lipschitz continuous anywhere outside of Ω. The extended
di�erential form, however, is still a �at form, and this motivates our utilization of
geometric measure theory to prove the desired estimate for the interpolation error.
A particular merit of our solution is that no modi�cation to original construction in
[9, 58] is necessary.

We mention that interpolation error estimates (similar to Theorem VII.8.7) were
used earlier in [159], which in turn refers to a technical report for the details of
the proof. This technical report, however, has not been published as of the time
of this writing, and so comparing our proof of the interpolation error estimate,
though desirable, is currently not possible. On the other hand, a uniformly bounded
commuting projection is constructed in [56] with di�erent techniques.

We are now in the position to prove the main result of this chapter. For ε > 0
small enough, the mapping Qk

ε : PΛk(T ,U) → PΛk(T ,U) is close enough to the
identity operator to be invertible. This leads to the smoothed projection.

Theorem VII.8.10.

Let ε > 0 be small enough. There exists a bounded linear operator

πk : LpΛk(Ω)→ PΛk(T ,U) ⊆ LpΛk(Ω), p ∈ [1,∞],

such that

πku = u, u ∈ PΛk(T ,U),

such that

dkπku = πk+1dku, u ∈ W p,qΛk(Ω,ΓT ), p, q ∈ [1,∞],
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VII. Smoothed Projections

and such that for all p ∈ [1,∞] there exist uniformly bounded Cπ,p > 0 with

‖πku‖LpΛk(Ω) ≤ Cπ,pε
−n
p ‖u‖LpΛk(Ω), u ∈ LpΛk(Ω).

Proof. If ε > 0 is small enough and p ∈ [1,∞], then Theorem VII.8.7 implies that

‖u−Qk
εu‖LpΛk(Ω) ≤

1

2
‖u‖LpΛk(Ω), u ∈ PΛk(T ,U).

By standard results, the linear mapping Qk
ε : PΛk(T ,U)→ PΛk(T ,U) is invertible.

Let Jkε : PΛk(T ,U)→ PΛk(T ,U) be its inverse. Jkε does not depend on p, since Qk
ε

does not depend on p. The construction of Jkε via a Neumann series reveals that

‖Jkε u‖LpΛk(Ω) ≤ 2‖u‖LpΛk(Ω), u ∈ PΛk(T ,U).

So Jkε is bounded. Moreover, Jkε commutes with the exterior derivative because

dkJkε u = Jk+1
ε Qk+1

ε dkJkε u = Jk+1
ε dkQk

εJ
k
ε u = Jk+1

ε dku, u ∈ PΛk(T ,U).

The theorem follows with πk := Jkε Q
k
ε .

Remark VII.8.11.

Speci�cally, it su�ces for Theorem VII.8.10 that ε > 0 is so small that Theo-
rem VII.8.5 and Theorem VII.8.7 apply and that Ce,pε < 2. We may assume
Cπ,p ≤ 2CQ,pµN(T )

1
p .

Remark VII.8.12.

We compare our construction of the smoothed projection with previous constructions
in the literature, with particular focus on the role of the mesh size function.

The smoothed projection constructed in [9] applies to quasi-uniform families of
triangulations. In that case, a classical molli�cation operator can be used instead
of our Rk

εh. That result was expanded in [58] to include shape-uniform families of
triangulations. The Lipschitz continuous mesh size function of Lemma VII.8.1 is
speci�cally inspired by the construction in [58]. But simple examples show that,
contrarily to the statement in [58, p.821], a regularization operator with that mesh
size function does not yield a continuous di�erential form. This is due to the di�er-
ential of the mesh size function being discontinuous in general. The discontinuity of
the di�erential thwarts the global continuity of the regularized di�erential forms in
[58]. This is our motivation to employ a smooth mesh size function as a remedy.

But it is insightful to inspect the situation in more detail. The Lipschitz contin-
uous mesh size function in Lemma VII.8.1 is the limit of the smoothed mesh size
function in Lemma VII.8.2 for decreasing smoothing radius. It is natural to ask
how this limit process is re�ected in the regularization operator. The gradient of
the original mesh size function features tangential continuity. Using this additional
property, one can show that the regularization operator of [58] does yield di�eren-
tial forms that are piecewise continuous with respect to the triangulation and that
are single-valued along simplex boundaries. Consequently, the regularized di�er-
ential form, though not continuous, still has well-de�ned degrees of freedom, and
the canonical interpolant can be applied as intended. We emphasize that the main
result of [58] remains unchanged.
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Remark VII.8.13.

Several estimates in this section depend on a Lebesgue exponent p ∈ [1,∞]. We
carefully observe that it su�ces to consider only the case p = 1: a su�ciently small
choice of ε > 0 enables Theorem VII.8.10 for all p ∈ [1,∞] simultaneously.

Remark VII.8.14.

Throughout this chapter, we have provided explicit formulas for the admissible
ranges of ε, and we have derived explicit estimates for several constants. In gen-
eral, these quantities are e�ectively computable. The only exception are construc-
tions that involve Lipschitz collars. It seems a reasonable assumption that explicit
constructions of Lipschitz collars are feasible, at least in principle, for polyhedral
domains. Provided such results, all constants in this chapter become e�ectively com-
putable. Further research on this topic could reveal dependencies on the geometric
properties of the domain, such as the boundary curvature.
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VIII. A Priori Error Estimates

Commuting projections are of general relevance in the theory of mixed �nite ele-
ment methods. Arnold, Falk, and Winther [11] have embedded mixed �nite element
methods in the theoretical framework of Hilbert complexes (see Brüning and Lesch
[42]), and have developed what can be called a Galerkin theory of Hilbert complexes.
Here, abstract projection operators take a central role: they are assumed to commute
with the di�erential operators and to satisfy uniform bounds. Given such operators,
one can relate algebraic and analytical properties of discrete subcomplexes to the
original complex, prove the stability of approximate discrete problems, and derive
abstract a priori error estimates for Galerkin approximations.

The major application of this abstract theory is mixed �nite element methods for
the Hodge Laplace equation, which requires stably bounded smoothed projections
from the L2 de Rham complex over a bounded Lipschitz domain onto �nite element
de Rham complexes. This was initially accomplished for L2 de Rham complexes
without boundary conditions and �nite element spaces over quasi-uniform families
of triangulations [9]. Subsequently this was extended to shape-uniform families of
triangulations and full homogeneous boundary conditions [58].

In the preceding chapters, we have developed a smoothed projection over the L2

de Rham complex over weakly Lipschitz domains and moreover considered partial
boundary conditions. Furthermore, we have extended the class of �nite element
spaces to the case of non-uniform polynomial order. Our smoothed projection en-
ables the abstract Galerkin theory of Hilbert complexes.

The aim of this chapter is to elaborate on this application. In particular, we
identify the mixed boundary conditions of the Hodge Laplace equation associated to
the L2 de Rham complex with partial boundary conditions. We give special attention
to harmonic forms with mixed boundary conditions. The harmonic forms span the
kernel of the Hodge Laplace operator and play a singular role in the convergence
theory of �nite element exterior calculus. When we consider the de Rham complex
with either no and full homogeneous boundary conditions, then the dimension of the
space of harmonic forms re�ects topological properties of the domain; but when we
consider the de Rham complex with partial boundary conditions, then the situation
is more complicated and new qualitative properties are present: the dimension of
the space of harmonic forms depends not only on the topology of the domain but
also on the topology of the boundary patch along which the boundary conditions
are imposed. Even if the domain itself is topologically simple, the space of harmonic
forms satisfying mixed boundary conditions may have a large dimension. This qual-
itative di�erence apparently has not been discussed in the literature yet.
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To begin with, we give a brief review of the theory of Hilbert complexes in
Section VIII.1. We then describe the Hodge Laplace equation with mixed bound-
ary conditions in Section VIII.2, for which we primarily use results of Gol'dshtein,
Mitrea and Mitrea [99]. Finite element de Rham complexes are brie�y recapitulated
in Section VIII.3, where we prove discrete Poincaré-Friedrichs inequalities and show
the stability of discrete Hodge Laplace equations. The a priori error estimates in
Section VIII.4 are an example application of the abstract Galerkin theory.

This chapter addresses a priori error estimates for the mixed formulation of
the Hodge Laplacian equation, which is also known as the source problem. The
abstract Galerkin theory of Hilbert complexes also gives a priori error estimates for
the corresponding eigenvalue problem (see [11]) among other applications, but this
is not addressed here.

VIII.1. Notions of Hilbert Complexes

We review basic notions of Hilbert complexes. A thorough discussion in func-
tional analysis has been provided by Brüning and Lesch [42], and a Galerkin theory
of Hilbert complexes has been initiated by Arnold, Falk, and Winther [11].

We �rst recall some notions of linear operators over Hilbert spaces. For every
Hilbert space W we let 〈·, ·〉W be the associated scalar product and ‖ · ‖W be the
associated norm. We may leave out the subscript and simply write 〈·, ·〉 and ‖ · ‖,
respectively, if there is no danger of confusion. If A ⊆ W is a linear subspace of
W , then we let A⊥W denote the orthogonal complement of A in W . We also write
A⊥ = A⊥W if the ambient Hilbert space W is known from context.

Suppose that W and W̃ are Hilbert spaces and that d : dom(d) ⊆ W → W̃ is an
unbounded linear operator with domain dom(d). We let ker d = ker(d) denote the
kernel of d and let ran d = ran(d) denote the range of d. We say that d is a closed
operator if the graph

graph(d) :=
{

(x, dx) ∈ W × W̃
∣∣∣ x ∈ dom(d)

}
is a closed subset of W × W̃ . We say that d is densely-de�ned if dom(d) is dense in
W . The mapping d is called bounded if there exists a constant C > 0 such that

‖dx‖ ≤ C‖x‖, x ∈ dom(d). (VIII.1)

We say that d has closed range if the range of d is closed; one can show [179,
Lemma IV.5.2] that this is equivalent to the existence of c > 0 such that

∀y ∈ ran(d) : ∃x ∈ dom(d) : dx = y and ‖x‖ ≤ c‖y‖, (VIII.2)

or equivalently,

∀x ∈ dom(d) : ∃x0 ∈ ker(d) : ‖x− x0‖ ≤ c‖dx‖.
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The smallest C satisfying (VIII.1) is called the norm of d. The smallest c satisfying
(VIII.2) is called the Poincaré-Friedrichs constant of d. Furthermore, any densely-
de�ned bounded operator can be extended uniquely to the whole ofW , which makes
it a bounded operator in the classical sense.

Whenever d : dom(d) ⊆ W → W̃ is a densely-de�ned closed linear operator,
then we write d∗ : dom(d∗) ⊆ W̃ → W for the adjoint operator. The adjoint is a
densely-de�ned closed linear operator too, and we have d∗∗ = d. One can show that
d is bounded if and only if d∗ is bounded, in which case the norms agree. Similarly,
one can show that d has closed range if and only if d∗ has closed range, in which
case the Poincaré-Friedrichs constants agree.

We call d self-adjoint if d = d∗. Moreover, we make extensive use the concept
of pseudoinverse of a bounded linear operator with closed range. We refer to Beut-
ler [25] and Desoer and Whalen [73] for further information on this subject. The
pseudoinverse of a densely-de�ned closed linear operator d with closed range is the
unique bounded linear operator d† : W̃ → W that is de�ned by

d†y := argmin
x∈dom(x)
y=dx

‖x‖. (VIII.3)

One can show that d∗† = d†∗. We remark that the pseudoinverse is the solution
operator to the (possibly inconsistent) least-squares problem dx = y with unknown
x and data y. The pseudoinverse gives the x ∈ dom(d) with minimal norm among
the minimizers of ‖y − dx‖. A particularly important property is

∀x ∈ dom(d) : dd†dx = dx.

The norm of d† is precisely the reciprocal of the Poincaré-Friedrichs constant of d.

A Hilbert complex (W,d) consists of a sequence of Hilbert spaces W = (W k)k∈Z
together with a sequence d = (dk)k∈Z of densely-de�ned closed unbounded operators
dk : dom(dk) ⊆ W k → W k+1 that satisfy the di�erential property

ran dk ⊆ ker dk+1. (VIII.4)

A Hilbert complex can be visualized as a diagram:

. . .
dk−1

−−−→ W k dk−−−→ W k+1 dk+1

−−−→ . . . (VIII.5)

We call a Hilbert complex bounded if all di�erentials (dk)k∈Z are bounded operators.
We call a Hilbert complex closed if all di�erentials (dk)k∈Z have closed range.

If (W,d) is a Hilbert complex, then the adjoint Hilbert complex (W,d)∗ is the
Hilbert complex (W,d∗) where W = (W k)k∈Z is the same family of Hilbert spaces
and d∗ = (d∗k)k∈Z is the sequence of adjoint operators. We have the di�erential
property d∗k−1d

∗
k = 0. We visualize (W,d)∗ as the diagram

. . .
d∗k−1←−−− W k

d∗k←−−− W k+1
d∗k+1←−−− . . . (VIII.6)

We note that (W,d)∗∗ = (W,d). Moreover, (W,d)∗ is bounded if and only if (W,d)
is bounded, and (W,d)∗ is closed if and only if (W,d) is closed.
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Remark VIII.1.1.

The adjoint of a Hilbert complex conforms to a di�erent indexing convention than
proper Hilbert complexes. Hence, the adjoint Hilbert complexes are technically a
di�erent category of objects. It is convenient, however, to ignore this technical
matter, since the di�erences are only an index convention.

Let (W,d) be an arbitrary but �xed Hilbert complex. We assume that (W,d) is
closed. A fundamental concept in the category of Hilbert complexes are Poincaré-
Friedrichs inequalities. There exists a constant CPF > 0 such that

‖x‖ ≤ CPF‖dkx‖, x ∈ W k ∩
(
ker(dk)

)⊥
. (VIII.7)

We call (VIII.7) a Poincaré-Friedrichs inequality and CPF the Poincaré-Friedrichs
constant of (W,d).

Another fundamental concept in the category of Hilbert complexes are harmonic
spaces. The k-th harmonic space of (W,d) is

Hk = ker dk ∩ ker d∗k−1. (VIII.8)

This is a closed subspace of W k because the kernel of closed unbounded operators is
closed and the intersection of closed sets is closed again. By basic facts on Hilbert
spaces we have

ker dk = (ran d∗k−1)⊥, (ran dk−1)⊥ = ker d∗k−1.

Hence Hk satis�es several identities, such as

Hk = ker dk ∩ (ran dk−1)⊥ = ker d∗k−1 ∩ (ran d∗k)
⊥. (VIII.9)

Recall that the di�erentials are assumed to have closed ranges. The abstract Hodge
decomposition of W k is the orthogonal decomposition

W k = ran dk−1 ⊕ Hk ⊕ ran d∗k. (VIII.10)

Again, there several equivalent ways to write that decomposition, such as

W k = ran dk−1 ⊕ Hk ⊕
(
ker dk

)⊥
. (VIII.11)

The principle relevance of the harmonic spaces is that they appear as �defects� in
partial di�erential equations, as we explore in this thesis.

Remark VIII.1.2.

The homology theory of Hilbert complexes is not a mere specialization of homological
algebra. The reason is that di�erential complexes in homological algebra are always
constructed from a category of objects; for example, di�erential complexes of vector
spaces are constructed from the category of vector spaces with linear mappings. But
Hilbert spaces with closed densely-de�ned unbounded mappings do not constitute
a category. For example, the product of closed unbounded operators is not closed
in general. This forecloses an immediate application of homological algebra. Still
many ideas of homological algebra have analogues for Hilbert complexes.
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We continue to assume that (W,d) is a �xed closed Hilbert complex. We intro-
duce the sets

dom
(
Dk
)

:= dom(dk) ∩ dom(d∗k−1),

dom (∆k) :=
{
x ∈ dom

(
Dk
) ∣∣ d∗k−1x ∈ dom(dk−1), dkx ∈ dom(d∗k)

}
.

The k-th Dirac operator associated to (W,d) is the unbounded operator

Dk : dom
(
Dk
)
⊆ W k → W k−1 ⊕W k+1, x 7→

(
d∗k−1x, d

kx
)
. (VIII.12)

We let D∗k denote the adjoint of D
k. By the Hodge decomposition, it is easy to verify

that Dk is densely-de�ned, closed, and has closed range with the Poincaré-Friedrichs
constant being the one of (W,d).

The k-th Hodge Laplacian or Hodge Laplace operator associated to (W,d) is the
unbounded operator

∆k : dom (∆k) ⊆ W → W, x 7→ d∗kd
kx+ dk−1d∗k−1x. (VIII.13)

Note that in the sense of unbounded operators

∆k = D∗kD
k = d∗kd

k + dk−1d∗k−1.

The constructions immediately imply that

Hk = ker ∆k = kerDk. (VIII.14)

It is easily seen that Dk is densely-de�ned and closed, and that Dk has closed range
if (W, d) is closed. The corresponding properties of ∆k require more work.

Theorem VIII.1.3.

The Hodge-Laplacian ∆k is densely-de�ned and closed. Moreover, ∆k is self-adjoint
and positive semi-de�nite. We have ker ∆k = ker dk ∩ ker d∗k−1.

ker ∆k = ker dk ∩ ker d∗k−1 = (ran ∆k)
⊥ . (VIII.15)

Proof. We show that ∆k is densely-de�ned. The Lax-Milgram theorem (see [86,
p.315]) implies that for every F ∈ dom(Dk)′ there exists xF ∈ dom(D) such that

〈xF , y〉Wk + 〈dkxF , dky〉Wk+1 + 〈d∗k−1xF , d
∗
k−1y〉Wk−1 = F (y), y ∈ dom(Dk).

(VIII.16)

Provided that there exists f ∈ W such that F (y) = 〈f, y〉Wk for all y ∈ dom(Dk),
then xF ∈ dom(D∗D) follows by de�nitions. In particular, for every f ∈ W there
exists xf ∈ dom(D∗D) satisfying (VIII.16) with F (y) = 〈f, y〉Wk . Let us suppose
that x0 ∈ dom(Dk) is orthogonal to dom(∆k) in the Hilbert space dom(Dk) with
the graph scalar product. Then for all f ∈ W k we have

〈f, x0〉 = 〈xf , x0〉Wk + 〈dkxf , dkx0〉Wk+1 + 〈d∗k−1xf , d
∗
k−1x

0〉Wk−1 = 0.

We conclude x0 = 0. Hence dom(∆k) is dense in dom(Dk), and so it is dense in
W k. In particular, ∆k is densely-de�ned.
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Next we show that ∆k is self-adjoint, which also implies that ∆k is closed.
First, we observe from de�nitions that dom(∆k) ⊆ dom(∆∗k), where ∆∗k denotes
the adjoint of ∆k. Let x ∈ dom(∆∗k), so there exists Cx > 0 such that 〈x,∆kz〉 ≤
Cx‖x‖ · ‖z‖ for all z ∈ ∆k. We have x ∈ dom(Dk) if there exists C ′x > 0 such that
〈x,D∗ky〉 ≤ C ′x‖x‖ · ‖y‖ for all y ∈ dom(D∗k). To show this condition, it su�ces to
consider y ∈ dom(D∗k) with y ⊥ ker(D∗k), which is equivalent to y ∈ ran(Dk). But
since the Hilbert complex is assumed to be closed, there exists c > 0 such that for
y ∈ dom(D∗k) ∩ ran(Dk) there exists z ∈ dom(Dk) with Dkz = y and ‖z‖ ≤ c‖y‖.
But then

〈x,D∗ky〉 = 〈x,D∗kDz〉 ≤ Cx‖x‖ · ‖z‖ ≤ Cx‖x‖ · c‖y‖.

Hence x ∈ dom(Dk). Next, we have Dkx ∈ dom(D∗k) if 〈Dkx,Dk·〉 is a bounded
linear functional over W k, which is already the case if the functional is bounded
over the dense subset dom(∆k). This last condition, however, is satis�ed, since
x ∈ dom(∆∗k). We conclude that ∆k = D∗kD

k is self-adjoint.
That ∆k is positive semi-de�nite is easily veri�ed too. Finally, (VIII.15) follows

from de�nitions.

We are particularly interested in the Hodge Laplace equation ∆ku = f . Since the
self-adjoint operator ∆k generally has a non-trivial kernel, we may use a Lagrange
multiplier. In applications, the kernel is �nite-dimensional.

The k-th Hodge Laplace problem associated to the Hilbert complex (W,d) is to
�nd u ∈ dom(∆k) and p ∈ Hk such that

∆ku+ p = f, u ⊥ Hk, (VIII.17)

for given f ∈ W k. We call this the strong formulation of the Hodge Laplace prob-
lem. One can show that there exists a bounded operator ∆†k, the pseudoinverse of
∆k, such that for every f ∈ W the solution of (VIII.17) is given by u = ∆†kf and
p = f −∆ku. This means that the strong formulation is well-posed.

Similar to the case of the Poisson problem, a weak formulation of the Hodge
Laplace problem is of interest. We equip the space dom(Dk) with the graph scalar
product of Dk, which makes dom(Dk) into a Hilbert space. We let dom(Dk)′ denote
the dual Hilbert space. The weak k-th Hodge Laplace problem associated to (W,d)
is to �nd u ∈ dom(Dk) and p ∈ Hk such that

〈dku, dkv〉+ 〈d∗ku, d∗kv〉+ 〈p, v〉 = F (v), v ∈ dom(Dk), (VIII.18a)

〈u, q〉 = 0, q ∈ Hk, (VIII.18b)

for given functional F ∈ dom(Dk)′. The existence and uniqueness of a solution is
now an elementary consequence of the Lax-Milgram theorem together with a small
modi�cation to account for the Lagrange multiplier. Moreover, if F (v) = 〈f, v〉,
then (u, p) is a solution of the weak formulation if and only if it is a solution of the
strong formulation.

158



2. L2 de Rham Complex over Domains

It is intuitive that the weak formulation of the Hodge Laplace problem is more
amenable for Galerkin methods. But in practice, the weak formulation is still too
strong. A conforming Galerkin method will approximate the solution in dom(Dk),
which still poses too strong requirements on the approximation space.

Instead, we will focus on a third formulation of the Hodge Laplace problem. In
accordance with the notation in [11], we abbreviate V k = dom(dk) for the domains
of the di�erentials equipped with the graph scalar product of d. The corresponding
norm on the Hilbert space V k will be written ‖·‖V k in the sequel, and induced norm
on the dual Hilbert space V ′ will be written ‖ · ‖V ′ . The mixed formulation of the
Hodge Laplace problem is now to �nd the unknowns

(σ, u, p) ∈ V k−1 × V k × Hk (VIII.19)

such that for given right-hand side

(G,F, r) ∈
(
V k−1

)′ × (V k
)′ × Hk (VIII.20)

we have

〈σ, τ〉 − 〈u, dk−1τ〉 = G(τ), τ ∈ V k−1, (VIII.21a)

〈dk−1σ, v〉+ 〈dku, dkv〉+ 〈p, v〉 = F (v), v ∈ V k, (VIII.21b)

〈u, q〉 = 〈r, q〉, q ∈ Hk. (VIII.21c)

If (u, p) ∈ dom(∆k)×Hk is the strong solution of the Hodge Laplace problem with
right-hand side f , then (σ, u, p), where σ = d∗ku, solves the mixed problem with
G = 0 and q = 0 and F (v) = 〈f, v〉. On the other hand, if G = 0 and r = 0 and
F (v) = 〈f, v〉, then the solution of the mixed from (σ, u, p) satis�es σ = d∗ku and
(u, p) is the solution of the strong formulation. Proving the stability of the mixed
formulation is more complex than for the mixed formulation. The stability constant
depends on the Poincaré-Friedrichs constant of (W,d). We recall the following result.

Theorem VIII.1.4.

There exists a constant C > 0, depending only the Poincaré-Friedrichs constant
CPF, such that for every right-hand side (G,F, q) ∈

(
V k−1

)′ × (V k
)′ × Hk there

exists a unique solution (σ, u, p) ∈ V k−1 × V k × Hk of (VIII.21) such that

(‖σ‖V + ‖u‖V + ‖p‖W ) ≤ C (‖G‖V ′ + ‖F‖V ′ + ‖r‖W ) .

Proof. This follows by Theorem 3.1, Theorem 3.2 and the subsequent discussion in
[11]. The constant C depends only on the constant γ in the statement of Theorem 3.2
in [11], which in turn only depends on the Poincaré-Friedrichs constant.

VIII.2. L2 de Rham Complex over Domains

The framework of Hilbert complexes is applied in several instances throughout
this thesis. Here we consider the most central application: the L2 de Rham complex
over a weakly Lipschitz domain. More precisely, we consider the case of partial
boundary conditions.
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Throughout this chapter we let Ω ⊆ Rn be a bounded weakly Lipschitz domain.
In addition, we let (ΓT ,ΓI ,ΓN) be an admissible boundary partition. We focus on
spaces of the form L2,2Λk(Ω,ΓT ) for k ∈ Z. Following [99], we write

HTΛk(Ω) := W 2,2Λk(Ω,ΓT ), (VIII.22)

H?
NΛk(Ω) := ?W 2,2Λn−k(Ω,ΓN), (VIII.23)

and consider the unbounded linear operators

dk : HTΛk(Ω) ⊆ L2Λk(Ω)→ HTΛk+1(Ω), (VIII.24)

δk : H?
NΛk(Ω) ⊆ L2Λk(Ω)→ H?

NΛk−1(Ω). (VIII.25)

These linear operators are closed and densely-de�ned, since HTΛk(Ω) and H?
NΛk(Ω)

are Hilbert spaces, and additionally they are mutually adjoint, which means∫
Ω

dku ∧ ?v =

∫
Ω

u ∧ ?δk+1v, u ∈ HTΛk(Ω), v ∈ H∗NΛk+1(Ω). (VIII.26)

The identity (VIII.26) is an easy consequence of approximation by smooth di�er-
ential forms (see Lemma V.3.5). We may assemble the L2 de Rham complex with
tangential boundary conditions along ΓT ,

. . .
dk−1

−−−→ HTΛk(Ω) ⊆ L2Λk(Ω)
dk−−−→ HTΛk+1(Ω) ⊆ L2Λk+1(Ω)

dk+1

−−−→ . . .
(VIII.27)

and its adjoint L2 de Rham complex with normal boundary conditions along ΓN ,

. . .
δk←−−− H∗NΛk(Ω) ⊆ L2Λk(Ω)

δk+1

←−−− H∗NΛk+1(Ω) ⊆ L2Λk+1(Ω)
δk+2

←−−− . . .
(VIII.28)

It is evident that the Hilbert complexes (VIII.27) and (VIII.28) are mutually adjoint.
That (VIII.24) and (VIII.25) have closed range follows by [99, Proposition 4.3(i)]. In
particular, the Hilbert complexes (VIII.27) and (VIII.28) are closed. One implication
is a Poincaré-Friedrichs inequality. There exists CPF > 0 such that

∀u ∈ HTΛk(Ω) : ∃u0 ∈ HTΛk(Ω) ∩ ker dk : ‖u− u0‖ ≤ CPF‖dku‖.

The space of k-th harmonic forms with mixed boundary conditions is de�ned as

Hk(Ω,ΓT ,ΓN) :=
{
p ∈ HTΛk(Ω) ∩H∗NΛk(Ω)

∣∣ dkp = 0, δkp = 0
}
.

It can be shown that Hk(Ω,ΓT ,ΓN) has �nite dimension [99, Proposition 4.3].
Putting all this together, we have the L2 orthogonal Hodge decomposition

L2Λk(Ω) := dk−1HΛk−1
T (Ω)⊕ Hk(Ω,ΓT ,ΓN)⊕ δk+1H?Λk+1

N (Ω). (VIII.29)

The dimension of Hk(Ω,ΓT ,ΓN) depends only on the topology of Ω and ΓT , and is
of independent interest. More speci�cally, from Theorem 5.3 in [99] we �nd that
dimHk(Ω,ΓT ,ΓN) equals the k-th topological Betti number bk(Ω,ΓT ) of Ω relative
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to ΓT , and equals (n− k)-th topological Betti number bn−k(Ω,ΓN) of Ω relative to
ΓN . Thus we have

dimHk(Ω,ΓT ,ΓN) = bk(Ω,ΓT ) = bn−k(Ω,ΓN), k ∈ Z. (VIII.30)

The special cases ΓT = ∅ and ΓT = ∂Ω have received the most attention in the
literature. In that case, the Betti numbers correspond to the topological properties
of the domain, such as the number of holes of a certain dimension. In the presence
of mixed boundary conditions, the Betti numbers depend also on the topology of
the boundary patch ΓT .

Example VIII.2.1.

For every weakly Lipschitz domain, the Betti number b0(Ω,ΓT ) is the number of
connected components that do not touch ΓT . The space H0(Ω,ΓT ,ΓN) corresponds
to the span of the indicator functions of those components of Ω.

We consider an example over a domain with a very simple topology, where the
harmonic forms with mixed boundary conditions may still have a very non-trivial
kernel, depending on the topology of the boundary patch. Consider the example
Ω = (−1, 1)2 and let ΓT ⊆ ∂Ω be the union of m ∈ N relatively open subsets of ∂Ω
that pairwise have positive distance. In that case one can show that

b2(Ω,ΓT ) = 0, b1(Ω,ΓT ) = m− 1, b0(Ω,ΓT ) = 0.

In particular, dimH1(Ω,ΓT ,ΓN) = m− 1.

We are also interested in an analogue of the Rellich embedding for di�erential
forms. The intersection HTΛk(Ω)∩H?

NΛk(Ω) is a Hilbert space that can be equipped
with the compatible norm that is uniquely de�ned by

‖u‖2
HTΛk(Ω)∩H?

NΛk(Ω) := ‖u‖2
HTΛk(Ω) + ‖u‖2

H?
NΛk(Ω), u ∈ HTΛk(Ω) ∩H?

NΛk(Ω).

From Proposition 4.4 of [99] we know that the embedding

HTΛk(Ω) ∩H?
NΛk(Ω)→ L2Λk(Ω), (VIII.31)

known as Rellich embedding , is compact. Stronger conditions on the domain and
the boundary patch imply re�ned versions of the Rellich embedding. We use this
later in this chapter after having introduced fractional Sobolev spaces.

The L2 de Rham complex with tangential boundary conditions along ΓT gives
rise to the Hodge Laplace operator, which we have introduced abstractly in the
previous section. Let

dom(∆k) :=

{
u ∈ HΛk

T (Ω) ∩H?Λk
N(Ω)

∣∣∣∣ dk−1u ∈ H?Λk+1
N (Ω),

δk+1u ∈ HΛk−1
T (Ω)

}
The k-th Hodge Laplacian with respect to these boundary conditions is the un-
bounded operator

∆k : dom(∆k) ⊆ L2Λk(Ω)→ L2Λk(Ω), u 7→ δk+1dku+ dk−1δku.
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As a consequence of Theorem VIII.1.3, the operator ∆k is densely-de�ned, closed,
self-adjoint, and has closed range. Furthermore,

Hk(Ω,ΓT ,ΓN) = ker ∆k, ran ∆k = Hk(Ω,ΓT ,ΓN)⊥.

Since ∆k has closed range, it has a bounded pseudoinverse. We let

Gk : L2Λk(Ω)→ L2Λk(Ω)

denote the pseudoinverse of the Hodge Laplacian in the sense of [73]. We have

Gkf ∈ dom(∆k), Gkf ⊥ Hk(Ω,ΓT ,ΓN), f −∆kGkf ∈ Hk(Ω,ΓT ,ΓN).

for all f ∈ L2Λk(Ω). One can show that the operator norm of Gk is bounded by
C2

PF. Additionally, Gk takes values in the intersection HTΛk(Ω) ∩ H?
NΛk(Ω) and is

bounded as an operator from L2Λk(Ω) to HTΛk(Ω) ∩ H?
NΛk(Ω). The compactness

of Gk follows from the compactness of the Rellich embedding.

The strong formulation of the k-th Hodge Laplace equation with mixed boundary
conditions asks for u ∈ dom (∆k) and p ∈ Hk(Ω,ΓT ,ΓN) such that

∆ku = f − p, (VIII.32)

for given data f ∈ L2Λk(Ω). The solution to this system is given by

u = Gkf, p = f −∆kGkf

The strong formulation should not be regarded as amenable for a �nite element
method. For example, it is di�cult to construct shape functions in dom(∆k). The
weak formulation of the Hodge Laplace equation is not of much interest in this
thesis either: even though one can construct piecewise polynomial di�erential forms
in HTΛk(Ω)∩H∗NΛk(Ω), such di�erential forms are generally not dense in HTΛk(Ω)∩
H∗NΛk(Ω), which makes the weak formulation a generally inconsistent method; see
also Remark VIII.2.3 below.

We consider the mixed formulation of the Hodge Laplace equation. We search
for the unknown

(σ, u, p) ∈ HTΛk−1(Ω)×HTΛk(Ω)× Hk(Ω,ΓT ,ΓN) (VIII.33)

which for given right-hand side

(G,F, r) ∈ HTΛk−1(Ω)′ ×HTΛk(Ω)′ × Hk(Ω,ΓT ,ΓN) (VIII.34)

solves the problem

〈σ, τ〉 − 〈u, dk−1τ〉 = G(τ), τ ∈ HTΛk−1(Ω), (VIII.35a)

〈dk−1σ, v〉+ 〈dku, dkv〉+ 〈p, v〉 = F (v), v ∈ HTΛk(Ω), (VIII.35b)

〈u, q〉 = 〈r, q〉, q ∈ Hk(Ω,ΓT ,ΓN). (VIII.35c)

The well-posedness of this problem is a direct consequence of Theorem VIII.1.4.
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2. L2 de Rham Complex over Domains

Corollary VIII.2.2.

There exists a constant C > 0, depending only on the Poincaré-Friedrichs constant
of (VIII.27), such that for every

(G,F, q) ∈ HTΛk−1(Ω)′ ×HTΛk(Ω)′ × Hk(Ω,ΓT ,ΓN)

there exists a unique solution

(σ, u, p) ∈ HTΛk−1(Ω)×HTΛk(Ω)× Hk(Ω,ΓT ,ΓN)

of the mixed formulation such that

(‖σ‖V + ‖u‖V + ‖p‖W ) ≤ C (‖G‖V ′ + ‖F‖V ′ + ‖r‖W ) .

Remark VIII.2.3.

The weak formulation of the Hodge Laplace equation leads to a semi-elliptic varia-
tional formulation over the intersection space HTΛk(Ω)∩HNΛk(Ω). It is not trivial
how to use this as the base of a Galerkin method (but see, e.g., [63] for approaches
in that direction). The reason is that every simplexwise polynomial subspace of
HTΛk(Ω)∩HNΛk(Ω) is necessarily a space of di�erential k-forms with coe�cients in
the Sobolev space H1(Ω). But such a space generally has in�nite codimension (see
Costabel [62]). By contrast, a Galerkin method based on the mixed formulation of
the Hodge Laplace equation requires only a conforming discretization of the spaces
HTΛk(Ω). Indeed, we will develop a convergent and stable mixed �nite element
method in this chapter.

As mentioned above, there exist re�nements of the Rellich embedding for special
domains and boundary conditions. To enable the discussion of this, it will be helpful
to discuss di�erential forms with coe�cients in Sobolev-Slobodeckij spaces of higher,
possibly non-integer order. We give only a few de�nitions, and refer to specialized
literature (e.g., [7, 45, 74, 158]) for further information.

We begin with the scalar-valued case. For every s ∈ N0 we let W s(Ω) denote the
Sobolev-Slobodeckij space of order s. This is a Hilbert space with scalar product

〈u, v〉W s(Ω) :=
s∑
r=0

∑
α∈A(r,n)

〈∂αu, ∂αv〉L2(Ω) , u, v ∈ W s(Ω), (VIII.36)

where the partial derivatives are taken in the weak sense. We write ‖ · ‖W s(Ω) for the
associated norm. Note that L2(Ω) = W 0(Ω). In order to treat fractional Sobolev
spaces, we introduce for every θ ∈ (0, 1) the (possibly in�nite) quantities

[u, v]W θ(Ω) :=

∫
Ω

∫
Ω

〈u(x)− u(y), v(x)− v(y)〉
|x− y|n+2θ

dxdy, u, v ∈ L2(Ω). (VIII.37)

The members of u ∈ L2(Ω) with [u, u]W θ(Ω) <∞ constitute the Hilbert spaceW θ(Ω),
the Sobolev-Slobodeckij space of order θ. This is a Hilbert space with scalar product

〈u, v〉W θ(Ω) := 〈u, v〉L2(Ω) + [u, v]W θ(Ω) . (VIII.38)
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We write ‖ · ‖W θ(Ω) for the corresponding norm.
Combining these de�nitions, we develop for s = r + θ with r ∈ N0 and θ ∈

(0, 1) the Sobolev-Slobodeckij space W s(Ω). This is a Hilbert space continuously
embedded in L2(Ω), and its scalar product is

〈u, v〉W s(Ω) = 〈u, v〉W r(Ω) +
∑

α∈A(r,n)

[∂αu, ∂αv]W θ(Ω) , u, v ∈ W s(Ω).

We write ‖·‖W s(Ω) for the corresponding norm. We avoid further details of fractional
Sobolev spaces at this point. We remark that W t(Ω) is continuously embedded in
W s(Ω) for t > s as can be veri�ed easily from de�nitions.

For k ∈ Z and s ∈ R+
0 we let W sΛk(Ω) denote the subspace of L2Λk(Ω) that is

spanned by di�erential k-forms with coe�cients in W s(Ω). This space is isometric
to a direct sum of several copies ofW s(Ω) and satis�es completely analogous proper-
ties as the scalar-valued instances. We let ‖·‖W sΛk(Ω) denote the corresponding norm.

We now provide the stronger versions of the Rellich embedding, which in this case
are known as Ga�ney inequalities. We say that a Ga�ney inequality with exponent
s ∈ R+ holds if there exists s ∈ R+

0 and C > 0 such that

‖u‖W sΛk(Ω) ≤ C‖u‖HTΛk(Ω)∩H?
NΛk(Ω), u ∈ HTΛk(Ω) ∩H?

NΛk(Ω). (VIII.39)

Such inequalities have been investigated under di�erent conditions. We mention
that a Ga�ney inequality with s = 1 holds if Ω is a strongly convex Lipschitz do-
main and ΓT ∈ {∅, ∂Ω} (see [140]). In general, a Ga�ney inequality with s = 1

2

holds for Ω being a weakly Lipschitz domain and ΓT being an admissible boundary
patch. Several Ga�ney inequalities with s ∈ [1

2
, 1] can be found in the literature

with various conditions on the domains and the boundary conditions, and we refer
to Subsection 7.7 of [9] for further information.

VIII.3. Conforming Discretizations

Having reviewed facts on the L2 de Rham complex, we now investigate its relation
to �nite element de Rham complexes. Let T be a triangulation of Ω and let U ⊆ T be
a triangulation of ΓT . Furthermore, let P : T → A be a hierarchical association of
admissible sequence types to simplices. We may consider the �nite element de Rham
complex with partial boundary conditions.

0→ PΛ0(T ,U)
d0

−−−→ . . .
dn−1

−−−→ PΛn(T ,U)→ 0 (VIII.40)

By the results of the previous chapter, there exist bounded operators

πk : L2Λk(Ω)→ PΛk(T ,U) ⊂ L2Λk(Ω), k ∈ Z,
that act as the identity on the �nite element spaces and for which the diagram

. . .
dk−1

−−−→ HΛk(Ω,ΓT )
dk−−−→ HΛk+1(Ω,ΓT )

dk+1

−−−→ . . .

πk

y πk+1

y
. . .

dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .
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3. Conforming Discretizations

commutes. Furthermore, the L2 operator norms of smoothed projections πk can be
bounded in terms of properties of Ω, the geometric shape constant, and the maximal
polynomial order indicated by P . In the sequel, we largely keep the dependence on
P implicit in the notation.

The �nite element de Rham complex is a Hilbert complex with respect to the L2

scalar product. Consequently, the theory of Hilbert complexes can be instantiated
similarly as for the L2 de Rham complex with tangential boundary conditions.

Since the �nite element spaces are �nite-dimensional, the �nite element de Rham
complex is bounded and closed. The k-th discrete harmonic space is de�ned as

Hk
P(T ,U) := ker

(
dk : PΛk(T ,U)→ PΛk+1(T ,U)

)
∩
(
dk−1PΛk−1(T ,U)

)⊥
.

(VIII.41)

This corresponds to the identity (VIII.9) satis�ed by harmonic spaces of a Hilbert
complex. The identity (VIII.8) is less helpful to de�ne Hk

P(T ,U) because the adjoint
of the discrete exterior derivative does not have a neat description.

We have the L2-orthogonal decomposition

PΛk(T ,U) = dk−1PΛk−1(T ,U)⊕ Hk
P(T ,U)

⊕ ker
(
dk : PΛk(T ,U)→ PΛk+1(T ,U)

)⊥
,

(VIII.42)

known as discrete Hodge decomposition. Moreover, there exists a constant CPF,P > 0
such that a discrete Poincaré-Friedrichs inequality holds:

∀u ∈ PΛk(T ,U) : ∃u0 ∈ PΛk(T ,U) ∩ ker dk : ‖u− u0‖L2Λk ≤ CPF,P‖dku‖L2Λk+1 .

The presence of the smoothed projections is an additional structure which allows
us to relate concepts of (VIII.40) to concepts of (VIII.24). This pertains to the
Poincaré-Friedrichs inequality. A consequence of Theorem 3.6 of [11], and its proof,
is the estimate

CPF,P ≤ ‖πk−1‖ · CPF. (VIII.43)

There are di�erent techniques to determine the dimensions of the discrete harmonic
spaces. We do not engage in this topic deeper here; in subsequent chapters we will
determine the dimensions of the harmonic spaces with di�erent methods. We show
that the dimension of Hk

P(T ,U) is the Betti number bk(Ω,ΓT ) of Ω relative to ΓT .

Finally, the smoothed projection can be used to provide a priori error estimates
in a Galerkin setting. We consider the mixed Hodge Laplace equation for the �nite
element de Rham complex with a right-hand side f ∈ L2Λk(Ω). We search for

(σh, uh, ph) ∈ PΛk−1(T ,U)× PΛk(T ,U)× Hk
P(T ,U)
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solving the discrete system

〈σh, τh〉 − 〈uh, dk−1τh〉 = 0, τh ∈ PΛk−1(T ,U), (VIII.44a)

〈dk−1σh, vh〉+ 〈dkuh, dkvh〉+ 〈ph, vh〉 = 〈f, vh〉, vh ∈ PΛk(T ,U), (VIII.44b)

〈uh, qh〉 = 0, qh ∈ Hk
P(T ,U). (VIII.44c)

Analogously to the mixed formulation of the original Hodge Laplace problem, the
problem on the �nite element spaces is well-posed. For every f ∈ L2Λk(Ω) there
exists a unique solution (σh, uh, ph) of (VIII.44), and we have

‖uh‖HΛk + ‖σh‖HΛk−1 + ‖ph‖L2Λk(Ω) ≤ C‖f‖L2Λk(Ω),

where C > 0 depends only on CPF,P . This discrete system can serve to compute
approximate solutions of the original system. We note that the variables uh and
σh are approximations to u and σ, respectively, in conforming �nite element spaces.
By contrast, the discrete harmonic form ph is an approximation to p in a generally
non-conforming space of discrete harmonic forms. If the space of discrete harmonic
forms is non-trivial, then a basis should be computed in the �rst place.

VIII.4. Finite Element Approximation

The smoothed projection allows us to derive a priori error estimates, relating the
respective solutions of (VIII.21) and (VIII.44) in a priori error estimates. We de�ne

E(v) := inf
vh∈PΛk(T ,U)

‖v − vh‖L2Λk(Ω), v ∈ L2Λk(Ω),

Ed(v) := inf
vh∈PΛk(T ,U)

‖v − vh‖HΛk(Ω), v ∈ HΛk(Ω),

a := sup
p∈Hk(Ω,ΓT ,ΓN )
‖p‖

L2Λk(Ω)
=1

‖p− πkp‖L2Λk(Ω).

Note that the quantity a measures the approximation of the harmonic forms by the
�nite element space.

Let (σ, u, p) solve the original mixed Hodge Laplace system (VIII.21) and let
(σh, uh, ph) solve the discrete Hodge Laplace system (VIII.44), then Theorem 3.9 of
[11] implies

‖σ − σh‖HΛk−1(Ω) + ‖u− uh‖HΛk(Ω) + ‖p− ph‖L2Λk(Ω)

≤ C

(
Ek−1

d (σ) + Ek
d (u) + Ek(p) + aEk

d (ud)

)
.

Here and below, ud is the L2Λk(Ω)-orthogonal projection of u onto dkHTΛk(Ω).

This priori error estimate shows the convergence of the method. Improved er-
ror estimates re�ect that in typical applications di�erent parts of the error display
di�erent convergence behaviors. We utilize the solution operator Gk in the case
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of the Hodge Laplace operator of the L2 de Rham complex with partial boundary
conditions along ΓT . In addition to the quantity a, we introduce the quantities

b := sup
f∈L2Λk(Ω)

f 6=0

‖(1− πk)Gkf‖L2Λk(Ω)

‖f‖L2Λk(Ω)

,

ckd := sup
f∈L2Λk(Ω)

f 6=0

‖(1− πk+1)dkGkf‖L2Λk+1(Ω)

‖f‖L2Λk(Ω)

,

ckδ := sup
f∈L2Λk(Ω)

f 6=0

‖(1− πk−1)δkGkf‖L2Λk−1(Ω)

‖f‖L2Λk(Ω)

,

c := sup{ckd, ckδ , ck−1
d , ck+1

δ }.

The mapping properties of Gk imply that these quantities are well-de�ned and
bounded in terms of CPF and the L2 norm of the smoothed projection. Via Theo-
rem 3.11 of [11] we conclude the existence of C > 0, depending only on CPF and the
L2 operator norm of the smoothed projection, such that

‖dk−1(σ − σh)‖L2Λk(Ω) ≤ CEk(dk−1σ),

‖σ − σh‖L2Λk−1(Ω) ≤ C
(
Ek−1(σ) + cEk(dk−1σ)

)
,

‖p− ph‖L2Λk(Ω) ≤ C
(
Ek(p) + aEk(dk−1σ)

)
,

‖dk(u− uh)‖L2Λk+1(Ω) ≤ C
(
Ek+1(dku) + cEk(dk−1σ) + cEk(p)

)
,

‖u− uh‖L2Λk(Ω) ≤ C

(
Ek(u) + cEk+1(dku) + cEk−1(σ)

+(c2 + b)
(
Ek(dk−1σ) + Ek(p)

)
+ aEk(ud)

)
.

Remark VIII.4.1.

The relevance of these estimates is that the quantities a, b, and c often display ad-
ditional convergence behavior, which facilitates improved error estimates. In appli-
cations, we have uniformly bounded sequences of �nite element de Rham complexes
with uniformly bounded smoothed projections, such that the projections converge
pointwise to the identity. One can then show, via compactness of the Rellich em-
bedding, that the quantities a, b, and c converge to zero. If a Ga�ney inequality
such as (VIII.39) is valid, then their convergence order can often be quanti�ed, e.g.
in terms of the mesh size using the Bramble-Hilbert lemma. We refer to [11] for a
discussion and further details.
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In this and the next chapter we devote ourselves to the interaction of �nite element
exterior calculus and topics in a posteriori error estimation. Our main reference is
an important publication by Braess and Schöberl [34], who provide multiple new
ideas in the area of vector-valued �nite element methods.

One of their contributions have been distributional �nite element sequences in the
language of vector calculus. The agenda of this chapter is to integrate this interest-
ing concept into �nite element exterior calculus and generalize it substantially. This
leads to the notion of discrete distributional di�erential form, from which we assem-
ble discrete distributional de Rham complexes. Apart from exploring the technical
de�nitions, we study the homology theory and the Poincaré-Friedrichs inequalities
of such de Rham complexes.

Distributional �nite element spaces appear throughout numerical analysis, in ar-
eas such as a posteriori error estimation and of discontinuous Galerkin methods. The
research on discrete distributional di�erential forms, however, produces new results
that return to conforming �nite element spaces again: for example, this research has
provided the �rst computation of the homology spaces and Poincaré-Friedrichs in-
equalities of (conforming) �nite element de Rham complexes with partial boundary
conditions.

Braess and Schöberl have introduced distributional �nite element sequences as
theoretical background for research on equilibrated a posteriori error estimation in
computational electromagnetism. Their seminal publication studies these sequences
in the language of vector calculus and with lowest polynomial order over local ele-
ment patches.

We have skimmed over several examples of distributional �nite element sequences
already in the introduction of this thesis. For further motivation we revisit these
objects, which are derived from the work of Braess and Schöberl. Here we employ
the formalism of vector calculus, close to [34], but the remainder of this chapter
employs the calculus of di�erential forms. Let Ω ⊂ R3 be a bounded polyhedral
domain with a triangulation T .

Our starting point is the lowest-order �nite element complex de�ned with respect
to this triangulation and satisfying boundary conditions:

P1
0 (T )

grad−−−→ Nd0
0(T )

curl−−−→ RT0
0(T )

div−−−→ P0
−1(T ). (IX.1)

This di�erential complex is assembled from the piecewise a�ne Lagrange elements
P1

0 (T ) with Dirichlet boundary conditions, the lowest-order Nédélec space Nd0
0(T )

with tangential boundary conditions, the lowest-order Raviart-Thomas space RT0
0(T )
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with normal boundary conditions, and the space of piecewise constant functions
P0
−1(T ).
The subindex of the last space indicates that no continuity or boundary con-

ditions are imposed. Similarly, we let RT0
−1(T ) denote the space of piecewise

lowest-order Raviart-Thomas vector �elds, without imposing normal continuity or
boundary conditions. The divergence of such a vector �eld exists in the sense of
distributions: if u ∈ RT0

−1(T ) with support over a tetrahedron T ∈ T 3, then

−
∫
T

u · gradφ dx =

∫
T

(div u)φ dx−
∑

F∈∆(T )2

∫
F

φ(u · ~nT,F ) ds, φ ∈ C∞(Ω),

(IX.2)

gives an explicit formula for the distributional divergence. Here ~nT,F denotes the
outward unit normal of T along F . The face integrals of φ are taken against constant
functions; we let RT0

−1(T 2) denote the space of distributions over C∞(Ω) spanned
by integral functionals over faces of T . We then write P0

−1(T 3) := P0
−1(T ) and

de�ne the space of distributions P0
−2(T ) := P0

−1(T 3) ⊕RT0
−1(T 2) as a direct sum.

This leads to another di�erential complex

P1
0 (T )

grad−−−→ Nd0
0(T )

curl−−−→ RT0
−1(T )

div−−−→ P0
−2(T ). (IX.3)

We repeat this construction. Let Nd0
−1(T ) denote the space of vector �elds that are

piecewise in the Nédélec space of lowest order but which do not necessarily satisfy
tangential continuity or boundary conditions. If u ∈ Nd0

−1(T ) is supported over a
tetrahedron T ∈ T 3, then it is observed for φ ∈ C∞(Ω) that∫

T

u · curlφ dx =

∫
T

curl u · φ dx−
∑

F∈∆(T )2

∫
F

u · (φ× ~nT,F ) ds. (IX.4)

This de�nes the distributional curl over Nd0
−1(T ). The face terms integrate the

tangential trace of φ against a tangential lowest-order Nédélec vector �eld over faces,
and we let Nd0

−1(T 2) denote the space of such functionals over vector �elds; we write
accordingly RT0

−1(T 3) := RT0
−1(T ). With RT0

−2(T ) := RT0
−1(T 3)⊕Nd0

−1(T 2) we
de�ne a space of distributions over C∞(Ω) and thus get a well-de�ned mapping
curl : Nd0

−1(T ) → RT0
−2(T ). In order to arrange a complete di�erential complex,

we want to determine the divergence over the space RT0
−2(T ). Letting Nd0

−1(T 1)
denote the space of distributions that are spanned by the integration over edges of
T and de�ning P0

−3(T ) := P0
−2(T ) ⊕Nd0

−1(T 1), we are in the position to consider
the di�erential complex

P1
0 (T )

grad−−−→ Nd0
−1(T )

curl−−−→ RT0
−2(T )

div−−−→ P0
−3(T ). (IX.5)

Finally, we let P1
−1(T ) denote the space of piecewise a�ne functions. If T ∈ T 3 and

u ∈ P1
−1(T ) is supported over T , then the distributional gradient of u is de�ned by

−
∫
T

(divφ)u dx =

∫
T

φ · gradu dx−
∑

F∈∆(T )2

∫
F

(φ · ~nT,F )u ds, φ ∈ C∞(Ω).

(IX.6)
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More generally, we let P1
−1(T 3), P1

−1(T 2), P1
−1(T 1), and P1

−1(T 0) denote the spaces
of functionals over C∞(Ω) spanned by integrals of functions against a�ne functions
over tetrahedra, by integrals of vector �elds against a�ne normal �elds along faces,
by integrals of vector �elds against a�ne tangential �elds along edges, and by point
evaluations, respectively. With a similar construction as above, we introduce the
di�erential complex

P0
−1(T )

grad−−−→ Nd0
−2(T )

curl−−−→ RT0
−3(T )

div−−−→ P0
−4(T ), (IX.7)

consisting of distributional �nite element spaces. These and similar di�erential com-
plexes have been discussed by Braess and Schöberl [34, Equations (3.3), (3.5), (3.7),
(3.16-3.18)] albeit only over local patches.

We can make several interesting observations at this point. The conforming
de Rham complex (IX.1) is a starting point for a succession of di�erential complexes,
�nishing with (IX.7). On the other hand, consider the di�erential complex

P0
−1(T 3)

grad−−−→ P0
−1(T 2)

curl−−−→ P0
−1(T 1)

div−−−→ P0
−1(T 0), (IX.8)

consisting of spaces of distributions spanned by taking volume averages, normal
averages along faces, tangential averages along lines, and point evaluations. This
is another subcomplex of (IX.7) and it is not di�cult to see that this complex is
isomorphic to the simplicial chain complex

C3(T )
∂3−−−→ C2(T )

∂2−−−→ C1(T )
∂1−−−→ C0(T ). (IX.9)

In this sense, the simplicial chain complex of T is a subcomplex of (IX.7), and
taking jump terms corresponds to applying the simplicial boundary operator. This
observation will be of fundamental importance throughout this chapter.

We can view the right-hand sides of the integration by parts formulas (IX.2),
(IX.4), and (IX.6) as composed of two di�erent classes of operators: a piecewise
di�erential operator on the one hand, and an operator corresponding to the �jump
terms� on the other hand. Whereas the jump terms play no role in the conforming
�nite element complex (IX.1), the situation is exactly reversed for the di�erential
complex (IX.8). This indicative of the fact that �taking jump terms� constitutes
di�erential complexes on its own. We employ the calculus of di�erential forms to
treat this in a uniform manner.

Furthermore, we are interested in understanding boundary conditions of dis-
tributional de Rham complexes. It is natural to de�ne such boundary conditions
indirectly by imposing boundary conditions on the test spaces. For example, if the
test functions are assumed to compactly supported, then the aforementioned jump
terms do not involve integrals associated to simplices of T included in the boundary
∂Ω of the domain. This suggests that the boundary conditions are partially encoded
in the di�erential operators of the di�erential complex, which is a phenomenon very
di�erent from the case of conforming �nite element de Rham complexes.

The notion of double complex in homological algebra puts these observations
into a broader context. The �ech de Rham complex in di�erential topology is the
most prominent example [178]. We remark that Falk and Winther [87] have recently
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IX. Discrete Distributional Di�erential Forms

introduced a �nite element �ech de Rham complex to �nite element theory, albeit
not for questions of homological nature. In our case we start with the following
diagram:

P1
−1(T 3)

gradT−−−→ Nd0
−1(T 3)

curlT−−−→ RT0
−1(T 3)

divT−−−→ P0
−1(T 3)y y y

P1
−1(T 2)

− gradT−−−−→ Nd0
−1(T 2)

− curlT−−−−→ RT0
−1(T 2)y y

P1
−1(T 1)

gradT−−−→ Nd0
−1(T 1)y

P1
−1(T 0)

(IX.10)

The spaces in this diagram have been introduced above. The horizontal mappings
are piecewise di�erential operators, thus the rows of the diagram are di�erential com-
plexes by themselves. Conversely, the vertical mappings correspond to the boundary
terms in partial integration formulas as we have used above. It is an original obser-
vation of this research that these �jump-terms� are operators in their own right and
that the columns of the above diagram are di�erential complexes.

The diagram (IX.10) is a double complex in the sense of homological algebra
[93]. The distributional �nite element sequence (IX.7) corresponds to the sequence
of diagonals, also called total complex, of the double complex. Furthermore, our ear-
lier observations transfer: the simplicial chain complex is included in the left-most
column, whereas the conforming �nite element complex with essential boundary
conditions is included in the top-most row.

Finite element exterior calculus has provided a uni�ed framework for conforming
�nite element de Rham complexes. The major contribution of the present chapter
is the extension of �nite element exterior calculus to distributional �nite element
de Rham complexes and their incorporation into the larger picture. On the one
hand, the machinery of exterior calculus may improves understanding of the original
Braess-Schöberl sequences. On the other hand, integrating distributional de Rham
complexes into �nite element exterior calculus provides new tools that are of inde-
pendent interest.

The original distributional �nite element sequences have been studied only for the
lowest-order case in two and three dimensions over local element patches. We switch
from classical vector calculus to the calculus of di�erential forms, and we study
distributional �nite element de Rham complexes over triangulations in arbitrary
dimensions and arbitrary topology, with general partial boundary conditions, and
without restrictions on the polynomial degree.

Again we give a rough outline of the theoretical framework. Let Ω ⊂ Rn be
a bounded weakly Lipschitz domain. Moreover we let T be a triangulation of Ω
and let V ⊆ T be the simplicial subcomplex that triangulates ∂Ω. We consider a
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conforming �nite element de Rham complex

. . .
dk−1

−−−→ PΛk(T ,V)
dk−−−→ PΛk+1(T ,V)

dk+1

−−−→ . . . (IX.11)

of the form discussed previously in this thesis (see Chapter IV). This di�erential
complex can be redirected at index k into a distributional de Rham complex if we
omit the inter-element continuity and the boundary conditions along V , leading to
di�erential complexes of the form

. . .
dk−2

−−−→ PΛk−1(T ,V)
dk−1

−−−→ PΛk
−1(T )

dk−−−→ PΛk+1
−2 (T )

dk+1

−−−→ . . . (IX.12)

Here, the subindex −1 indicates omitting the aforementioned continuity and bound-
ary conditions, and subsequent spaces are spanned by distributions containing func-
tionals associated to lower dimensional simplices. Via a succession of generalized
�nite element complexes we eventually arrive at the di�erential complex

0→ PΛ0
−1(T )

d0

−−−→ PΛ1
−2(T )

d1

−−−→ . . .
dn−1

−−−→ PΛn
−n−1(T )→ 0. (IX.13)

Similarly as in the preceding outline in the language of vector calculus, the simpli-
cial chain complex of T is isomorphic to a subcomplex of (IX.13). In the course of
this chapter we illuminate how properties of that subcomplex, such as the homol-
ogy theory or Poincaré-Friedrichs inequalities, can be related to the corresponding
properties of other discrete distributional de Rham complexes.

Distributional di�erential forms appear in di�erent areas of mathematics. Origi-
nally, de Rham [66] introduced the term �currents� for continuous linear functionals
on a class of locally convex spaces of smooth di�erential forms. Geometric integra-
tion theory [123] knows simplicial chain complexes as a speci�c example of currents,
which is also rediscovered in this work. Christiansen [54] has studied distributional
�nite element complexes in Regge calculus.

Given these di�erential complexes, how can we relate their homology spaces?
The answer adapts methods of homological algebra. We construct isomorphisms
between the homology spaces of the triangulation, the discrete harmonic forms of
the standard �nite element complex, and discrete distributional harmonic forms of
distributional �nite element complexes such as (IX.7). In particular, the homology
of these complexes re�ects topological properties of the domain. To the author's
best knowledge, this is the �rst derivation in the literature of the homology theory
of �nite element de Rham complexes with partial boundary conditions.

When a di�erential complex is equipped with a Hilbert space structure, then it
is natural to ask for Poincaré-Friedrichs inequalities. In the case of discrete distribu-
tional de Rham complexes we want to prove that the Poincaré-Friedrichs constants
with respect to mesh dependent norms can be bounded in terms of only the geom-
etry, the mesh regularity, and the polynomial order.

We recall that the conforming �nite element de Rham complexes over trian-
gulations of weakly Lipschitz domains satisfy such uniform inequalities; this follows
easily from the existence of uniformly bounded commuting projections. In particular
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IX. Discrete Distributional Di�erential Forms

the discrete Poincaré-Friedrichs constant CPF,P satis�es

∀ω ∈ dkPΛk(T ) : ∃ρ ∈ PΛk(T ) :

{
‖ρ‖L2Λk(Ω) ≤ CPF,P‖ω‖L2Λk+1(Ω),

dkρ = ω.
(IX.14)

In other words, the Poincaré-Friedrichs constant measures the norm of the gener-
alized solution operator for the �ux equation dkρ = ω. As we have seen in Chap-
ter VIII, the stability of �nite element methods for the Hodge Laplace equation can
be evaluated solely in terms of discrete Poincaré-Friedrichs constants.

In this chapter we establish analogous Poincaré-Friedrichs inequalities for com-
plexes of discrete distributional di�erential forms with respect to mesh-dependent
scalar products. Our analysis bounds the Poincaré-Friedrichs constants of discrete
distributional de Rham complexes in terms of the Poincaré-Friedrichs constant of
the complex of Whitney forms.

Speci�cally, we reduce the construction of a solution to the discrete distributional
�ux equation dkρ = ω between spaces of discrete distributional di�erential forms to
the solution of a �ux equation between spaces of simplicial chains. Solving that prob-
lem has stability and complexity comparable to the �ux equation between Whitney
forms as we demonstrate using the duality between the simplicial chain complex
and the complex of Whitney forms. The reduction to this simpli�ed problem em-
ploys only local computations and is the only part of the estimate that depends
on the polynomial order of the �nite element spaces. Here, Poincaré-Friedrichs and
inverse inequalities for the horizontal and vertical di�erential complexes, i.e., the
rows and columns of the diagram (IX.10), are instrumental and easy to prove via
scaling arguments.

Thus we bound, for example, the Poincaré-Friedrichs constant of (IX.13) in
terms of the Poincaré-Friedrichs constant of the complex of Whitney forms, up to
terms which are in�uenced only by the polynomial order and the mesh quality. We
have thus reduced a global problem on high-order �nite element spaces to a global
problem on lowest-order case.

A side product of this research pertains to the �ux equation dkρ = ω between
conforming �nite element spaces. Solving this equation can be reduced via local
operations to solving the analogous equation between spaces of simplicial chains.
Thus, algorithmically solving dkρ = ω requires a global computation only as di�-
cult as solving dkρ = ω between lowest-order Whitney forms, and additional local
operations whose stability and complexity may be polynomial order dependent.

IX.1. Basic De�nitions

Throughout this entire chapter we let T be a �nite simplicial complex and we
let U ⊆ T be a simplicial subcomplex. Moreover we assume that for each simplex
C ∈ T we have �xed a di�erential complex

. . .
dk−1
C−−−→ Λk(C)

dkC−−−→ Λk+1(C)
dk+1
C−−−→ . . . (IX.15)
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1. Basic De�nitions

where Λk(C), k ∈ Z, is a �nite-dimensional subspace of C∞Λk(C), and where we
have

trkC,F Λk(C) = Λk(F ), k ∈ Z, C ∈ T , F ∈ ∆(C). (IX.16)

In particular we have a commuting diagram

. . .
dk−1
C−−−→ Λk(C)

dkC−−−→ Λk+1(C)
dk+1
C−−−→ . . .

trkC,F

y trk+1
C,F

y
. . .

dk−1
F−−−→ Λk(F )

dkF−−−→ Λk+1(F )
dk+1
F−−−→ . . .

Remark IX.1.1.

In many applications, T is the triangulation of an n-dimensional topological mani-
fold with boundary, often even a polyhedral domain in Rn. The subcomplex U is the
triangulation of an admissible boundary patch. In this chapter, however, such as-
sumptions are not necessary as such. Additional assumptions on the triangulations
will be required later for stronger results.

Example IX.1.2.

An example for the di�erential complexes (IX.15) is given in Chapter IV. Let
P : T → A be a family of admissible sequence types associated to simplices that
satisfy the hierarchy condition. We then de�ne

Λk(C) := trkC PΛk(T ), C ∈ T .

By construction, we have a surjective mapping trkC,F : Λk(C)→ Λk(F ) for all C ∈ T
and F ∈ ∆(C). This is the most important example for the di�erential complexes
(IX.15) in this chapter.

We introduce the direct sums

Λk
−1(T m,U) :=

⊕
C∈T m\Um

Λk(C), k,m ∈ Z. (IX.17)

We also introduce the alternative notation

Γk−1(T m,U) := Λk
−1(T m,U), k,m ∈ Z, (IX.18)

to be motivated soon in this chapter. We write ωC for the component of ω ∈
Λk
−1(T m,U) associated to the simplex C ∈ T m \ Um.

We now de�ne two operators which feature the di�erential property and which
are central objects of investigation in this chapter. Let k,m ∈ Z. We �rst de�ne
the horizontal di�erential operator

Dm
k : Λk

−1(T m,U) −→ Λk+1
−1 (T m,U) (IX.19)

by applying the exterior derivative on each simplex, which means that

Dm
k ω :=

∑
C∈T m\Um

dkCωC , ω ∈ Λk(T m,U). (IX.20)

175



IX. Discrete Distributional Di�erential Forms

It is obvious that

Dm
k+1D

m
k ω = 0, ω ∈ Λk(T m,U). (IX.21)

The simplicial chain complex of T relative to U is an additional structure in this
context, and it is not quite as obvious that this gives rise to another di�erential
operator on the spaces Λk

−1(T m,U). We de�ne the vertical di�erential operator

Tmk : Γk−1(T m,U) −→ Γk−1(T m−1,U) (IX.22)

by setting

Tmk ω :=
∑

C∈T m\Um
F∈T m−1\Um−1

F∈∆(C)

o(F,C) trkC,F ωC , ω ∈ Γk(T m,U). (IX.23)

It is easy to see that

Tm−1
k Tmk ω = 0, ω ∈ Γk−1(T m,U), (IX.24)

as follows by checking that for all ω ∈ Γk−1(T m,U) we have

Tm−1
k Tmk ω =

∑
C∈T m\Um

F∈∆(C)m−1\Um−1

f∈∆(F )m−2\Um−2

o(F,C)o(f, F ) trkC,f ωC = 0.

The di�erential property of the vertical di�erential is completely analogous to the
di�erential property of the simplicial boundary operator (II.42).

It is obvious from the construction that

Dm−1
k Tmk ω = Tmk+1D

m
k ω, ω ∈ Λk

−1(T m,U). (IX.25)

Lastly, it will be of interest to study the kernels of the operators Dm
k and Tmk in their

own right. We de�ne

Λk(T m,U) :=
{
ω ∈ Λk

−1(T m,U)
∣∣ Tmk ω = 0

}
, (IX.26)

Γk(T m,U) :=
{
ω ∈ Γk−1(T m,U)

∣∣ Dm
k ω = 0

}
. (IX.27)

Remark IX.1.3.

The horizontal and the vertical di�erential operator have many analogous properties.
As the reader may already tell, the spaces with symbol Λ will be used when discussing
the horizontal di�erential operator, and the spaces with symbol Γ will be used when
discussing the vertical di�erential operator. Using such notation will be helpful in
later parts of this chapter.

Due to the di�erential properties (IX.21) and (IX.24), we can introduce several
di�erential complexes. For each m ∈ Z �xed, we may consider the di�erential
complex

. . .
Dmk−1−−−→ Λk

−1(T m,U)
Dmk−−−→ Λk+1

−1 (T m,U)
Dmk+1−−−→ . . . (IX.28)
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1. Basic De�nitions

and, because of (IX.25), we may also consider the subcomplex

. . .
Dmk−1−−−→ Λk(T m,U)

Dmk−−−→ Λk+1(T m,U)
Dmk+1−−−→ . . . (IX.29)

Analogously, for each k ∈ Z �xed, we have the di�erential complex

. . .
Tm+1
k−−−→ Γk−1(T m,U)

Tmk−−−→ Γk−1(T m−1,U)
Tm−1
k−−−→ . . . (IX.30)

and, because of (IX.25), a subcomplex is given by

. . .
Tm+1
k−−−→ Γk(T m,U)

Tmk−−−→ Γk(T m−1,U)
Tm−1
k−−−→ . . . (IX.31)

The homology spaces of these complexes will be determined in the course of this
chapter.

We also consider scalar products on the spaces Λk
−1(T m,U) = Γk−1(T m,U). These

allow us to utilize the framework of Hilbert complexes in this chapter. For a par-
ticularly relevant family of scalar products, suppose that we have chosen a family
α : Z → R of real numbers, and suppose that for each C ∈ T and k ∈ Z we have
�xed a scalar product

〈·, ·〉L2Λk(C) : Λk(C)× Λk(C)→ R.

We then de�ne the scalar product

〈ω, η〉α =
∑

C∈T m\Um
h
α(m)
C 〈ωC , ηC〉L2Λk(C), ω, η ∈ Λk

−1(T m,U).

Example IX.1.4.

Suppose that T is n-dimensional and let k,m ∈ Z. Generalizing a scalar product
used by Braess and Schöberl [34, Subsection 3.4], we may consider

〈ω, η〉h :=
∑

C∈T m\Um
hn−mC 〈ωC , ηC〉L2Λk(C), ω, η ∈ Λk

−1(T m,U). (IX.32)

Another scalar product takes the form

〈ω, η〉−h :=
∑

C∈T m\Um
hm−nC 〈ωC , ηC〉L2Λk(C), ω, η ∈ Λk

−1(T m,U). (IX.33)

Later in this chapter we prove Poincaré-Friedrichs inequalities with respect to the
scalar product (IX.33).

In order to motivate these de�nitions and the terminology, in particular the term
discrete distributional di�erential form, we consider the following example in detail.

Example IX.1.5.

Assume that Ω ⊆ Rn is a weakly Lipschitz domain and that ΓT is an admissible
boundary patch. Additionally we assume that T is a triangulation of Ω, and that
U is a simplicial subcomplex of T that triangulates ΓT . We let ΓN be the boundary
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IX. Discrete Distributional Di�erential Forms

patch complementary to ΓT . There exists a simplicial subcomplex V of T that
triangulates ΓN . For every k ∈ Z we let C∞Λk(Ω,ΓT ) be the space of smooth
di�erential k-forms over Ω that are restrictions of smooth di�erential k-forms over
Rn and whose boundary trace vanishes over ΓT .

We consider a simplex C ∈ T m \ Um and a di�erential k-form ωC ∈ Λk(C) over
C. For every smooth di�erential form φ ∈ C∞Λn−m+k(Ω,ΓT ) we de�ne

〈ωC , φ〉 :=

∫
C

ωC ∧ trm−kC ?φ.

Since ?Ωφ ∈ C∞Λm−k(Ω,ΓT ), we easily verify that this integral is well-de�ned. We
also note that this pairing generalizes the L2 scalar product of di�erential forms.
Thus ωC acts as a functional on C∞Λm−k(Ω,ΓT ), and in this sense, ωC is a distri-
butional di�erential form. Since ωC will be a member of a �nite element space of
polynomial di�erential forms over C, we call it a discrete distributional di�erential
form. Consequently, Λk

−1(T m,U) is a �nite-dimensional space of functionals over
C∞Λn−m+k(Ω,ΓT ).

To give a motivation for the horizontal and vertical di�erential operators, suppose
that ψ ∈ C∞Λn−m+k+1(Ω,ΓT ). By the de�nition of the codi�erential (V.17) we �nd

〈ωC , δn−m+k+1ψ〉 = (−1)n−m+k+1

∫
C

ωC ∧ trm−kC ? ?−1 dm−k−1 ? ψ

= (−1)n−m+k+1

∫
C

ωC ∧ trm−kC dm−k−1 ? ψ

= (−1)n−m+k+1

∫
C

ωC ∧ dm−k−1
C trm−k−1

C ?ψ.

By Stokes' theorem over simplices (III.3), we have∫
C

ωC ∧ dm−k−1
C trm−k−1

C ?ψ = (−1)k+1

∫
C

dkCωC ∧ trm−k−1
C ?ψ

+ (−1)k
∑

F∈∆(C)m−1

F /∈U

o(F,C)

∫
F

trkC,F ωC ∧ trm−k−1
F ?ψ.

In combination, this means that

〈ωC , δn−m+k+1ψ〉 = (−1)n−m
∫
C

dkCωC ∧ trm−k−1
Ω,C ?Ωψ

+ (−1)n−m+1
∑

F∈∆(C)m−1

F /∈U

o(F,C)

∫
F

trkC,F ωC ∧ trm−k−1
F ?ψ,

which we restate as

〈ωC , δn−m+k+1ψ〉 = (−1)n−m〈Dm
k ωC , ψ〉+ (−1)n−m+1〈Tmk ωC , ψ〉.

This motivates the introduction of the horizontal and vertical di�erential operators.
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Now we motivate the spaces Λk(T m,U) and Γk(T m,U). Consider the special case
m = n and suppose that ω ∈ Λk(T n,U). The condition Tnkω = 0 then means that for
all distinct n-simplices T, T ′ ∈ T n sharing a common face F ∈ ∆(T )n−1 ∩∆(T ′)n−1

we have

o(F, T ) trkT,F ωT + o(F, T ′) trkT ′,F ωT ′ = 0.

We conclude that trkT,F ωT = trkT ′,F ωT ′ since T and T ′ induce opposing orientations
on F . Moreover, if T ∈ T n and F ∈ ∆(T )n−1 with F ∈ V , then Tnkω = 0 implies
that

trkT,F ωT = 0.

In summary, this means that each ω ∈ Λk(T n,U) has single-valued traces and
satis�es homogeneous boundary conditions along ΓN . In particular, if additionally
the assumptions of Example IX.1.2 hold, then

Λk(T n,U) = PΛk(T ,V).

Thus we see that when boundary conditions are imposed on the test function space
along ΓT , triangulated by U , then boundary conditions are imposed on the conform-
ing �nite element spaces along ΓN , triangulated by V .

As a motivation for introducing Γk(T m,U) we consider the special case k = 0.
Suppose that Λk(C) contains the constant function 1C for each C ∈ T m. Then
Γ0(T m,U) is just the space of constant functions associated to m-simplices in T \U .
Consequently, Γ0(T m,U) is isomorphic to Cm(T ,U), and the vertical di�erential
operator corresponds, up to signs, to the simplicial boundary operator.

Remark IX.1.6.

Our notion of discrete distributional di�erential form is similar but di�erent from
the notion of currents [66] introduced by de Rham. Currents over an n-dimensional
smooth manifold in the sense of de Rham are (n − k)-forms with distributional
coe�cients, which act as functionals on compactly supported smooth k-forms. This
extends the canonical pairing of (n − k)-forms and k-forms. The notion of current
only employs the di�erentiable structure on manifolds. By contrast, our notion
extends the L2 pairing of di�erential forms of the same degree and thus requires a
Riemannian metric.

IX.2. Homology of Horizontal Complexes

In this section we study the homology spaces of the horizontal di�erential com-
plexes (IX.28). These homology spaces are isomorphic to the direct sum of the
homology spaces of the di�erential complexes on simplices (IX.15). This is an easy
observation that we make explicit because its analogue regarding the vertical di�er-
ential complexes will not be as obvious.

It is instrumental that the horizontal complexes can be localized in the sense of
the following lemma.
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Lemma IX.2.1.

Let m ∈ Z. Then the di�erential complex

. . .
Dmk−1−−−→ Λk

−1(T m,U)
Dmk−−−→ Λk+1

−1 (T m,U)
Dmk+1−−−→ . . . (IX.34)

is the direct sum of the di�erential complexes

. . .
dk−1
C−−−→ Λk(C)

dkC−−−→ Λk+1(C)
dk+1
C−−−→ . . . (IX.35)

over C ∈ T m \ Um.

Proof. This is evident from the de�nitions.

In order to control the homology of the horizontal complexes, we introduce a new
condition. We say that the local exactness condition holds if for each C ∈ T \U , the
sequence (IX.34) is exact at every non-zero index and furthermore ker d0

C is spanned
by the constant functions over C. This implies that the di�erential complex

0→ ker d0
C −−−→ Λ0(C)

d0
C−−−→ Λ1(C)

d1
C−−−→ . . . (IX.36)

is exact for each C ∈ T m \ Um, and that ker d0
C = span{1C}. The following result is

easily veri�ed.

Lemma IX.2.2.

Assume that the local exactness condition holds. Let m ∈ Z. Then

ker
(
Dm
k : Λk

−1(T m,U)→ Λk+1
−1 (T m,U)

)
= ran

(
Dm
k−1 : Λk−1

−1 (T m,U)→ Λk
−1(T m,U)

)
for k ∈ Z \ {0}, and

ker
(
Dm

0 : Λ0
−1(T m,U)→ Λ1

−1(T m,U)
)

=
⊕

C∈T m\Um
span{1C}.

Example IX.2.3.

We recall the setting of Example IX.1.2. Suppose we have �xed an admissible
sequence type PC ∈ A for each C ∈ T such that PF ≤ PC for F ∈ ∆(C) and
C ∈ T . Then the sequences

. . .
dk−1
C−−−→ PCΛk(C)

dkC−−−→ PCΛk+1(C)
dk+1
C−−−→ . . .

realize the absolute cohomology of the simplex C, and hence the local exactness
condition holds. To see this, we �rst recall that 1C ∈ PCΛ0(C) by construction. On
the other hand, suppose that k > 0 and that ω ∈ PCΛk(C) with dkCω = 0. Without
loss of generality, we assume that C is full-dimensional. Because the L2 de Rham
complex over contractible domains realizes the absolute cohomology, there exists ξ ∈
HΛk−1(C) such that dk−1ξ = ω. We invoke the L2 bounded commuting projection
πk−1 of Chapter VII and check that πk−1ξ ∈ PΛk−1(C) with dk−1πk−1ξ = ω. This
yields the property required for this example.
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3. Homology of Vertical Complexes

IX.3. Homology of Vertical Complexes

We study the homology spaces of the vertical complexes in this section, which
parallels the study of the homology spaces of the horizontal complexes of the previ-
ous section in many regards. The crucial observation is the local decomposition of
the vertical complexes.

Let m ∈ Z and consider the di�erential complex

. . .
Tm+1
k−−−→ Γk−1(T m,U)

Tmk−−−→ Γk−1(T m−1,U)
Tm−1
k−−−→ . . . (IX.37)

In order to decompose this complex into local contributions, some additional as-
sumptions need to be made.

First we introduce the notation

Γ̊k(C) :=
{
ω ∈ Γk(C)

∣∣ ∀F ∈ ∆(C) \ {C} : trkC,F ω = 0
}

(IX.38)

for the subspace of Γk(C) whose members have vanishing trace on the proper sub-
simplices of C. We say that the geometric decomposition condition holds if we have
linear extension operators

extkF,C : Γ̊k(F )→ Γk(C),

for every C ∈ T and F ∈ ∆(C) such that

(i) for all F ∈ T we have

extkF,F ω = ω, ω ∈ Γ̊k(F ), (IX.39a)

(ii) for all C ∈ T with F ∈ ∆(C) and f ∈ ∆(F ) we have

trkC,F extkf,C = extkf,F , (IX.39b)

(iii) and for all C ∈ T and F,G ∈ ∆(C) with F /∈ ∆(G) we have

trkC,G extkF,C = 0. (IX.39c)

Note that the extension operators extkF,C are largely analogous to the assumptions
on the local extension operators in Chapter IV. Under these conditions we obtain a
representation of Γk−1(T m,U) as a direct sum similar to the geometric decomposition
in Chapter IV.

Lemma IX.3.1.

Let k,m ∈ Z. Then

Γk−1(T m,U) =
⊕

C∈T m\Um

⊕
F∈∆(C)

extkF,C Γ̊k(F ). (IX.40)
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Proof. Let ω ∈ Γk−1(T m,U) and let C ∈ T m \ Um. We de�ne recursively

ω̊
(F )
C := trkC,F

ω − ∑
f∈∆(C)

dim f<dimF

extkf,C ω̊
(f)
C

 .

It is easy to see that ω̊(V )
C ∈ Γ̊k(V ) for V ∈ ∆(C)0. Next, suppose that F ∈ ∆(C)

and that ω̊(f)
C ∈ Γ̊k(f) for f ∈ ∆(C) with dim f < dimF . Then we easily see that

ω̊
(F )
C is well-de�ned and a member of Γ̊k(F ). An induction argument gives

ωC =
⊕

F∈∆(C)

extkF,C ω̊
(F )
C . (IX.41)

The desired claim follows.

Assuming that the geometric decomposition assumption holds, we can now con-
struct the local vertical complexes. We de�ne

Γmk (F ) :=
⊕

C∈T m\Um
F∈∆(C)

extkF,C Γ̊k(F ), F ∈ T , m ∈ Z. (IX.42)

The next two lemmas formalize that these spaces enable a local decomposition of
the vertical di�erential complexes.

Lemma IX.3.2.

Let m, k ∈ Z. Then

Γk−1(T m,U) =
⊕
F∈T

Γmk (F ).

Proof. Using De�nition (IX.42) we observe

Γk−1(T m,U) =
⊕

C∈T m\Um

⊕
F∈∆(C)

extkF,C Γ̊k(F )

=
⊕
F∈T

C∈T m\Um
F∈∆(C)

extkF,C Γ̊k(F )

=
⊕
F∈T

⊕
C∈T m\Um
F∈∆(C)

extkF,C Γ̊k(F ) =
⊕
F∈T

Γmk (F ),

which is the desired result.

Lemma IX.3.3.

Let m, k ∈ Z and F ∈ T . Then Tmk Γmk (F ) ⊆ Γm−1
k (F ).
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Proof. Let C ∈ T m \ Um with F ∈ ∆(C), and let ωFC = extkF,C ω̊
F
C for some ω̊FC ∈

Γ̊k(F ). Then ωFC ∈ Γmk (F ), and we calculate

Tmk ω
F
C =

∑
G∈T m−1\Um−1

G∈∆(C)

o(G,C) trkC,G ω
F
C

=
∑

G∈T m−1\Um−1

G∈∆(C)

o(G,C) trkC,G extkF,C ω̊
F
C

=
∑

G∈T m−1\Um−1

G∈∆(C)

o(G,C) extkF,G ω̊
F
C ,

where we used Lemma IX.3.1. The �nal expression is an element of Γmk (F ), which
implies the desired result.

In combination, these observations imply the following decomposition of vertical
complexes.

Lemma IX.3.4.

Assume the geometric decomposition condition holds. Let k ∈ Z. Then the di�er-
ential complex

. . .
Tm+1
k−−−→ Γk−1(T m,U)

Tmk−−−→ Γk−1(T m−1,U)
Tm−1
k−−−→ . . . (IX.43)

is the direct sum of the di�erential complexes

. . .
Tm+1
k−−−→ Γmk (F )

Tmk−−−→ Γm−1
k (F )

Tm−1
k−−−→ . . . (IX.44)

over all F ∈ T \ U .

We have decomposed the vertical di�erential complexes into local di�erential
complexes associated to simplices of T . The next step is analyze the homology
spaces of the local vertical complexes. At this point we refer to material from
Section II.1 in Chapter II, in particular the de�nition of the micropatch M(T , F )
and the micropatch boundary N (T ,U , F ). We prove the following algebraic result.

Lemma IX.3.5.

Let F ∈ T and k ∈ Z. Then the di�erential complex

. . .
Tm+1
k−−−→ Γmk (F )

Tmk−−−→ Γm−1
k (F )

Tm−1
k−−−→ . . . (IX.45)

is isomorphic to the di�erential complex

. . .
∂m+1⊗Id−−−−−→ CFm(T ,U)⊗ Γ̊k(F )

∂m⊗Id−−−−→ CFm−1(T ,U)⊗ Γ̊k(F )
∂m−1⊗Id−−−−−→ . . . (IX.46)

Proof. For the duration of this proof, we introduce linear mappings

Θm : CFm(T ,U)⊗ Γ̊k(F )→ Γmk (F )
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for m ∈ Z that are de�ned by setting

Θm

(
C ⊗ ω̊(F )

)
:= extkF,C ω̊

(F )

for C ∈ M(T , F )m \ N (T ,U , F )m and ω̊(F ) ∈ Γ̊k(F ). Each of these mappings is
invertible, and we observe

Θm

(
∂mC ⊗ ω̊(F )

)
=

∑
G∈T m−1\Um−1

G∈∆(C)

o(G,C)Θm

(
G⊗ ω̊(F )

)
=

∑
G∈T m−1\Um−1

G∈∆(C)

o(G,C) extkF,G ω̊
(F )

=
∑

G∈T m−1\Um−1

G∈∆(C)

o(G,C) trkC,G extkF,C ω̊
(F )

= Tmk extkF,C ω̊
(F )

= Tmk Θm

(
C ⊗ ω̊(F )

)
.

This means that the isomorphisms Θm constitute a isomorphism of the di�erential
complexes (IX.45) and (IX.46). This completes the proof.

The simplicial homology spaces of the micropatches, which we have discussed in
Chapter II, determine the homology spaces of the vertical complexes provided that
the geometric decomposition condition holds. We are particularly interested in the
following special case. We say that the local patch condition holds if

bFm(T ,U) = 0, m ∈ Z \ {n}, F ∈ T .

We can then characterize the homology spaces of the vertical di�erential complex
(IX.37) in the following manner.

Lemma IX.3.6.

Suppose that the geometric decomposition condition and the local patch condition
are satis�ed. Then we have

ker
(
Tmk : Γk−1(T m,U)→ Γk−1(T m−1,U)

)
= ran

(
Tm+1
k : Γk−1(T m+1,U)→ Γk−1(T m,U)

)
for m ∈ Z \ {n} and k ∈ Z.

It is not straight-forward to give an intuitive characterization of the spaces
Γk(T m,U) in the general case. If T triangulates a manifold, then additional structure
is available, and we obtain the following result as a consequence of Lemma II.7.1.

Lemma IX.3.7.

Suppose T triangulates an n-dimensional topological manifold M with boundary,
and that U triangulates a topological submanifold Γ of ∂M of dimension n − 1
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with boundary. There exists a simplicial subcomplex V ⊂ T that triangulates the
closure of the complement of Γ in ∂Ω. Assume that the geometric decomposition
assumption holds true, and let k ∈ Z. Then Lemma IX.3.6 applies, and for every
ω ∈ Γk(T n,U) we have

ω =
∑

F∈T \V

∑
T∈T n
F∈∆(T )

extkF,T ω̊
(F ),

where ω̊(F ) ∈ Γ̊k(F ) for F ∈ T \ V .

IX.4. A First Application

We have introduced practically feasible conditions under which the horizontal
and vertical di�erential complexes have homology spaces that are easy to describe.
At this point, we can already provide a result on the homology theory of conforming
�nite element complexes. We consider the diagram

0 −−−→ Λ0(T n,U)
Dn0−−−→ Λ1(T n,U)

Dn1−−−→ . . .y y y
Γ0(T n,U) −−−→ Λ0

−1(T n,U)
Dn0−−−→ Λ1

−1(T n,U)
Dn1−−−→ . . .

−Tn0

y −Tn0

y −Tn1

y
Γ0(T n−1,U) −−−→ Λ0

−1(T n−1v)
−Dn−1

0−−−−→ Λ1
−1(T n−1,U)

−Dn−1
1−−−−→ . . .

Tn0

y Tn−1
0

y Tn−1
1

y
. . . . . . . . .

(IX.47)

The left-most horizontal and the top-most vertical arrows denote the respective
inclusion mappings. The choice of signs on the arrows in this diagram is motivated
by our observations in Example IX.1.5. We recall the identities

Dm
k+1D

m
k = 0, Tm−1

k Tmk = 0, Tmk+1D
m
k = Dm−1

k Tmk .

This implies that (IX.47) constitutes a double complex in the sense of [93, Chapter 1,
� 3.5]. This allows us to utilize known results from homological algebra in our
setting. Speci�cally, in this section we will derive a result on the homology spaces
of the di�erential complexes (IX.29) and (IX.31). We notate the homology spaces
of the di�erential complexes (IX.29) and (IX.31) by

HΛk(T n,U) :=
ker
(
Dn
k : Λk(T n,U)→ Λk+1(T n,U)

)
ran
(
Dn
k−1 : Λk−1(T n,U)→ Λk(T n,U)

) ,
HΓ0(T m,U) :=

ker (Tm0 : Γ0(T m,U)→ Γ0(T m−1,U))

ran
(
Tm+1

0 : Γ0(T m+1,U)→ Γ0(T m,U)
) .

With a result from homological algebra, we obtain the following fact.
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Theorem IX.4.1.

Assume that the local exactness condition, the geometric decomposition condition,
and the local patch condition hold. Then the rows and columns of (IX.47) are
exact, with the possible exception of the top-most row and the left-most column.
Moreover,

Γ0(T n−k,U) ' C0(T n−k,U). (IX.48)

and we have isomorphisms between homology spaces

Hn−k(T ,U) ' HΓ0(T n−k,U) ' HΛk(T n,U) (IX.49)

for 0 ≤ k ≤ n.

Proof. Under the assumptions of the theorem, the rows and columns of (IX.47)
are exact, with the possible exception of the top-most row and left-most column.
This follows from Lemma IX.2.2 and Lemma IX.3.6. The local exactness condition
implies in particular that Γ0(T m,U) ' C0(T m,U) for all m ∈ Z, and that the
following diagram commutes:

Γ0(T m,U)
'−−−→ C0(T m,U)

Tm0

y ∂m

y
Γ0(T m−1,U)

'−−−→ C0(T m−1,U)

Hence (IX.48) and the �rst isomorphism in (IX.49) follow. Finally, the second iso-
morphism in (IX.49) follows via a standard result in homological algebra on double
complexes; see for example Proposition 3.11 of [150], Chapter 9.2 of [31], or Corol-
lary 6.4 of [14].

Example IX.4.2.

We continue our example application. The di�erential complex

0 −−−→ Λ0(T n,U)
d0

−−−→ . . .
dn−1

−−−→ Λn(T n,U) −−−→ 0, (IX.50)

is composed of spaces of �nite element di�erential forms whose traces on simplices
of V vanish. This is a conforming discretization of the L2 de Rham complex with
partial tangential boundary conditions along ΓT . The dimension of the homology
spaces HΛk(T n,U) of the �nite element complex are related to the Betti numbers.
We have

dimHΛk(T n,U) = bn−k(Ω,ΓN)

= dimHn−k(Ω,ΓN ,ΓT )

= dimHk(Ω,ΓT ,ΓN) = bk(Ω,ΓT )

for 0 ≤ k ≤ n. This includes the special cases ΓT = ∅ and ΓT = Γ, which have been
treated earlier in the literature [58].
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Remark IX.4.3.

Christiansen has analyzed the �nite element de Rham cohomology on triangulated
manifolds without boundary [52]. Arnold, Falk and Winther have derived the �-
nite element de Rham cohomology without boundary conditions over domains from
the L2 de Rham complex [9], which Christiansen and Winther have successively
extended to the case of essential boundary conditions [58]. Christiansen et al. have
also derived the �nite element de Rham cohomology without boundary conditions
within the framework of element systems via de Rham mappings [56]. With dif-
ferent techniques, we have derived the �nite element de Rham cohomology without
reference to the L2 de Rham complex.

IX.5. Discrete Distributional de Rham Complexes

In this section we introduce discrete distributional de Rham complexes. We con-
tinue to assume that T is a �nite n-dimensional simplicial complex, and that U is a
simplicial subcomplex.

For k,m, b ∈ Z we introduce the direct sums

Λk
−b(T m,U) :=

b−1∑
i=0

Λk−i
−1 (T m−i,U), (IX.51a)

Γk−b(T m,U) :=
b−1∑
i=0

Γk+i
−1 (T m+i,U). (IX.51b)

From now on we may also write

Λk
0(T m,U) = Λk(T m,U), Γk0(T m,U) = Γk(T m,U)

whenever convenient. We remark that

Λk
−b(T m,U) ⊆ Λk

−b−1(T m,U), Γk−b(T m,U) ⊆ Γk−b−1(T m,U),

and that for b ≥ 1 we have

Λk
−b(T m,U) = Γk−b+1

−b (T m−b+1,U),

as is easily veri�ed from de�nitions.
We introduce the discrete distributional exterior derivative

dn−m+k : Λk
−1(T m,U)→ Λk+1

−1 (T m,U)⊕ Λk
−1(T m−1,U)

by setting

dn−m+kω := (−1)n−mDm
k ω + (−1)n−m+1Tmk ω, ω ∈ Λk

−1(T m,U).

This operator is inspired by the observations in Example IX.1.5. Taking direct sums,
we obtain operators

dn−m+k : Λk
−b(T m,U)→ Λk+1

−b−1(T m,U),

dn−m+k : Γk−b(T m,U)→ Γk−b−1(T m−1,U).
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Via (IX.21), (IX.24) and (IX.25), we verify the di�erential property

dn−m+k+1dn−m+kω = 0, ω ∈ Λk
−b(T m,U).

This di�erential property motivates us to consider di�erential complexes of discrete
distributional di�erential forms assembled from spaces of the type Λk

−b(T m,U) and
Γk−b(T m,U), which leads us to the notion of discrete distributional de Rham complex.
Consider again the di�erential complex

0→ Λ0(T n)
d0

−−−→ . . .
dn−1

−−−→ Λn(T n)→ 0, (IX.52)

which resembles the standard �nite element complex. This complex may be �redi-
rected� at any index k in the following sense: we replace Λk(T n) with Λk

−1(T n),
and continue with the spaces Λk+1

−2 (T n), Λk+2
−3 (T n), and so forth, where the exterior

derivative is to be understood in the generalized sense. We thus have a di�erential
complex

. . .
dk−2

−−−→ Λk−1(T n)
dk−1

−−−→ Λk
−1(T n)

dk−−−→ Λk+1
−2 (T n)

dk+1

−−−→ . . . (IX.53)

We see that the original complex is already trivially redirected at the n-forms, not-
ing Λn(T n) = Λn

−1(T n). The original �nite element complex is a subcomplex of the
di�erential complex redirected at the (n − 1)-forms. In turn, the latter is a sub-
complex of the di�erential complex redirected at the n − 2 forms. More generally,
the di�erential complex redirected at the k-forms is a subcomplex of the di�erential
complex redirected at the (k − 1)-forms.

. . .
dk−2

−−−→ Λk−1
−1 (T n)

dk−1

−−−→ Λk
−2(T n)

dk−−−→ Λk+1
−3 (T n)

dk+1

−−−→ . . .x x x
. . .

dk−2

−−−→ Λk−1(T n)
dk−1

−−−→ Λk
−1(T n)

dk−−−→ Λk+1
−2 (T n)

dk+1

−−−→ . . .

(IX.54)

We thus have a succession of (inclusions of) di�erential complexes of discrete dis-
tributional di�erential forms. Proceeding in this manner, we eventual obtain a
�maximal� di�erential complex that is redirected already at the 0-forms:

0→ Λ0
−1(T n)

d0

−−−→ . . .
dn−1

−−−→ Λn
−n−1(T n)→ 0. (IX.55)

We have constructed a family of di�erential complexes starting from the original
�nite element complex (IX.52) and completely analogously we start a similar con-
struction with the di�erential complex of simplicial chains. Consider the di�erential
complex

0→ Γ0(T n)
d0

−−−→ . . .
dn−1

−−−→ Γ0(T 0)→ 0. (IX.56)

Let us �x an index m ∈ Z. The di�erential complex (IX.56) at index m looks like

. . .
dn−m−2

−−−−→ Γ0(T m+1)
dn−m−1

−−−−→ Γ0(T m)
dn−m−−−→ Γ0(T m−1)

dn−m+1

−−−−→ . . . (IX.57)
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We redirect this complex at index m to obtain

. . .
dn−m−2

−−−−→ Γ0(T m+1)
dn−m−1

−−−−→ Γ0
−1(T m)

dn−m−−−→ Γ0
−2(T m−1)

dn−m+1

−−−−→ . . . (IX.58)

Again we observe a sequence of discrete distributional de Rham complexes. The orig-
inal di�erential complex (IX.56) is already redirected at index 0, because Γ0

−1(T n) =
Γ0(T n). This complex is a subcomplex of the di�erential complex redirected at in-
dex m = 1, which is a subcomplex of the di�erential complex redirected at index
m = 2, and so forth. In general, the di�erential complex redirected at index m is
included in the di�erential complex redirected at index m− 1.

. . .
dn−m−2

−−−−→ Γ0
−1(T m+1)

dn−m−1

−−−−→ Γ0
−2(T m)

dn−m−−−→ Γ0
−3(T m−1)

dn−m+1

−−−−→ . . .x x x
. . .

dn−m−2

−−−−→ Γ0(T m+1)
dn−m−1

−−−−→ Γ0
−1(T m)

dn−m−−−→ Γ0
−2(T m−1)

dn−m+1

−−−−→ . . .

(IX.59)

As before, we have a succession of (inclusions of) di�erential complexes. The maxi-
mal example of this second family of di�erential complexes is obtained by redirecting
(IX.56) already at index m = n,

0→ Γ0
−1(T n)

d0

−−−→ . . .
dn−1

−−−→ Γ0
−n−1(T 0)→ 0. (IX.60)

Unfolding de�nitions we �nd that this di�erential complex is, in fact, identical to
(IX.55). Hence we have two families of di�erential complexes, one starting at (IX.52)
and the other starting at (IX.56), that lead to the same discrete distributional
de Rham complex.

We have encountered di�erential complexes that generalize the �nite element
complex (IX.52) and are formulated on the lower dimensional skeletons T [m] of T ,
for 0 ≤ m ≤ n.

0→ Λ0(T m)
d0

−−−→ . . .
dm−1

−−−→ Λm(T m)→ 0, (IX.61)

Similar as above, we may redirect this complex at any index k, and obtain di�erential
complexes

. . .
dk+n−m−2

−−−−−−→ Λk−1(T m)
dk+n−m−1

−−−−−−→ Λk
−1(T m)

dk+n−m
−−−−→ Λk+1

−2 (T m)
dk+n−m+1

−−−−−−→ . . .
(IX.62)

We have interpreted the simplicial chain complex of T relative to U as a di�erential
complex of (constant) 0-forms on simplices. We generalize this di�erential complex
as a complex of k-forms on simplices whose piecewise exterior derivative vanishes
for 0 ≤ k ≤ n.

0→ Γk(T n)
dk−−−→ . . .

dn−1

−−−→ Γk(T k)→ 0. (IX.63)

We may redirect this complex at index m, to obtain a di�erential complex

. . .
dk+n−m−2

−−−−−−→ Γk(T m+1)
dk+n−m−1

−−−−−−→ Γk−1(T m)
dk+n−m
−−−−→ Γk−2(T m−1)

dk+n−m+1

−−−−−−→ . . .
(IX.64)

In the next section, we will determine the homology spaces of these di�erential
complexes.
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IX. Discrete Distributional Di�erential Forms

Remark IX.5.1.

The results in this section generalize ideas of [34], in particular the proofs of their
Lemma 3, Theorem 5 and Theorem 7. But the distributional complexes in this sec-
tion can also be related to the double complex of the preceding section. We identify
the maximal complex (IX.55) / (IX.60) as the total complex of the double complex
(IX.47), skipping the left-most column and the top-most-row of that diagram. The
two families of broken complexes, (IX.53) and (IX.58), exemplify the two canonical
�ltrations of the total complex. We refer to [31] for more background on notion of
homological algebra. Although the underlying ideas are similar, our presentation
is speci�cally tailored towards �nite element analysis and addresses the harmonic
spaces of the broken complexes explicitly.

IX.6. Discrete Distributional Harmonic Forms

In this section we expand upon the homology theory of discrete distributional
de Rham complexes. It will helpful to switch to the framework of Hilbert complexes
for that purpose. This requires �xing a Hilbert space structure on the spaces of dis-
crete distributional di�erential forms. For that reason, we henceforth assume for the
remainder of this chapter that the spaces Λk

−1(T m,U) are equipped with scalar prod-
ucts, which turns them into Hilbert spaces. Either by taking direct sums or by taking
restrictions to subspaces, this yields a Hilbert space structure on the other spaces of
discrete distributional di�erential forms discussed in this chapter. A speci�c choice
of scalar product will be required only later when we address Poincaré-Friedrichs
inequalities, but we remark that the scalar products (IX.33) are a possible choice.

Our goal is to construct isomorphisms between the harmonic spaces of Hilbert
complexes of discrete distributional di�erential forms. To that end, we denote the
harmonic spaces of these complexes by

Hk
−b(T m) :=

{
ω ∈ Λk

−b(T m)

∣∣∣∣ dk+n−mω = 0,
ω ⊥ dk+n−m−1Λk−1

−b+1(T m)

}
, (IX.65)

Ck−b(T m) :=

{
ω ∈ Γ0

−b(T m)

∣∣∣∣ dk+n−mω = 0,
ω ⊥ dk+n−m−1Γk−b+1(T m+1)

}
, (IX.66)

The orthogonality is with respect to whatever scalar product is chosen on the dif-
ferential complexes of discrete distributional di�erential forms.

We use the term discrete distributional harmonic form for the elements of the
harmonic spaces Hk

−b(T m) and Ck−b(T m). We sometimes write

Hk(T m) = Hk
0(T m), Ck(T m) = Ck0(T m).

The spaces of harmonic forms Hk
−1(T m) and Ck−1(T m) are easily described:

Lemma IX.6.1.

Let k,m ∈ Z. Then Hk
0(T m) = Hk

−1(T m).

Proof. Unfolding de�nitions, we have Hk
0(T m) ⊆ Hk

−1(T m). Conversely, we have
ω ∈ Hk

−1(T m) if and only if dkω = 0 and ω is orthogonal to dk−1Λk−1
0 (T m). But
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6. Discrete Distributional Harmonic Forms

in that case ω ∈ Λk
0(T m), and ω ∈ Hk

0(T m) follows by de�nitions. The proof is
complete.

Lemma IX.6.2.

Let k,m ∈ Z. Then Ck0(T m) = Ck−1(T m).

Proof. This is very similar to the proof of Lemma IX.6.1 above. First, we have
Ck0(T m) ⊆ Ck−1(T m). Conversely, we have ω ∈ Ck−1(T m) if and only if dk+n−mω = 0
and ω is orthogonal to dk+n−m−1Γk−1

0 (T m). But in that case ω ∈ Γk0(T m), and
ω ∈ Ck0(T m) follows by de�nitions. The proof is complete.

Remark IX.6.3.

In the sequel, we prove statements about the spaces Hk
−b(T m) and Ck−b(T m). The

respective proofs are very similar in each case, but we provide full proofs for both
for the sake of technical completeness.

To proceed with the agenda of this section, we require the additional assumptions
already used in Section IX.4. This means that in the sequel, we assume that the local
exactness condition, the geometric decomposition condition, and the local patch
condition of T relative to U hold.

Moreover, we need to �x generalized inverses of the di�erential operators Dm
k and

Tmk . Speci�cally, we assume to have operators

Emk : Λk
−1(T m−1)→ Λk

−1(T m),

Pmk : Λk+1
−1 (T m)→ Λk

−1(T m)

for m, k ∈ Z that satisfy

Tmk = Tmk E
m
k T

m
k ,

Dm
k = Dm

k P
m
k D

m
k .

A possible choice of such generalized inverses are the Moore-Penrose pseudoinverses
[73] of Dm

k and Tmk , but no speci�c choice needs to be made at this point. We con-
struct such operators explicitly in Sections IX.7 and IX.8.

We now construct the following operators. When m, k ∈ Z and b ∈ N, then we
de�ne

Rm
k,b : Λk

−b(T m)→ Λk
−b(T m), ω 7→ ω + (−1)n−m+bdn−m+k−1Em−b+2

k−b+1 ω, (IX.67)

Skm,b : Γk−b(T m)→ Γk−b(T m), ω 7→ ω + (−1)n−m+bdk+n−m−1Pm+b−1
k+b−1 ω, (IX.68)

The main application of these operators is shown in the following two lemmas.

Lemma IX.6.4.

Let m, k ∈ Z, let b ∈ N with m ≤ n, and let ω ∈ Λk
−b(T m) with dk+n−mω ∈

Λk+1
−b (T m).

� We have dk+n−mω ∈ dk+n−mΛk
−b+1(T m).

� If b = 1, then ω ∈ Λk
0(T m).
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� If b ≥ 2, then dk+n−mRm
k,bω = dk+n−mω with Rm

k,bω ∈ Λk
−b+1(T m).

Proof. First we consider the case b = 1. If ω ∈ Λk
−1(T m) with dk+n−mω ∈ Λk+1

−1 (T m),
then Tmk ω = 0. But then ω ∈ Λk

0(T m) by de�nition.
Next we consider the case b ≥ 2. Let ω ∈ Λk

−b(T m) with dk+n−mω ∈ Λk+1
−b (T m),

and write

ω = ω0 + · · ·+ ωb−1, ωj ∈ Λk−j
−1 (T m−j).

By dk+n−mω ∈ Λk+1
−b (T m) we conclude Tm−b+1

k−b+1 ω
b−1 = 0. Using the properties of

the operator Em−b+2
k−b+1 and the homology properties of the vertical complex, we have

Tm−b+2
k−b+1 E

m−b+2
k−b+1 ω

b−1 = ωb−1. In particular, Em−b+2
k−b+1 ω

b−1 ∈ Λk−b+1
−1 (T m−b+2), and we

have

(−1)n−m+bdk+n−m−1Em−b+2
k−b+1 ω

b−1 = Dm−b+2
k−b+1 E

m−b+2
k−b+1 ω

b−1 − Tm−b+2
k−b+1 E

m−b+2
k−b+1 ω

b−1

= Dm−b+2
k−b+1 E

m−b+2
k−b+1 ω

b−1 − ωb−1.

We conclude that

Rm
k,bω = ω0 + · · ·+ ωb−1 + (−1)n−m+bdk+n−m−1Em−b+2

k−b+1 ω
b−1

= ω0 + · · ·+ ωb−2 + Dm−b+2
k−b+1 E

m−b+2
k−b+1 ω

b−1,

so Rm
k,bω ∈ Λk

−b+1(T m). Furthermore,

dk+n−mRm
k,bω = dk+n−mω + (−1)n−m+bdk+n−mdk+n−m−1Em−b+2

k−b+1 ω
b−1 = dk+n−mω.

This completes the proof.

Lemma IX.6.5.

Letm, k ∈ Z, let b ∈ N with 0 ≤ k and let ω ∈ Γk−b(T m) with dk+n−mω ∈ Γk−b(T m−1).

� We have dk+n−mω ∈ dk+n−mΓk−b+1(T m).

� If b = 1, then ω ∈ Γk0(T m).

� If b ≥ 2, then dk+n−mSkm,bω = dk+n−mω with Skm,bω ∈ Γk−b+1(T m).

Proof. First we consider the case b = 1. If ω ∈ Γk−1(T m) with dk+n−mω ∈ Γk−1
−1 (T m),

then Dm
k ω = 0. But then ω ∈ Γk0(T m) by de�nition.

Next we consider the case b ≥ 2. Let ω ∈ Γk−b(T m) with dk+n−mω ∈ Γk−1
−b (T m),

and write

ω = ω0 + · · ·+ ωb−1, ωj ∈ Γk+j
−1 (T m+j).

By dk+n−mω ∈ Γk−b(T m−1) we conclude Dm+b−1
k+b−1 ω

b−1 = 0. Using the properties
of the operator Pm+b−1

k+b−2 and the homology of the horizontal complexes, we have
Dm+b−1
k+b−2 P

m+b−1
k+b−2 ω

b−1 = ωb−1. In particular, Pm+b−1
k+b−2 ω

b−1 ∈ Λk+b−2
−1 (T m+b−1), and we

have

(−1)n−m−b+1dk+n−m−1Pm+b−1
k+b−2 ω

b−1 = Dm+b−1
k+b−2 P

m+b−1
k+b−2 ω

b−1 − Tm+b−1
k+b−2 P

m+b−1
k+b−2 ω

b−1

= ωb−1 − Tm+b−1
k+b−2 P

m+b−1
k+b−2 ω

b−1.
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We conclude that

Skm,bω = ω0 + · · ·+ ωb−1 + (−1)n−m−bdk+n−m−1Pm+b−1
k+b−2 ω

b−1

= ω0 + · · ·+ ωb−2 + Tm+b−1
k+b−2 P

m+b−1
k+b−2 ω

b−1,

so Skm,bω ∈ Γk−b+1(T m). Furthermore,

dk+n−mSkm,bω = dk+n−mω + (−1)n−m−bdk+n−mdk+n−m−1Pm+b−1
k+b−2 ω

b−1 = dk+n−mω.

This completes the proof.

Another auxiliary result restricts the class of discrete distributional di�erential
forms that are candidates for being discrete distributional harmonic forms.

Lemma IX.6.6.

Let m, k ∈ Z and let b ∈ N with 1 ≤ k, with m ≤ n, and with 2 ≤ b < k + 1.
If ω ∈ Λk

−b+1(T m) with ω 6= 0 and dk+n−mω = 0, then ω is not orthogonal to
dk+n−m−1Λk−1

−b+1(T m).

Proof. Suppose that ω ∈ Λk
−b(T m) with

ω = ω0 + · · ·+ ωb−2, ωj ∈ Λk−j
−1 (T m−j),

and assume that dk+n−mω = 0. The idea of the proof is to construct ξ ∈ Λk−1
−b+1(T m)

such that dk−1ξ is not orthogonal to ω. We then de�ne

ξ0 := (−1)n−mPmk−1ω
0 ∈ Λk−1

−1 (T m),

and recursively

ξj := (−1)j+n−mPm−jk−j−1

(
ωj + (−1)n−m+jTm−j+1

k−j ξj−1

)
∈ Λk−j−1

−1 (T m−j)

for 1 ≤ j ≤ b− 2. By the homology of the horizontal complexes and Dm
k ω

0 = 0 we
have

dk+n−m−1ξ0 = ω0 − Tmk−1ξ
0.

Now assume that we have already shown

dk+n−m−1(ξ0 + · · ·+ ξj) = ω0 + · · ·+ ωj − (−1)n−m+jTm−jk−j−1ξ
j

for some index 0 ≤ j < b− 2. This implies in particular

(−1)j+n−mDm−j
k−j−1ξ

j = ωj if j = 0,

(−1)j+n−mDm−j
k−j−1ξ

j = ωj + (−1)n−m+jTm−j+1
k−j ξj−1 if j > 0.

So we �nd that

Dm−j−1
k−j−1 T

m−j
k−j−1ξ

j = Tm−jk−j D
m−j
k−j−1ξ

j = (−1)j+n−mTm−jk−j ω
j,
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and calculate, using dk+n−mω = 0, that

(−1)n−m+j+1Dm−j−1
k−j−1

(
ωj+1 − (−1)n−m+jTm−jk−j−1ξ

j
)

= (−1)n−m+j+1Dm−j−1
k−j−1 ω

j+1 + Dm−j−1
k−j−1 T

m−j
k−j−1ξ

j

= (−1)n−m+j+1Dm−j−1
k−j−1 ω

j+1 + (−1)j+n−mTm−jk−j ω
j = 0.

By the homology of the horizontal complex we �nd

(−1)j+n−m−1Dm−j−1
k−j−2 ξ

j+1 = ωj+1 + (−1)n−m+jTm−jk−j−1ξ
j.

We combine these �ndings. We have

dk+n−m−1
(
ξ0 + · · ·+ ξj + ξj+1

)
= ω0 + · · ·+ ωj − (−1)n−m+jTm−jk−j−1ξ

j

+ (−1)n−m+j+1Dm−j−1
k−j−2 ξ

j+1 + (−1)n−m+jTm−j−1
k−j−2 ξ

j+1

= ω0 + · · ·+ ωj+1 − (−1)n−m+j+1Tm−j−1
k−j−2 ξ

j+1.

Iteration of this procedure provides us with

dk−1(ξ0 + · · ·+ ξb−2) = ω0 + · · ·+ ωb−2 − (−1)n−m+bTm−b+2
k−b+1 ξ

b−2,

from which we deduce 〈
dk−1(ξ0 + · · ·+ ξb−2), ω

〉
−h = ‖ω‖2

−h.

Hence, if ω 6= 0, then ω is not orthogonal to dk+n−m−1Λk−1
−b+1(T m). The proof is

complete.

Lemma IX.6.7.

Let m, k ∈ Z and let b ∈ N with m ≤ n−1, with 0 ≤ k, and with 2 ≤ b < n−m+1.
If ω ∈ Γk−b+1(T m) with ω 6= 0 and dk+n−mω = 0, then ω is not orthogonal to
dk+n−m−1Γk−b+1(T m+1).

Proof. This is similar to the previous proof. Suppose that ω ∈ Γk−b(T m) with

ω = ω0 + · · ·+ ωb−2, ωj ∈ Γk+j
−1 (T m+j),

and assume that dk+n−mω = 0. We then de�ne

ξ0 := (−1)n−m+1Em+1
k ω0 ∈ Γk−1(T m+1),

and recursively

ξj := (−1)j+n−mEm−jk−j−1

(
ωj + (−1)n−m+j−1Dm+j

k+j−1ξ
j−1

)
∈ Γk+j

−1 (T m+j+1)

for 1 ≤ j ≤ b − 2. By the homology of the vertical complexes and Tmk ω
0 = 0 we

have

dk+n−m−1ξ0 = ω0 − Dm
k−1ξ

0.
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Now assume that we have already shown

dk+n−m−1(ξ0 + · · ·+ ξj) = ω0 + · · ·+ ωj − (−1)n−m+jDm+j+1
k+j ξj

for some index 0 ≤ j < b− 2. This implies in particular

(−1)j+n−mTm+j+1
k+j ξj = ωj if j = 0,

(−1)j+n−mTm+j+1
k+j ξj = ωj + (−1)n−m+j−1Dm+j

k+j−1ξ
j−1 if j > 0.

So we �nd that

Tm+j+1
k+j+1 D

m+j+1
k+j ξj = Dm+j

k+j T
m+j+1
k+j ξj = (−1)j+n−mDm+j

k+j ω
j,

and calculate, using dk+n−mω = 0, that

(−1)n−m+jTm+j+1
k+j+1

(
ωj+1 + (−1)n−m+jDm+j+1

k+j ξj
)

= (−1)n−m+jTm+j+1
k+j+1 ω

j+1 + Tm+j+1
k+j+1 D

m+j+1
k+j ξj

= (−1)n−m+jTm+j+1
k+j+1 ω

j+1 + (−1)j+n−mDm+j
k+j ω

j = 0.

By the homology of the vertical complexes we �nd

(−1)j+n−m−1Tm+j+2
k+j+1 ξ

j+1 = ωj+1 + (−1)n−m+jDm+j+1
k+j ξj.

We combine these �ndings. We have

dk+n−m−1
(
ξ0 + · · ·+ ξj + ξj+1

)
= ω0 + · · ·+ ωj − (−1)n−m+jDm+j+1

k+j ξj

+ (−1)n−m+j+1Tm+j+2
k+j+1 ξ

j+1 + (−1)n−m+jDm+j+2
k+j+1 ξ

j+1

= ω0 + · · ·+ ωj+1 − (−1)n−m+j+1Dm+j+2
k+j+1 ξ

j+1.

Iteration of this procedure provides us with

dk−1(ξ0 + · · ·+ ξb−2) = ω0 + · · ·+ ωb−2 − (−1)n−m+bDm+b−1
k+b−2 ξ

b−2,

from which we deduce〈
dk−1(ξ0 + · · ·+ ξb−2), ω

〉
−h = ‖ω‖2

−h, .

Hence, if ω 6= 0, then ω is not orthogonal to dk+n−m−1Γk−1
−b+1(T m). The proof is

complete.

The harmonic spaces Hk
−b(T n) and C0

−b(T m) for b ≥ 2 are constructed in a
recursive manner.

Lemma IX.6.8.

Let m, k ∈ Z and b ∈ N. with 1 ≤ k, with 0 < m ≤ n, and with 2 ≤ b ≤ k + 1. Let

Qm
k,b : Λk

−b(T m)→ ker
(
dk : Λk

−b(T m)→ Λk+1
−b−1(T m)

)
be the orthogonal projection. Then the operator Qm

k,bR
m∗
k,b acts as an isomorphism

from Hk
−b+1(T m) to Hk

−b(T m).
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Proof. Let ω ∈ Λk
−b(T m). We can uniquely write

ω = ω0 + · · ·+ ωb−1, ωj ∈ Λk−j
−1 (T m−j).

By construction of Rm
k,b, we have

ω −Rm
k,bω ∈ dk−1Λk−1

−b+1(T m).

This implies in particular that

dkω = 0 ⇐⇒ dkRm
k,bω = 0,

ω ∈ dk−1Λk−1
−b+1(T m) ⇐⇒ Rm

k,bω ∈ dk−1Λk−1
−b+1(T m).

From the last equivalence and the abstract Hodge decomposition, we conclude that

dkω = 0, ω ⊥ Hk
−b(T m) ⇐⇒ dkRm

k,bω = 0, Rm
k,bω ⊥ Hk

−b(T m).

We use Lemma IX.6.4 to �rst observe

dkRm
k,bω = 0 =⇒ dkω = 0 =⇒ Rm

k,bω ∈ Λk
−b+1(T m)

and second to �nd

Rm
k,bω ∈ dk−1Λk−1

−b+1(T m) ⇐⇒ Rm
k,bω ∈ dk−1Λk−1

−b+2(T m).

In that way, we derive

dkRm
k,bω = 0, Rm

k,bω ⊥ Hk
−b(T m)

⇐⇒ Rm
k,bω ∈ dk−1Λk−1

−b+1(T m)

⇐⇒ Rm
k,bω ∈ dk−1Λk−1

−b+2(T m)

⇐⇒ dkRm
k,bω = 0, Rm

k,bω ⊥ Hk−1
−b+1(T m)

⇐⇒ dkω = 0, ω ⊥
(
Rm
k,b

)∗
Hk−1
−b+1(T m).

Using the properties of the Hodge decomposition on Hilbert complexes, we conclude
that the projection of

(
Rm
k,b

)∗
Hk
−b+1(T m) onto ker dk ∩ Λk

−b(T m) equals Hk
−b(T m).

Furthermore, Lemma IX.6.6 implies that for p ∈ Hk
−b+1(T m) we have

〈p,Qk
bR

m∗
k,bp〉 = 〈p,Rm∗

k,bp〉 = 〈Rm
k,bp, p〉 = 〈p, p〉.

This means that

Qk
bR

m∗
k,b : Hk

−b+1(T m)→ Hk
−b(T m)

is not only surjective but also injective. The proof is complete.

Lemma IX.6.9.

Let m, k ∈ Z and b ∈ N. with 0 ≤ k, with 0 ≤ m < n, and with 2 ≤ b ≤ n−m+ 1.
Let

P k
m,b : Γk−b(T m)→ ker

(
dk+n−m : Γk−b(T m)→ Γk−b−1(T m−1)

)
be the orthogonal projection. Then the operator Pm

k,bS
k∗
m,b acts as an isomorphism

from Ck−b−1(T m) to Ck−b(T m).
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Proof. Let ω ∈ Γk−b(T m). We can write

ω = ω0 + · · ·+ ωb−1, ωj ∈ Γk+j
−1 (T m+j).

By construction of Smk,b we have

ω − Smk,bω ∈ dk+n−m−1Γk−b+1(T m+1).

This implies in particular that

dk+n−mω = 0 ⇐⇒ dk+n−mSkm,bω = 0,

ω ∈ dk+n−m−1Γk−b+1(T m+1) ⇐⇒ Skm,bω ∈ dk+n−m−1Γk−b+1(T m+1).

From the last equivalence and the abstract Hodge decomposition, we conclude that

dk+n−mω = 0, ω ⊥ Ck−b(T m) ⇐⇒ dk+n−mSkm,bω = 0, Skm,bω ⊥ Ck−b(T m).

We use Lemma IX.6.5 to �rst observe

dk+n−mSkm,bω = 0 =⇒ dk+n−mω = 0 =⇒ Skm,bω ∈ Γk−b+1(T m)

and second to �nd

Skm,bω ∈ dk+n−m−1Γk−b+1(T m+1) ⇐⇒ Skm,bω ∈ dk+n−m−1Γk−b+2(T m+1).

In that way, we derive

dk+n−mSkm,bω = 0, Skm,bω ⊥ Ck−b(T m)

⇐⇒ Skm,bω ∈ dk+n−m−1Γk−b+1(T m+1).

⇐⇒ Skm,bω ∈ dk+n−m−1Γk−b+2(T m+1)

⇐⇒ dk+n−mSkm,bω = 0, Skm,bω ⊥ Ck−1
−b+1(T m)

⇐⇒ dk+n−mω = 0, ω ⊥ Sk∗m,bC
k−1
−b+1(T m).

Using the properties of the Hodge decomposition on Hilbert complexes, we conclude
that the projection of Sk∗m,bC

k−1
−b+1(T m) onto ker dk+n−m ∩ Γk−b(T m) equals Ck−b(T m).

Furthermore, Lemma IX.6.7 implies that for p ∈ Ck−b+1(T m) we have

〈p, P k
b S

k∗
m,bp〉 = 〈p, Sk∗m,bp〉 = 〈Skm,bp, p〉 = 〈p, p〉.

This means that

P k
b S

k∗
m,b : Ck−b+1(T m)→ Ck−b(T m)

is not only surjective but also injective. This completes the proof.

Remark IX.6.10.

If p ∈ Hk
−b(T n), then generally R∗k,b+1p /∈ Hk

−b(T n). However, in the special case
k = n the orthogonal projection is redundant because dnΛn

−b(T n) = 0.
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IX. Discrete Distributional Di�erential Forms

Remark IX.6.11.

The requirement of an orthogonal projection in the construction of the discrete dis-
tributional harmonic forms seems conceptually unsatisfying. However, one can see
that, if we leave out this projection operators at every stage, the resulting construc-
tion produces at each stage a space of discrete distributional harmonic forms whose
projection onto the discrete distributional harmonic forms is surjective. Analogous
observations apply to the operators Sm,b.

The main result of this section is now evident. We generalize Theorem IX.4.1.

Theorem IX.6.12.

Let k,m ∈ Z and b ∈ N with 2 ≤ b ≤ n − m + 1, with 0 ≤ m ≤ n, and with
0 ≤ k ≤ n. Under the assumptions of this section, we have isomorphisms

Ck(T m) = Ck−1(T m) ' · · · ' Ck−b(T m)

= Hk+b−1
−b (T m+b−1) ' · · · ' Hk+b−1

−1 (T m+b−1) = Hk+b−1(T m+b−1)
. (IX.69)

Proof. This follows from iterated application of Lemmas IX.6.8 and IX.6.9, together
with Lemma IX.6.15 and the fact Hk

−b(T m) = C0
−b(T m−b−1) for b ≥ 2.

Remark IX.6.13.

With a di�erent choice of indexing convention, Theorem IX.69 states that

Ck−b+1(T m−b+1) = Ck−b+1
−1 (T m−b+1) ' · · · ' Ck−b+1

−b (T m−b+1)

= Hk
−b(T m) ' · · · ' Hk

−1(T m) = Hk(T m)

for k,m ∈ Z and b ∈ N with 0 ≤ m ≤ m, with 0 ≤ k ≤ n, and with 2 ≤ b ≤ k + 1.

Corollary IX.6.14.

Under the assumptions of this section, we have isomorphisms between harmonic
spaces:

Hn−k(T ,U) ' C0(T n−k) = C0
−1(T n−k) ' · · · ' C0

−k−1(T n−k)
= Hk

−k−1(T n) ' · · · ' Hk
−1(T n) = Hk(T n)

for 0 ≤ k ≤ n.

Proof. This follows the previous theorem together with the local exactness condition
and the observation H0(T n) = C0(T n).

The identity H0(T n) = C0(T n) is evident since this is precisely the subspace of
Λ0
−1(T n) = Γ0

−1(T n) whose members have vanishing horizontal and vertical deriva-
tive. More generally, the following result is true.

Lemma IX.6.15.

Let k,m ∈ Z with k > 1 and m < n. Then Ck−1(T m) ' Hk
−1(T m).

Proof. If ξ ∈ Γk0(T m+1), then

Dm
k−1T

m+1
k−1 P

m+1
k ξ = Tm+1

k ξ
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by the homology of the vertical complexes. Conversely, if ξ′ ∈ Λk−1
0 (T m), then

Tm+1
k Dm+1

k−1 E
m+1
k−1 ξ

′ = Dm
k−1ξ

′

by the homology of the horizontal complexes. This shows that

dk+n−m−1Γk0(T m+1) = dk+n−m−1Λk−1
0 (T m).

The desired statement follows as a consequence.

At the extreme indices, the following result holds.

Lemma IX.6.16.

Let 0 ≤ m ≤ n. Then

H0(T m) = C0(T m)⊕ Tm+1
0 Γ0

0(T m+1). (IX.70)

Let 0 ≤ k ≤ n. Then

Ck(T n) = Hk(T n)⊕ Dn
k−1Λk−1

0 (T n). (IX.71)

Proof. Let 0 ≤ m ≤ n and ω ∈ Λ0
−1(T m). Then ω ∈ H0(T m) if and only if

dk+n−mω = 0, which is the case if and only if ω ∈ Γ0(T m) with Tm0 ω = 0. Now
(IX.70) follows by the Hodge decomposition.

Analogously, Let 0 ≤ k ≤ n and ω ∈ Γk−1(T n). Then ω ∈ Ck(T n) if and only
if dkω = 0, which is the case if and only if ω ∈ Λk(T n) with Tnkω = 0. Similar as
above, (IX.71) follows by the Hodge decomposition.

This completes our description of the harmonic spaces of Hilbert complexes of
discrete distributional di�erential forms.

IX.7. Inequalities on Horizontal Complexes

So far we have addressed the homology theory of complexes of discrete distribu-
tional di�erential forms. We have constructed explicit isomorphisms that help us
to determine the discrete distributional harmonic forms. But apart from harmonic
spaces, Poincaré-Friedrichs inequalities are another fundamental topic in the theory
of Hilbert complexes. The remainder of this chapter will be devoted to estimating
the constants in Poincaré-Friedrichs inequalities. We initiate these e�orts with an-
alyzing inequalities of horizontal complexes.

As a base for this discussion, we make additional speci�cations on the class of
discrete de Rham complexes (IX.15) associated to simplices: we assume additionally
that we use polynomial de Rham complexes. Recall that for each C ∈ T m we have
a �xed reference transformation ϕC : ∆m → C, as described in Chapter II. We say
that the polynomial order R condition holds if for each m, k ∈ Z we have

ϕ∗CΛk(C) ⊆ PRΛk(∆m), C ∈ T m.

This means that on each simplex the di�erential complexes consist of spaces of
polynomial di�erential forms of order at most R. For the remainder of this chapter,
we assume that the polynomial order R condition holds for some R ∈ N0.
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IX. Discrete Distributional Di�erential Forms

Example IX.7.1.

Suppose that T is a �nite triangulation and that U ⊆ T is a subcomplex. Suppose
furthermore that we have �xed admissible sequence types PF ∈ A for each F ∈ T
such that the hierarchy condition holds (see Chapter IV). In that case we obtain
di�erential complexes (IX.15) of the form

. . .
dk−1
C−−−→ PΛk(C)

dkC−−−→ PΛk+1(C)
dk+1
C−−−→ . . .

as described in Example IX.1.2. Trivially, the polynomial order R assumption holds
for some R ∈ N su�ciently large.

A �rst application is an inverse inequality.

Lemma IX.7.2.

Let m, k ∈ Z and α ∈ R. There exists a constant µ̌ ≥ 0, depending only on R, m,
k, and µ(T ), such that for all ω ∈ Λk(C) and C ∈ T m \ Um we have

hαC
∥∥dkCωC∥∥2

L2Λk+1(C)
≤ µ̌hα−2

C ‖ωC‖2
L2Λk(C) . (IX.72)

Proof. Let C ∈ T m \ Um and ωC ∈ Λk(C). We have∥∥dkCωC∥∥L2Λk+1(C)
=
∥∥ϕ−∗C dk∆m

ϕ∗CωC
∥∥
L2Λk+1(C)

≤ σmax

(
Dϕ−1

C

)k+1
det (DϕC)

1
2

∥∥dk∆m
ϕ∗CωC

∥∥
L2Λk+1(∆m)

≤ µ̌R,mσmax

(
Dϕ−1

C

)k+1
det (DϕC)

1
2 ‖ϕ∗CωC‖L2Λk(∆m) ,

where µ̌R,m depends only on R and m. Then we use

‖ϕ∗CωC‖L2Λk(∆m) ≤ σmax (DϕC)k det
(
Dϕ−1

C

) 1
2 ‖ωC‖L2Λk(C) .

In combination,∥∥dkCωC∥∥L2Λk+1(C)
≤ µ̌R,m · σmax

(
Dϕ−1

C

)
· κ (DϕC)k · ‖ωC‖L2Λk(∆m) .

This completes the proof.

Lemma IX.7.3.

Let m, k ∈ Z and α ∈ R. There exists µ̌ ≥ 0, depending only on R, m, k, and µ(T ),
such that for all ω ∈ Λk

−1(T m) we have∑
C∈T m\Um

hαC ‖(Dm
k ω)C‖2

L2Λk+1(C) ≤ µ̌
∑

C∈T m\Um
hα−2
C ‖ωC‖2

L2Λk(C) . (IX.73)

Proof. This follows because (IX.34) is the direct sum of di�erential complexes (IX.35)
associated to the simplices in C ∈ T m \ Um.

As a converse to the inverse inequality, we prove a Poincaré-Friedrichs inequality.
We use the existence of an L2 bounded generalized inverse on the reference simplex
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7. Inequalities on Horizontal Complexes

that preserves polynomial di�erential forms. Speci�cally, Proposition 4.2 of [64] and
Lemma 3.8 of [9] imply the existence of a bounded operator

Pk∆m
: L2Λk+1(∆m)→ HΛk(∆m)

such that

dk∆m
Pk∆m

dk∆m
ξ = dk∆m

ξ, ξ ∈ HΛk(∆m),

and

Pk∆m

(
PrΛk+1(∆m)

)
⊆ P−r Λk(∆m).

The operator Pk∆m
is an averaged Poincaré operator. We then de�ne for each simplex

PkC := ϕ−∗C Pk∆m
ϕ∗C , C ∈ T m \ Um, k,m ∈ Z,

and combine these simplexwise operators to

Pmk : Λk+1(T m)→ Λk(T m), ω 7→
∑

C∈T m\Um
PkCωC .

We carry out the following estimates.

Lemma IX.7.4.

Let m, k ∈ Z and α ∈ R. There exists a constant µ̂ ≥ 0, depending only on R, m,
k, and µ(T ), such that for all C ∈ T m \ Um and ω ∈ Λk+1(C) we have

hαC
∥∥PkCωC∥∥2

L2Λk(C)
≤ µ̂hα−2

C ‖ωC‖2
L2Λk+1(C) . (IX.74)

Proof. Let C ∈ T m \ Um and ωC ∈ Λk(C). We have∥∥PkCωC∥∥L2Λk(C)
=
∥∥ϕ−∗C Pk∆m

ϕ∗CωC
∥∥
L2Λk(C)

≤ σmax

(
Dϕ−1

C

)k
det (DϕC)

1
2

∥∥Pk∆m
ϕ∗CωC

∥∥
L2Λk(∆m)

≤ µ̂mσmax

(
Dϕ−1

C

)k
det (DϕC)

1
2 ‖ϕ∗CωC‖L2Λk+1(∆m) ,

where µ̂m depends only on m. Then we use that

‖ϕ∗CωC‖L2Λk+1(∆m) ≤ σmax (DϕC)k+1 det
(
Dϕ−1

C

) 1
2 ‖ωC‖L2Λk(C)

In combination,∥∥PkCωC∥∥L2Λk+1(C)
≤ µ̂m · σmax (DϕC) · κ (DϕC)k · ‖ωC‖L2Λk+1(∆m) .

This completes the proof.

Lemma IX.7.5.

Let m, k ∈ Z and α ∈ R. There exists a constant µ̂ ≥ 0, depending only on R, m,
k and µ(T ), such that for ω ∈ Λk

−1(T m) we have∑
C∈T m\Um

hαC ‖(Pmk ω)C‖2
L2Λk(C) ≤ µ̂

∑
C∈T m\Um

hα−2
C ‖ωC‖2

L2Λk+1(C) . (IX.75)

Proof. This follows because (IX.34) is the direct sum of (IX.35).
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IX.8. Inequalities on Vertical Complexes

We have investigated inequalities in horizontal di�erential complexes with respect
to a mesh-dependent norm. We now conduct a similar investigation for vertical dif-
ferential complexes. Some additional technical de�nitions are required, though.

First, the geometric decomposition assumption implies that for each ω ∈ Γk(C)
with C ∈ T \ U and k ∈ Z we have a unique decomposition

ω =
∑

F∈∆(C)

extkF,C ζ
F
C , ζFC ∈ Γ̊k(F ). (IX.76)

We use this notation for a decomposition of the form (IX.76) without further notice
in this section. More generally, for each ω ∈ Γk(T m) with k,m ∈ Z we have unique
decompositions

ω =
∑

F∈T [m]

ζF , ζF =
∑

C∈T m\Um
extkF,C ζ

F
C .

The vertical di�erential operator Tmk preserves the decomposition of ω into terms
associated to simplices F ∈ T [m]. In particular, the vertical complex

. . .
Tm+1
k−−−→ Γk(T m)

Tmk−−−→ Γk(T m−1)
Tm−1
k−−−→ . . .

is the direct sum of di�erential complexes

. . .
Tm+1
k−−−→ Γmk (F )

Tmk−−−→ Γm−1
k (F )

Tm−1
k−−−→ . . . (IX.77)

over F ∈ T . We will transform this di�erential complex to a reference setting,
for which we use transformations to reference micropatches. For each F ∈ T , we
write Ψ∗FΓmk (F ) for the piecewise pullback of Γmk (F ) onto the m-simplices of the set
M̂(T , F ) \ N̂ (T ,U , F ) along the reference transformation ΨF . For each F ∈ T we
obtain the reference di�erential complexes

. . .
Ψ∗FT

m+1
k Ψ−∗F−−−−−−−−→ Ψ∗FΓmk (F )

Ψ∗FT
m
k Ψ−∗F−−−−−−→ Ψ∗FΓm−1

k (F )
Ψ∗FT

m−1
k Ψ−∗F−−−−−−−−→ . . . (IX.78)

By the results of Chapter II, we may assume without loss of generality that there
are only �nitely many di�erential complexes of the form (IX.78). This allows for an
inverse inequality with uniformly bounded constants on the di�erential complexes
(IX.77). For each F ∈ T , we �x an operator

Êmk,F : Ψ∗FΓm−1
k (F )→ Ψ∗FΓmk (F )

that satis�es

Tmk Ψ−∗F Êmk,FΨ∗FT
m
k ζ

F = Tmk ζ
F , ζF ∈ Γmk (F ).

We eventually de�ne

Emk : Γk(T m−1)→ Γk(T m−1),
∑

F∈T [m−1]

ζF →
∑

F∈T [m−1]

Ψ−∗F Êmk,FΨ∗F ζ
F .
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8. Inequalities on Vertical Complexes

By construction we have the identity

Tmk E
m
k T

m
k ω = Tmk ω, ω ∈ Γk(T m).

Again, by the results of Chapter II, we may assume without loss of generality that
the collection (Êmk,F )F∈T has a cardinality that can be bounded in terms of k, m,
and µ(T ). This observation will be crucial for proving the next lemma.

Theorem IX.8.1.

Let α ∈ R. There exist constants µ̀, µ́ ≥ 0 such that∑
Q∈T m−1\Um−1

hαQ‖(Tmk ω)Q‖2
L2Λk(Q) ≤ µ̀

∑
C∈T m\Um

hα−1
C ‖ωC‖2

L2Λk(C),∑
T∈T m+1\Um+1

hαT‖(Emk ω)T‖2
L2Λk(T ) ≤ µ́

∑
C∈T m\Um

hα+1
C ‖ωC‖2

L2Λk(C).

The constants µ̀ and µ́ depend only on R, α, k, m, µ(T ), and µlqu(T ).

Proof. We use the geometric decomposition. We write

ω =
∑

F∈T [m]\Um
ζF ,

Tmk ω =
∑

F∈T [m−1]\Um−1

ζ̀F ,

Emk ω =
∑

F∈T [m+1]\Um+1

ζ́F

for the respective decompositions of ω, Tmk ω and Emk ω into terms associated to local
patches as in Lemma IX.3.2. By construction, for F ∈ T we have

Tmk ζ
F = ζ̀F , Emk ζ

F = ζ́F . (IX.79)

Moreover, as in (IX.76) we write

ζF =
∑

C∈M(T ,F )m

C/∈N (T ,U ,F )m

extkF,C ζ
F
C , F ∈ T [m] \ U [m],

ζ̀F =
∑

Q∈M(T ,F )m−1

Q/∈N (T ,U ,F )m−1

extkF,Q ζ̀
F
Q , F ∈ T [m−1] \ U [m−1],

ζ́F =
∑

T∈M(T ,F )m+1

T /∈N (T ,U ,F )m+1

extkF,T ζ́
F
T F ∈ T [m+1] \ U [m+1].

Using the triangle inequality and de�nitions, we observe that∑
Q∈T m−1

Q/∈Um−1

hαQ‖(Tmk ω)Q‖2
L2Λk(Q) ≤

∑
F∈T [m]

Q∈M(T ,F )m−1

Q/∈N (T ,U ,F )m−1

µlqu(T )αhαF

∥∥∥extkF,Q ζ̀
F
Q

∥∥∥2

L2Λk(Q)
,
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and such that∑
T∈T m+1

T /∈Um+1

hαT‖(Emk ω)T‖2
L2Λk(T ) ≤

∑
F∈T [m]

T∈N (T ,F )m+1

T /∈N (T ,U ,F )m+1

µlqu(T )αhαF

∥∥∥extkF,T ζ́
F
T

∥∥∥2

L2Λk(T )
.

Next, we use our observation on the maximum number of reference di�erential com-
plexes (IX.77). Let F ∈ T [m−1]. For Q ∈ T m−1 \ Um−1 with F ∈ ∆(Q) we �nd
that

hαF

∥∥∥extkF,Q ζ̀
F
Q

∥∥∥2

L2Λk(Q)
≤ µ̀Fh

α−1
F

∥∥extkF,Q ζ
F
C

∥∥2

L2Λk(C)

with a constant µ̀F that depends only on R, m and µ(T ). On the other hand, we
�nd that∑

T∈M(T ,F )m+1

T /∈N (T ,U ,F )m+1

hαF

∥∥∥extkF,T ζ́
F
T

∥∥∥2

L2Λk(T )
≤ µ́F

∑
C∈M(T ,F )m

C/∈N (T ,U ,F )m

hα+1
F

∥∥extkF,T ζ
F
C

∥∥2

L2Λk(C)

with a constant µ́F that depends only on R,m and µ(T ). In particular, the constants
µ̀F and µ́F can be bounded independently of F .

Finally, another scaling argument implies the existence of µ′′, depending only on
R, m, k, µ(T ), and µlqu(T ), such that∑

F∈T [m]

∑
C∈M(T ,F )m

C/∈N (T ,U ,F )m

hα±1
F

∥∥extkF,C ζ
F
C

∥∥2

L2Λk(C)

≤
∑

F∈T [m]

∑
C∈M(T ,F )m

C/∈N (T ,U ,F )m

hα±1
F

∥∥extkF,C ζ
F
C

∥∥2

L2Λk(C)

≤ µ′′
∑

C∈T m\Um
hα±1
C ‖ωC‖2

L2Λk(C).

This completes the proof.

IX.9. Hilbert Chain Complexes

Earlier in this thesis we have learned about the distinguished role of the complex
of Whitney forms in the theory of �nite element di�erential forms, which is primarily
due to its duality relation with the simplicial chain complex. This has related the
cohomology spaces of the complex of Whitney forms to the homology spaces of the
simplicial chain complex. In this section we use this relation to analyze Poincaré-
Friedrichs constants.

The general idea is as follows: the L2 scalar product on n-simplices gives rise
to a Hilbert space structure on the Whitney forms. For example, if T triangulates
a domain, then this is just the Hilbert space structure described by the L2 norm
of di�erential forms. This Hilbert space structure induces a Hilbert space structure
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9. Hilbert Chain Complexes

on the spaces of simplicial chains by the duality pairing. Thus we obtain Hilbert
complexes whose Poincaré-Friedrichs constants we put into relation.

We assume that T is an n-dimensional simplicial complex and that U is a sub-
complex. We recall the di�erential complex of Whitney forms of Chapter IV, which
we visualize, in this case, as a di�erential complex from the right to the left:

0←WΛn(T ,U)
dn−1

←−−− . . .
d0

←−−− WΛ0(T ,U)← 0. (IX.80)

A Hilbert space structure over WΛm(T ,U) is induced by the scalar product

〈φ, ψ〉L2Λm :=
∑

C∈T n\Un
〈φC , ψC〉L2Λm(C), φ, ψ ∈ WΛm(T ,U). (IX.81)

We writeWΛm(T ,U)L2Λm for the Hilbert space that results from equippingWΛm(T ,U)
with that scalar product. Thus the di�erential complex (IX.80) gives rise to a Hilbert
complex

0←WΛn(T ,U)L2Λn
dn−1

←−−− . . .
d0

←−−− WΛ0(T ,U)L2Λ0 ← 0. (IX.82)

We let µWT ,U ≥ 0 denote the Poincaré-Friedrichs constant of this Hilbert complex.
Thus for every ω ∈ dmWΛm(T ,U) being the exterior derivative of a Whitneym-form
there exists ξ ∈ WΛm(T ,U) such that

‖ξ‖L2Λm ≤ µWT ,U‖ω‖L2Λm+1 .

Remark IX.9.1.

In the sequel, we derive generalized Poincaré-Friedrichs inequalities whose constants
can be expressed in terms of µWT ,U , but we do not enlarge upon characterizing µWT ,U
any further in this chapter. In typical applications, however, µWT ,U can be estimated
in terms of the mesh quality and the Poincaré-Friedrichs constant of the L2 de Rham
complex. Previous �ndings in the literature have accomplished this in the cases
ΓN = ∅ and ΓN = ∂Ω; see [9, 58] and Theorem 3.6 of [11]. If T triangulates a
weakly Lipschitz domain and U triangulates an admissible boundary patch, then a
bound for the Poincaré-Friedrichs constant µWT ,U in terms of the mesh regularity and
geometric properties of the triangulated domain can be proven, as has been outlined
in Chapter VIII.

Next we recall the di�erential complex

0→ Γ0(T n)
Tn0−−−→ . . .

T1
0−−−→ Γ0(T 0)→ 0. (IX.83)

Due to the local exactness condition, the spaces in this complex are spanned by the
indicator functions 1C of the simplices C ∈ T \ U . We equip each space Γ0(T m)
with the scalar product

〈ω, η〉−h :=
∑

C∈T m\Um
hm−nC ωCηC , ω, η ∈ Γ0(T m), m ∈ Z. (IX.84)

This makes (IX.83) into a Hilbert complex. We let µΓ
T ,U denote the Poincaré-

Friedrichs constant of this Hilbert complex. The next result relates µΓ
T ,U to the

Poincaré-Friedrichs constant µWT ,U of (IX.82).
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Theorem IX.9.2.

The Poincaré-Friedrichs constant µΓ
T ,U of (IX.83) can be bounded in terms of µ(T ),

µlqu(T ), n, and µWT ,U .

Proof. We recall that we have a non-degenerate pairing of WΛm(T ,U) with the
spaces of simplicial chains Cm(T ,U) via integration. The simplices T m \ Um are a
basis of Cm(T ,U), and the Whitney forms φC for C ∈ T m \ Um are the dual basis
with respect to this bilinear pairing, up to a constant factor 1/m!, as described in
Equation (III.8).

There exists a scalar product 〈·, ·〉ℵ over WΛm(T ,U) with respect to which
(φC)C∈T m\Um constitutes an orthogonal basis of WΛm(T ,U) such that

‖φC‖ℵ = h
n
2
−m

C , C ∈ T m \ Um. (IX.85)

Using Lemma V.2.3 we now see that there exists µℵ > 0 such that

µ−1
ℵ ‖φ‖L2Λm ≤ ‖φ‖ℵ ≤ µℵ‖φ‖L2Λm , φ ∈ WΛm(T ,U), (IX.86)

where µℵ depends only on k, n, µ(T ), and µlqu(T ). We write WΛm(T ,U)ℵ for the
vector space WΛm(T ,U) equipped with the scalar product 〈·, ·〉ℵ. We have got an
isomorphism of Hilbert complexes:

0 ←−−− Wn(T ,U)L2Λm
dn−1

←−−− . . .
d0

←−−− W0(T ,U)L2Λm ←−−− 0y y
0 ←−−− Wn(T ,U)ℵ

dn−1

←−−− . . .
d0

←−−− W0(T ,U)ℵ ←−−− 0.

We conclude that the Poincaré-Friedrichs constant of the bottom row complex is
bounded by µ2

ℵµ
W
T ,U .

The scalar product 〈·, ·〉ℵ over Wm(T ,U) induces a scalar product 〈·, ·〉ℵ over
Cm(T ,U) via duality. We denote by Cm(T ,U)ℵ the vector space Cm(T ,U) equipped
with the scalar product 〈·, ·〉ℵ. Note that T m \ Um constitutes an orthogonal basis
of Cm(T ,U)ℵ, and that

‖C‖ℵ = h
m−n

2
C , C ∈ T m \ Um. (IX.87)

Thus, the Poincaré-Friedrichs constant of the Hilbert complex

0 −−−→ Cn(T ,U)ℵ
∂n−−−→ . . .

∂1−−−→ C0(T ,U)ℵ −−−→ 0

is bounded by µ2
ℵµ
W
T ,U too. Next, via the identi�cation of simplices with their indi-

cator functions, we have an isomorphism of Hilbert complexes

0 −−−→ Cn(T ,U)ℵ
∂n−−−→ . . .

∂1−−−→ C0(T ,U)ℵ −−−→ 0x x
0 −−−→ Γ0(T n)

Tn0−−−→ . . .
T1

0−−−→ Γ0(T 0) −−−→ 0.
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10. Poincaré-Friedrichs Inequalities

Elementary computations show that

µ(T )−1‖C‖ℵ ≤ h
m−n

2
C ‖1C‖L2Λ0(C) ≤ ‖C‖ℵ.

We conclude that the Poincaré-Friedrichs constant µΓ
T ,U of the Hilbert complex

(IX.83) satis�es the desired bound. The proof is complete.

As explained in Section VIII.1, the Poincaré-Friedrichs constant of a Hilbert
complex bounds the operator norm of a generalized inverse of the di�erential. In
our speci�c setting, this has the following application. There exists a linear operator
Em : Γ0(T m−1)→ Γ0(T m) such that

Tm0 EmTm0 ξ = Tm0 ξ, ξ ∈ Γ0(T m),

and such that for all ξ ∈ Γ0(T m) we have√ ∑
C∈T m\Um

hm−nC ‖(Emξ)C‖2
L2Λ0(C) ≤ µΓ

T ,U

√ ∑
F∈T m−1\Um−1

hm−n−1
F ‖ξF‖2

L2Λ0(F ).

In particular, for m ∈ Z and ξ ∈ Tm0 Γ0(T m) we have

Tm0 Emξ = ξ.

IX.10. Poincaré-Friedrichs Inequalities

We �nish this chapter with the derivation of Poincaré-Friedrichs constants of
Hilbert complexes of discrete distributional di�erential forms whose Hilbert space
structure is induced by a mesh-dependent scalar product. The agenda of this chap-
ter is to express the Poincaré-Friedrichs constant of these Hilbert complexes in terms
of the Poincaré-Friedrichs constant µΓ

T ,U introduced previously.

The Poincaré-Friedrichs inequalities are proven with respect to a mesh-dependent
scalar product. Earlier in this chapter, we have developed isomorphisms between
harmonic spaces of complexes of discrete distributional di�erential forms with re-
spect to a general class of scalar products (see Section IX.6). For this section, we
recall the de�nition

〈ω, η〉−h =
∑

C∈T m\Um
hm−nC 〈ωC , ηC〉L2Λk(C), ω, η ∈ Λk

−1(T m). (IX.88)

Since Λk
−b(T m) and Γk−b(T m) are de�ned as direct sums of spaces of the form Λk(T m),

this yields scalar products on these spaces too. Note that generalizes the scalar
product (IX.84) considered previously.

Example IX.10.1.

At this point we consider a motivational example. Suppose that T triangulates
a contractible domain and that U = ∅. Let ω ∈ d0Λ0(T n) be the gradient of a
function in the conforming �nite element space Λ0(T n). We show how to construct
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IX. Discrete Distributional Di�erential Forms

a preimage. We let ξ0 = Pn0ω so that Dn
0ξ

0 = ω. But ξ0 ∈ Λ0
−1(T n) is discontinuous

in general. We write η = ω − d0ξ0. Then

η = ω − Dn
0ξ

0 + Tn0ξ
0 = Tn0ξ

0.

Note that η represents the inter-element jumps of ξ0. Due to the identities

Tn−1
0 η = Tn−1

0 Tn0ξ
0 = 0,

Dn−1
0 η = Dn−1

0 Tn0ξ
0 = Tn1D

n
0ξ

0 = Tn1ω = 0

we conclude that η ∈ Γ0(T n−1) with Tn−1
0 η = 0. Since the domain is contractible,

there exists ξ̃ ∈ Γ0(T n) such that Tn0 ξ̃ = η. But then

d0
(
ξ0 + ξ̃

)
= ω − η + d0ξ̃ = ω − η + Tn0 ξ̃ = ω

We set ξ := ξ0 + ξ̃, so that d0ξ = ω. Now ξ ∈ Λ0(T n) is the desired preimage in the
conforming �nite element space. The only non-local operation in the construction
of ξ has been �nding ξ̃, which is independent of any polynomial order.

The driving motivation in this section is to generalize the previous example. We
derive Poincaré-Friedrichs constants for the Hilbert complex

0→ Λ0
−1(T n)

d0

−−−→ . . .
dn−1

−−−→ Λn
−n−1(T n) −−−→ 0. (IX.89)

Given ω ∈ dkΛk
−k−1(T n) being the distributional exterior derivative of a discrete

distributional di�erential form in Λk−1
−k (T n), we explicitly construct ξ ∈ Λk−1

−k (T n)
satisfying dk−1ξ = ω. Together with the results of Sections IX.7, IX.8, and IX.9,
the construction of ξ reveals an estimate for the Poincaré-Friedrichs constant. In
the second part of this section we modify the construction to accommodate special
structure in the preimage, which yields Poincaré-Friedrichs inequalities for the other
discrete distributional de Rham complexes.

Throughout this section we assume that

ω ∈ dkΛk
−k−1(T n)

is a �xed but arbitrary discrete distributional di�erential form that lies within the
range of

dk : Λk
−k−1(T n)→ Λk+1

−k−2(T n)

There is a unique way to write ω as

ω = ω0 + · · ·+ ωk+1, ωi ∈ Λk+1−i
−1 (T n−i), 0 ≤ i ≤ k + 1.

We explicitly construct ξ ∈ Λk
−b(T n) such that dkξ = ω in the following manner.

We de�ne ξ ∈ Λk
−k−1(T n) as

ξ := ξ0 + · · ·+ ξk + ξ̃, (IX.90)
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10. Poincaré-Friedrichs Inequalities

where we �rst de�ne ξ0 ∈ Λk
−1(T n) by

ξ0 := Pnkω
0, (IX.91)

then recursively de�ne ξi ∈ Λk−i
−1 (T n−i) for 1 ≤ i ≤ k by

ξi := (−1)iPn−ik−iω
i + Pn−ik−iT

n−i+1
k−i+1ξ

i−1, (IX.92)

and eventually de�ne ξ̃ ∈ Γ0(T n−k) by

ξ̃ := (−1)k+1Emωk+1 − EmTn−k0 ξk. (IX.93)

Here we have used the horizontal antiderivative Pmk and the operator Em from Sec-
tion IX.9. The basic idea of constructing a preimage in this manner has been known
in di�erential topology [31, II.9] for a long time. We also observe that a similar
construction was already used in the proof of Lemma IX.6.6. First we verify the
following identity.

Lemma IX.10.2.

Let ω and ξ be de�ned as above. Then dkξ = ω.

Proof. First, we have Dn
k+1ω0 = 0 by assumption. The local exactness condition

thus implies Dn
kξ

0 = ω0. Moreover, dkω = 0 implies that

−Dn−1
k

(
ω1 + Tnkξ

0
)

= −Dn−1
k ω1 − Dn−1

k Tnkξ
0

= −Dn−1
k ω1 − Tnk+1D

n
kξ

0 = −Dn−1
k ω1 − Tnk+1ω

0 = 0.

Next we use an induction argument. Let us assume that we already have

ω − dk
(
ξ0 + · · ·+ ξi

)
= (−1)iTn−ik−iξ

i + ωi+1 + · · ·+ ωb,

Dn−i−1
k−i−1ω

i+1 = (−1)i+1Dn−i−1
k−i−1T

n−i
k−iξ

i.

for some 0 ≤ i < k. But then

Dn−i−1
k−i−1ξ

i+1 = (−1)i+1ωi+1 − Tn−ik−iξ
i.

Thus we �nd

ω − dk
(
ξ0 + · · ·+ ξi + ξi+1

)
= (−1)i+1Tn−i−1

k−i−1ξ
i+1 + ωi+2 + · · ·+ ωb ∈ dΛk

−b(T n),

and

Dn−i+2
k−i+2

(
(−1)i+1Tn−i−1

k−i−1ξ
i+1 + ωi+2

)
= (−1)i+1Dn−i−2

k−i−1T
n−i−1
k−i−1ξ

i+1 + Dn−i−2
k−i−1ω

i+2

= Tn−i+1
k−i ωi+1 + Dn−i−2

k−i−1ω
i+2 = 0.

Hence the assumptions for index i hold again for the index i+ 1 ≤ k.
Iteration of this argument eventually provides

ω − dk
(
ξ0 + · · ·+ ξk

)
= ωk+1 + (−1)k+1Tn−k0 ξk.
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IX. Discrete Distributional Di�erential Forms

Let η := ω − dk
(
ξ0 + · · ·+ ξk

)
. Then η ∈ Λ0

−1(T n−k−1), and η ∈ dΛk
−k−1(T n). By

construction we have

Dn−k−1
0 η = 0, Tn−k−1

0 η = 0.

In particular η ∈ Γ0(T n−k−1). Since η ∈ dkΛk
−k−1(T n), we know that η is orthogonal

to Hk+1
−k−2(T n) = Ck+1

−k−2(T n−k−1). Our next goal is showing that η is orthogonal to
C0(T n−k−1). To see this, let p ∈ Ck+1

−k−2(T n−k−1) be arbitrary. Then there is a unique
way to write

p = p0 + · · ·+ pk + pk+1, pi ∈ Λk+i(T n+i), 0 ≤ i ≤ k + 1.

From Lemma IX.6.9 we conclude that p0 ∈ C0(T n−k). Hence〈
p0, (−1)k+1Tn−k0 ξk + ωk+1

〉
−h =

〈
p, (−1)k+1Tn−k0 ξk + ωk+1

〉
−h

=
〈
p, ω − dk

(
ξ0 + · · ·+ ξk

)〉
−h = 〈p, ω〉−h = 0

by assumption on ω. Thus η is orthogonal to C0(T n−k−1), and we conclude that

(−1)k+1Tn−k0

(
ξ̃ + ξk

)
= ωk+1.

This completes the proof.

Next we bound the ‖ ·‖−h norm of ξ in terms of the ‖ ·‖−h norm of ω. In fact, we
more generally prove a family of inequalities parametrized over α ∈ R. The special
case α = 0 gives the desired Poincaré-Friedrichs inequality. The special case α = 1
is of technical use in another proof further below.

Lemma IX.10.3.

Let ω and ξ be as above. For any α ∈ R there exists µ(α), depending only on µ̂, µ̀,
and α, such that

∑
C∈T n−i
C/∈Un−i

hα−iC

∥∥ξiC∥∥2

L2Λk−i(C)
≤ µ(α)

i∑
j=0

∑
C∈T n−j
C/∈Un−j

hα−j+2
C

∥∥ωjC∥∥2

L2Λk−j+1(C)
. (IX.94)

Moreover, we have

∑
C∈T n−k
C/∈Un−k

h−kC

∥∥∥ξ̃C∥∥∥2

L2Λ0(C)
≤ µ̃

k+1∑
i=0

∑
C∈T n−k−1

C/∈Un−k−1

h−iC
∥∥ωiC∥∥2

L2Λk−i+1(C)
(IX.95)

with a constant µ̃ that depends only on µ̂, µ̀, and µΓ
T ,U .

Proof. From Theorem IX.7.5 we �nd∑
C∈T n\Un

hαC
∥∥ξ0

C

∥∥2

L2Λk(C)
≤ µ̂

∑
C∈T n\Un

hα+2
C

∥∥ω0
C

∥∥2

L2Λk+1(C)
. (IX.96)

This shows (IX.94) in the case i = 0.
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10. Poincaré-Friedrichs Inequalities

Suppose that (IX.94) holds for some index 0 ≤ i ≤ k−1. Using the construction
of ξi+1 and Theorem IX.7.5 and Theorem IX.8.1, we then have∑

C∈T n−i−1

C/∈Un−i−1

hα−i−1
C

∥∥ξi+1
C

∥∥2

L2Λk−i−1(C)

=
∑

C∈T n−i−1

C/∈Un−i−1

hα−i−1
C

∥∥Pn−i−1
k−i−1ω

i+1
C − Pn−i−1

k−i−1(Tn−in−iξ
i)C
∥∥2

L2Λk−i−1(C)

≤ µ̂
∑

C∈T n−i−1

C/∈Un−i−1

hα−i+1
C

∥∥ωi+1
C − (Tn−in−iξ

i)C
∥∥2

L2Λk−i(C)

≤ 2µ̂
∑

C∈T n−i−1

C/∈Un−i−1

hα−i+1
C

∥∥ωi+1
C

∥∥2

L2Λk−i(C)
+ 2µ̂µ̀

∑
C∈T n−i
C/∈Un−i

hα−iC

∥∥ξiC∥∥2

L2Λk−i(C)

≤ µ(α)

i+1∑
j=0

∑
C∈T n−j
C/∈Un−j

hα−j+2
C

∥∥ωjC∥∥2

L2Λk−j+1(C)
,

where µ(α) is a constant that depends only on µ̂, µ̀, and α. We conclude that (IX.94)
holds for i+ 1 too. An induction argument shows (IX.94) for all 0 ≤ i ≤ k.

In order to show (IX.95), let η ∈ Γ0(T n−k−1) be de�ned by

η := ω − dk
(
ξ0 + · · ·+ ξk

)
,

as in the proof of the Theorem IX.10.2. We �nd by Theorem IX.9.2 that∑
C∈T n−k
C/∈Un−k

h−kC

∥∥∥ξ̃C∥∥∥2

L2Λ0(C)
≤
(
µΓ
T ,U
)2

∑
C∈T n−k−1

C/∈Un−k−1

h−k−1
C ‖ηC‖2

L2Λ0(C)

=
(
µΓ
T ,U
)2

∑
C∈T n−k−1

C/∈Un−k−1

h−k−1
C

∥∥ωk+1
C − (Tn−k0 ξk)C

∥∥2

L2Λ0(C)
.

To estimate the last term, we use∑
C∈T n−k−1\Un−k−1

h−k−1
C

∥∥(Tn−k0 ξk)C
∥∥2

L2Λ0(C)
≤ µ̀

∑
C∈T n−k\Un−k

h−k−2
C

∥∥ξkC∥∥2

L2Λ0(C)
.

Finally, we apply (IX.94) with i = k and α = −2 to obtain (IX.95). This completes
the proof.

Corollary IX.10.4.

The Hilbert complex

0→ Λ0
−1(T n)

d0

−−−→ . . .
dn−1

−−−→ Λn
−n−1(T n)→ 0

satis�es Poincaré-Friedrichs inequalities with respect to the scalar product 〈·, ·〉−h.
The Poincaré-Friedrichs constant depends only on µΓ

T ,U , µ(T ), µlqu(T ), n, and R.
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We have proven Poincaré-Friedrichs-type inequalities for the �maximal� com-
plexes of discrete distributional di�erential forms (IX.55) / (IX.60). We would like
to obtain analogous inequalities for the subcomplexes (IX.52) � (IX.58), and the
key idea is again to explicitly construct a preimage under the distributional exterior
derivative. In other words, if ω features additional properties, then we construct ξ
with additional properties.

For example, let 0 ≤ m ≤ n and suppose that ωi = 0 for 0 ≤ i < n−m. By de�-
nition we then have ω ∈ Λk+1

−k+n−m−1(T m). We would like to have ξ ∈ Λk
−k+n−m(T m)

in that case, since that would immediately imply a Poincaré-Friedrichs inequality
for the Hilbert complex

. . .
dk+n−m−1

−−−−−−→ Λk
−k+n−m(T m)

dk+n−m
−−−−→ Λk+1

−k+n−m−1(T m)
dk+n−m+1

−−−−−−→ . . .

with respect to the norm ‖ · ‖−h. But it is trivially seen that our construction of ξ
satis�es ξi = 0 for 0 ≤ i ≤ n−m in that case. Hence we can formulate the following
corollary.

Corollary IX.10.5.

Let 0 ≤ m ≤ n. The Hilbert complex

0→ Λ0
−1(T m)

dn−m−−−→ . . .
dn−1

−−−→ Λm
−m−1(T m)→ 0

satis�es Poincaré-Friedrichs inequalities with respect to the scalar product 〈·, ·〉−h.
The Poincaré-Friedrichs constant depends only on µΓ

T ,U , µ(T ), µlqu(T ), n, and R.

Another interesting special case, whose analysis is more complicated, is ω satis-
fying ωi = 0 for b ≤ i ≤ k + 1 where 2 ≤ b ≤ k + 2. In that case ω ∈ Λk+1

−b (T n) and
we would like to have ξ ∈ Λk

−b+1(T n). Note that the special case b = k+2 is covered
by the preceding construction, but 2 ≤ b < k + 2 is not. Since ξ as constructed
above only satis�es ξ ∈ Λk

−k+1(T n) in general, some modi�cations are due.
If ω ∈ Λk+1

−b (T n), then ω = ω0 + · · ·+ ωb−1. We have

ξi = Pn−ik−iT
n−i+1
k−i+1ξ

i−1

for b ≤ i ≤ k, and we have

ξ̃ = −E n−kTn−k0 ξk.

Unfolding this recursive relation, we �nd that

ξi = Pn−ik−iT
n−i+1
k−i+1 · · ·P

n−b
k−bT

n−b+1
k−b+1ξ

b−1

for b ≤ i ≤ k, and that

ξ̃ = −E n−kTn−k0 Pn−k0 Tn−k+1
1 · · ·Pn−bk−bT

n−b+1
k−b+1ξ

b−1.

By iterative application of Lemma IX.6.4 we �nd

Rk,i . . . Rk,k+1ξ ∈ Λk
−i(T n), dkRk,i · · ·Rk,k+1ξ = ω
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10. Poincaré-Friedrichs Inequalities

for b ≤ i ≤ k + 1. In particular, the case i = b provides us with a member of
Λk
−b+1(T n) whose distributional exterior derivative equals ω. This is the desired

preimage.

It remains to provide the relevant norm estimates. We have

Rk,b . . . Rk,k+1ξ = ξ0 + · · ·+ ξb−2 + θb−1 + · · ·+ θk + θ̃,

where θi ∈ Λk−b+2
−1 (T n−b+2) is given by

θi = (−1)i−bDn−b+2
k−b+1E

n−b+2
k−b+1 · · ·D

n−i+1
k−i En−i+1

k−i ξi

for b− 1 ≤ i ≤ k, and where θ̃ ∈ Λk−b+2
−1 (T n−b+2) is given by

θ̃ = (−1)k−b+1Dn−b+2
k−b+1E

n−b+2
k−b+1 · · ·D

n−k+1
0 En−k+1

0 ξ̃ .

The terms ξ0, . . . , ξb−2 have been estimated earlier. It remains to treat the terms
θb−1, . . . , θk, and θ̃.

We derive estimates via repeated application of Lemma IX.7.3, Lemma IX.7.5,
and Lemma IX.8.1. Let α ∈ R and let µ denote a generic constant that depends
only on µ̂, µ̌, µ́, µ̀, µΓ

T ,U , and α, and whose value may change from line to line.
Skipping over a series of repeated estimates, we obtain∑

C∈T n−b+2

C/∈Un−b+2

hα−b+2
C

∥∥θiC∥∥2

L2Λk−b+2(C)
≤ µ

∑
C∈T n−i
C/∈Un−i

hα−iC

∥∥ξiC∥∥2

L2Λk−i(C)

≤ µ
∑

C∈T n−b+1

C/∈Un−b+1

hα−b+1
C

∥∥ξb−1
C

∥∥2

L2Λk−b−1(C)
≤ µ

b−1∑
j=0

∑
C∈T n−j
C/∈Un−j

hα−b+3
C

∥∥ωjC∥∥2

L2Λk−j(C)

Next, with application of Lemma IX.10.3, and Theorem IX.9.2, we �nd∑
C∈T n−b+2

C/∈Un−b+2

h−b+2
C

∥∥∥θ̃C∥∥∥2

L2Λk−b+2(C)
≤ µ

∑
C∈T n−k
C/∈Un−k

h−kC

∥∥∥ξ̃C∥∥∥2

L2Λ0(C)

≤ µ
∑

C∈T n−k
C/∈Un−k

h−k−2
C

∥∥ξkC∥∥2

L2Λ0(C)
≤ µ

∑
C∈T n−b−1

C/∈Un−b−1

h−b−1
C

∥∥ξb−1
C

∥∥2

L2Λk−b−1(C)

≤ µ

b−1∑
j=0

∑
C∈T n−j
C/∈Un−j

h−b+1
C

∥∥ωjC∥∥2

L2Λk−j(C)
.

This proves the desired Poincaré-Friedrichs inequality.

Finally, we treat the case b = 1. Suppose that ω = ω0, so that ω ∈ Λk+1
−1 (T n).

Since ω ∈ dkΛk
−1(T n), we �nd that ω ∈ Λk+1(T n) and ω ∈ dkΛk(T n). The construc-

tion of ξ then assures that ξ ∈ Λk(T n). This gives the desired Poincaré-Friedrichs
inequality.
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Conclusively, we have bounded the Poincaré-Friedrichs constants of discrete dis-
tributional de Rham complexes. We summarize those �ndings in the following main
result.

Theorem IX.10.6.

The Hilbert complexes

. . .
dk+n−m−2

−−−−−−→ Λk−1(T m)
dk+n−m−1

−−−−−−→ Λk
−1(T m)

dk+n−m
−−−−→ Λk+1

−2 (T m)
dk+n−m+1

−−−−−−→ . . .

and

. . .
dk+n−m−2

−−−−−−→ Γk(T m+1)
dk+n−m−1

−−−−−−→ Γk−1(T m)
dk+n−m
−−−−→ Γk−2(T m−1)

dk+n−m+1

−−−−−−→ . . .

satisfy Poincaré-Friedrichs inequalities with respect to the scalar product 〈·, ·〉−h.
The Poincaré-Friedrichs constants depend only on µΓ

T ,U , µ(T ), µlqu(T ), n, and R.

Remark IX.10.7.

In [34, Section 3.4], Braess and Schöberl employed the scalar product 〈·, ·〉h, de�ned
as in (IX.32). They proved Poincaré-Friedrichs inequalities with respect to that
scalar product when the underlying triangulation is a local patch, essentially relying
on a scaling argument. It is easily seen that their Lemma 9 holds for our scalar
product 〈·, ·〉−h in a similar manner if the distributional �nite element complex is
considered on a local patch. In the light of the result of this chapter, we are inclined
to consider 〈·, ·〉−h as the �natural� scalar product for distributional �nite element
spaces.

Example IX.10.8.

Let T again be a triangulation of a connected domain and let U = ∅. The previous
results imply that for any f ∈ Λn(T n) we can construct σ ∈ Λn−1(T n) such that
dn−1σ = f . The construction consists of local operations and one single global
computation: given a 0-chain s ∈ C0(T ) (i.e. a linear combination of oriented points),
we need to �nd a 1-chain s ∈ C1(T ) (i.e. a linear combination of oriented edges) such
that ∂S = s. The condition number of the latter global problem with respect to
the norm ‖ · ‖−h depends only on the Poincaré-Friedrichs constant of the complex
of Whitney forms with respect to the L2 product and the mesh regularity. It does
not depend on any polynomial order of the �nite element spaces.
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In this chapter we approach the work of Braess and Schöberl from a di�erent angle
and elaborate upon equilibrated a posteriori error estimation in �nite element exte-
rior calculus. We obtain a practically relevant result: we generalize the publication
of Braess and Schöberl [34] to the case of higher order edge elements.

A priori error estimates for �nite element methods bound the approximation
error of the Galerkin solution using only data available prior to the computation
of the Galerkin solution. But it is reasonable to assume that posterior to comput-
ing an approximate solution we can derive sharper error estimates: after all, the
approximate solution is additional information explicitly known. The continuity of
research on a posteriori error estimation (see, e.g., the monographs [4, 156, 172])
may be partially explained by their critical role for many adaptive �nite element
methods [48, 51].

One of the most important residual error estimators, found in many introductory
textbooks on �nite element methods [32, 83], is the classical residual error estimator.
We demonstrate the basic idea by the means of the Poisson equation. Let Ω be a
Lipschitz domain. It is standard that for every f ∈ L2(Ω) there exists u ∈ H1

0 (Ω)
such that − div∇u = f . For uh ∈ H1

0 (Ω), conceived as an approximation of u,
we de�ne the residual rh ∈ H−1(Ω) as the functional f + div∇u in the dual space
of H1

0 (Ω). It follows from de�nitions and basic facts that the H−1 norm of rh is
comparable to the H1 norm of the approximation error u− uh.

When we choose uh to be the (piecewise polynomial) Galerkin solution of a �nite
element method, then the distribution rh can be represented as the sum of integrals
over full-dimensional simplices and trace integrals over faces (each against a poly-
nomial weight). The latter integrals over faces are also known as jump terms in this
context. Since rh features this special structure, the whole trick is now to estimate
the H−1 norm of rh in terms of a mesh-dependent norm of rh. We refer to the
monograph of Braess [32] for further details.

The classical residual error estimator leaves room for improvement. The estimate
typically involves unknown constants that are not easy to estimate in practice, and
the resulting error bounds are generally not regarded as sharp. The research in
adaptive �nite element methods has driven much of the development of alternative
methods for a posteriori error estimation, of which equilibrated a posteriori error
estimators [3, 32, 33, 118, 155, 171] are one important example.

We let the aforementioned Poisson problem again serve as a basic example. Sup-
pose that σ ∈ H(div,Ω) is a square-integrable vector �eld with divergence in L2(Ω)
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that solves the �ux equation − divσ = f . The Prager-Synge theorem (see [34])
states that

‖∇uh − σ‖2
L2(Ω) = ‖∇uh −∇u‖2

L2(Ω) + ‖∇u− σ‖2
L2(Ω) .

An estimate for the error norm ‖∇u−∇uh‖L2(Ω) in terms of ‖∇uh − σ‖L2(Ω) follows
immediately; the only condition is that σ solves the �ux equation. Of course, in order
to make this error estimate computationally feasible, we need to obtain such a �ux
σ in the �rst place. Under the assumption that f ∈ PrDC(T ) is piecewise polynomial
of order r with respect to a triangulation T of the domain, this is computationally
feasible: there exists σh ∈ RTr(T ) in the Raviart-Thomas space solving the �ux
equation − divσh = f . The mixed �nite element method for the Poisson equation
determines such a solution.

The mixed �nite element method, however, comes at the cost of solving a global
�nite element problem. These computational costs can be circumvented by a pro-
cedure called local equilibration in the literature, which is also the namesake for the
whole method, and which we outline as follows. Let U be a subcomplex of T that
triangulates the boundary and let Pr(T ,U) denote the Lagrange space of order r
with Dirichlet boundary conditions. We assume that uh ∈ Pr(T ,U) satis�es the
Galerkin property∫

Ω

∇uh · ∇vh dx =

∫
Ω

fvh dx, vh ∈ Pr(T ,U).

For simplicity we assume that f is piecewise of polynomial order r − 1. We let
RTr

−1(T ) denote the subspace of L2(Ω) whose members are piecewise in the Raviart-
Thomas space of order r. Writing φV for the hat function associated with any vertex
V ∈ T 0, one can show that the distribution rh,V := φV · rh is supported in the local
patch around V and that there exists %h,V ∈ RTr

−1(T ), supported in the same local
patch, such that − div%h,V = rh,V . Now let %h be the sum of all %h,V over all vertices
V ∈ T 0. We observe − div%h = rh. Letting σh = %h +∇uh, we discover that

− divσh = − div%h − div∇uh
= rh − div∇uh
= f + div∇uh − div∇uh = f.

In particular, σh ∈ RTr(T ). The key observation is that σh is constructed using
only local operations, which are independent from each other and hence paralleliz-
able. Computational experiments indicate that this estimator is competitive [33, 47].
We remark the locally reconstructed �ux is generally di�erent from the �ux deter-
mined by a mixed �nite element method.

Whereas numerous publications treat a posteriori error estimation for the Pois-
son problem, much less is known for the curl curl problem. Several publications have
adapted the classical residual error estimator to Maxwell's equations [16, 144, 160]
but little has been published on di�erent error estimators, even though the experi-
ence with the Poisson problem suggests that this is of practical relevance.
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Important progress has been accomplished by Braess and Schöberl [34] who
approached a generalization of the equilibrated residual error estimator to the �nite
element method for the curl curl equation based on Nédélec elements. For a brief
outline of the idea, which has many parallels to the equilibrated error estimator for
the Poisson problem, let us assume that Ω is a contractible Lipschitz domain in R3

and that f ∈ H0(div,Ω) with div f = 0. Then there exists σ ∈ H0(curl,Ω) solving
the �ux equation curlσ = f . Furthermore, there exists a solution u ∈ H(curl,Ω) to
the curl curl problem

curl u ∈ H0(curl,Ω), curl curl u = f .

To select a unique solution, we may require u ∈ H0(div,Ω) and, say, the divergence
free constraint div u = 0.

Now suppose that uh ∈ H(curl,Ω) and that ξ ∈ H0(curl,Ω) with curl ξ = f .
Then one can show via a generalized Prager-Synge theorem [34, Theorem 11] that

‖ curl uh − ξ‖2
L2(Ω) = ‖ curl uh − curl u‖2

L2(Ω) + ‖ curl u− ξ‖2
L2(Ω).

Similar as before, we obtain an estimate of the error uh − u in the H(curl,Ω)
seminorm in terms of the L2 norm of curl uh − ξ. For a computational application
we need an algorithm to compute ξ ∈ H0(curl,Ω) solving the �ux equation. Let
T be a triangulation of the domain Ω and let U be the induced triangulation of
the boundary ∂Ω. We additionally assume that f ∈ RTr(T ,U) for some r ∈ N0.
Now div f = 0 implies the existence of ξh ∈ Ndr(T ,U) solving the �ux equation
curl ξh = f . The �ux ξh can obtained via a mixed �nite element method.

The computational costs of a global problem can again be avoided with a local-
ized �ux reconstruction. A prerequisite is that uh ∈ Ndr(T ) satis�es the Galerkin
property ∫

Ω

curl uh · curl vh dx =

∫
Ω

f · vh dx, vh ∈ Ndr(T ).

Following the same philosophy as for Poisson problem, we may de�ne the residual,
decompose it into divergence-free distributions localized over patches, and solve the
(distributional) �ux equation on each patch locally. The crux of the construction,
however, is �nding the residual decomposition, which has been accomplished for
r = 0 in the aforementioned publication by Braess and Schöberl. Generalizations to
higher order edge elements have remained elusive as of now.

In this thesis we reassess equilibrated error estimators in the framework of �nite
element exterior calculus and improve upon the situation. We emphasize that we
do not elaborate upon the details of the classical residual error estimator, for which
a comprehensive study from the perspective of �nite element exterior calculus has
already been accomplished by Demlow and Hirani [72]. The major contribution of
this chapter are algorithms for partially localized �ux reconstruction, which builds
immediately upon the concepts of Chapter IV.

Partially localized �ux reconstruction seems to be a new tool in the theory of
�nite element methods, and our construction of �nite element spaces in Chapter IV
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provides the underlying formalism. In this context, �ux reconstruction refers to
computing a generalized inverse of the exterior derivative between �nite element
spaces of di�erential forms, i.e., solving the �ux equation. Speci�cally, we want to
compute a generalized inverse for the mapping curl : Ndr(T ,U)→ RTr(T ,U) from
order r Nédélec elements to order r Raviart-Thomas elements.

Algorithmically we can tackle the problem either with a mixed �nite element
method or by solving normal equations, both of which involve global problems over
higher order �nite element spaces. Our framework, however, reduces the global prob-
lem to the lowest-order case. For example, assume that ω ∈ RTr(T ,U) is the curl of
a member of Ndr(T ,U). We decompose ω = ωlo + curl ξhi, where ωlo ∈ RT0(T ,U)
is the canonical interpolation of ω onto the lowest-order Raviart-Thomas space, and
where ξhi ∈ Ndr(T ,U) is constructed by solving independent local problems. These
local problems are associated to single tetrahedra, and their stability and complexity
depends only on the local polynomial order and mesh quality; they are independent
of each other and hence amenable for parallelization. One can show the existence
ξlo ∈ Nd0(T ,U) with curl ξlo = ωlo, computed by solving a global problem only
on a smaller lowest-order space. Eventually ξ := ξlo + ξhi ∈ Ndr(T ,U) satis�es
curl ξ = ω. The �ux reconstruction is partially localized in the sense that only
lowest-order terms require a global computation.

A minor application of theoretical interest is determining the cohomology spaces
of �nite element de Rham complex of higher polynomial order. Speci�cally, the
�nite element interpolant from higher order �nite element de Rham complexes onto
the Whitney forms induces isomorphisms on cohomology.

A major application, however, solves the open problem in the theory of a equi-
librated posteriori error estimators. We devise a fully localized �ux reconstruction
for the operator curl : Ndr(T ,U)→ RTr(T ,U) provided that the Galerkin solution
is given as additional information. E�cient algorithms for �nite element �ux recon-
struction are critical to make the estimator feasible in computations [17, 18, 32, 84].
The partially localized �ux reconstruction of this chapter �nally enables a fully lo-
calized �ux reconstruction and thus the equilibrated a posteriori error estimator for
edge elements of arbitrary and possibly non-uniform polynomial order.

X.1. Partially Localized Flux Reconstruction

We introduce partially localized �ux reconstructions in the calculus of di�erential
forms. This section can be read as a direct continuation of Chapter IV. Let T
be a simplicial complex and let U ⊆ T be a simplicial subcomplex. We recall the
complex of Whitney forms:

. . .
dk−1

−−−→ WΛk(T ,U)
dk−−−→ WΛk+1(T ,U)

dk+1

−−−→ . . .

Additionally, we let P : T → A be a hierarchical association of admissible sequence
types to the simplices of T . Following the construction principles of Chapter IV, we
have a �nite element de Rham complex with boundary conditions:

. . .
dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .
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1. Partially Localized Flux Reconstruction

The canonical interpolation onto the Whitney forms

. . .
dk−1

−−−→ PΛk(T ,U)
dk−−−→ PΛk+1(T ,U)

dk+1

−−−→ . . .

IkW

y Ik+1
W

y
. . .

dk−1

−−−→ WΛk(T ,U)
dk−−−→ WΛk+1(T ,U)

dk+1

−−−→ . . .

gives a morphism of di�erential complexes. For the purpose of this section we use
in particular the di�erential complexes

. . .
dk−1
F−−−→ P̊Λk(F )

dkF−−−→ P̊Λk+1(F )
dk+1
F−−−→ . . .

associated to F ∈ T . We focus on constructively solving the �ux equation

dk−1ξ = ω, (X.1)

where ω ∈ PΛk(T ,U) is the given data and ξ ∈ PΛk−1(T ,U) is sought in the �nite
element space. Even if a solution exists, it might not be unique. Under the assump-
tion that a solution exists, the problem of �ux reconstruction is to �nd any solution
to (X.1) in the �nite element space. Moreover, we want to compute that solution in
an e�cient manner.

Flux reconstruction amounts to determining a generalized inverse of the operator

dk−1 : PΛk−1(T ,U)→ PΛk(T ,U) (X.2)

between �nite element spaces. In this chapter we develop a method to reduce this
problem to the lowest-order case. It then only remains to �nd a generalized inverse
of the operator

dk−1 :WΛk−1(T ,U)→WΛk(T ,U) (X.3)

between the spaces of Whitney forms. The higher order aspects of the problem are
treated in local problems associated to simplices which are solved independently
from each other. This is a fundamental result on the structure of higher order �nite
element spaces that is not only of theoretical interest but also relevant in numerical
algorithms.

Before formulating the main result, we make our assumptions more precise. First
we �x a generalized inverse of the exterior derivative (X.3) between Whitney forms.
Speci�cally, we assume that we have a linear mapping

PkW :WΛk(T ,U)→WΛk−1(T ,U) (X.4)

such that

dk−1PkWd
k−1ξ = dk−1ξ, ξ ∈ WΛk−1(T ,U). (X.5)

In particular, ω = dk−1PkWω whenever ω ∈ WΛk(T ,U) is the exterior derivative of
a Whitney form in WΛk−1(T ,U).
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Similarly, for each simplex F ∈ T we �x a generalized derivative

PkF : P̊Λk(F )→ P̊Λk−1(F ) (X.6)

such that

dk−1
F PkFd

k−1
F ξ = dk−1

F ξ, ξ ∈ P̊Λk(F ). (X.7)

We have ω = dk−1
F PkFω whenever ω ∈ P̊Λk(F ) is the exterior derivative of a member

of P̊Λk−1(F ). The existence of a mapping PkW and mappings PkF with such properties
is an elementary fact of linear algebra.

Remark X.1.1.

There is no canonical choice in �xing the generalized inverses. Upon �xing a Hilbert
space structure on the Whitney forms, however, the Moore-Penrose pseudoinverse
of dk−1 : WΛk−1(T ,U) → WΛk(T ,U) is a natural choice. This Moore-Penrose
pseudoinverse provides the least-squares solution of the problem. Entirely analogous
statements hold for choosing the generalized inverses PkF .

Assuming to have �xed generalized inverses as above, we introduce the partially
localized �ux reconstruction without further ado.

Theorem X.1.2.

Suppose that ω ∈ PΛk(T ) with dkω = 0. For m ∈ {k, . . . , n} we let

ξm :=
∑
F∈T m

Extk−1
F PkF trkF

(
ω − IkWω −

m−1∑
l=k

dk−1ξl

)
. (X.8)

Then

IkWω + dk−1

(
n∑

m=k

ξm

)
= ω. (X.9)

In particular, if there exists ξ ∈ PΛk−1(T ,U) with dk−1ξ = ω, then

dk−1

(
PkWI

k
Wω +

n∑
m=k

ξm

)
= ω. (X.10)

Proof. We use the modi�ed geometric decomposition (Lemma IV.3.9) to write

ω = IkWω +
n∑

m=k

∑
F∈T m

ExtkF ω̊F ,

where ω̊F ∈ P̊Λk(F ) for each F ∈ T . We thus �nd for F ∈ T k that

trkF
(
ω − IkWω

)
∈ P̊Λk(F ).

The proof is completed by an induction argument. For each F ∈ T we set

θF := trkF

(
ω − IkWω −

dimF−1∑
l=k

dk−1ξl

)
.
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Let m ∈ {k, . . . , n − 1}. Suppose that θf ∈ P̊Λk(f) for each f ∈ T m, which is
certainly true if m = k. Then ξm as in (X.8) is well-de�ned. We �nd

dkfθf = dkf trkf

(
ω − IkWω −

m−1∑
l=k

dk−1ξl

)

= trkf

(
dkω − dkIkWω − dk

m−1∑
l=k

dk−1ξl

)
= trkf

(
dkω − Ik+1

W dkω
)

= 0,

since dkω = 0, and conclude that dk−1
f P k

f θf = θf . In particular,

trkf d
k−1ξm = dk−1

f Pfθf = trkf

(
ω − IkWω −

m−1∑
l=k

dk−1ξl

)
. (X.11)

If m < n, then θF ∈ P̊Λk(F ) for each F ∈ T m+1. The argument may be iterated
until m = n. In the latter case (X.11) provides (X.9).

Finally, if there exists ξ ∈ PΛk−1(T ,U) with dk−1ξ = ω, then

IkWω = IkWd
k−1ξ = dk−1Ik−1

W ξ.

and hence dk−1PkWI
k
Wξ = Ik−1

W ξ, which shows (X.10). This completes the proof.

One implication of the theorem is that for every ω ∈ PΛk(T ,U) with dkω = 0
there exists ξhi ∈ PΛk−1(T ,U) such that

ω = IkWω + dkξhi.

If additionally ω is the exterior derivative of a member of PΛk−1(T ,U), then there
exists ξlo ∈ WΛk−1(T ,U) with dk−1ξlo = IkWω. Thus

ξ := ξlo + ξhi

is a solution of dk−1ξ = ω in the �nite element space PΛk−1(T ,U).

As a simple �rst application we address the dimension of the cohomology classes
of the �nite element de Rham complex. This is a new proof of a result which
has been shown before [11, 56, 132] with di�erent techniques. Conceptually, this
shows that the cohomological information are encoded completely in the lowest
order component of the �nite element de Rham complex.

Lemma X.1.3.

The commuting interpolant IkW : PΛk(T ,U) → WΛk(T ,U) induces isomorphisms
on cohomology.

Proof. Let ω ∈ WΛk(T ,U) with dkω = 0. If we have ω /∈ dk−1WΛk−1(T ,U), then
in particular ω /∈ dk−1PΛk−1(T ,U), since the �nite element interpolant commutes
with the exterior derivative. Hence IkW is surjective on cohomology.
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Conversely, suppose that ω ∈ PΛk(T ,U) with dkω = 0. If ω /∈ dk−1PΛk−1(T ,U),
then there exists ξ ∈ PΛk−1(T ,U) such that ω = dk−1ξ + IkWω. Since IkW com-
mutes with the exterior derivative, we conclude IkWω /∈ dk−1WΛk−1(T ,U) from
ω /∈ dk−1PΛk−1(T ,U). Hence IkW is injective on cohomology.

The partially localized �ux reconstruction is also relevant from a computational
point of view. Consider again the �ux equation dk−1ξ = ω for given ω ∈ PΛk(T ,U).
Under the condition that ω is contained in the image of

dk−1 : PΛk−1(T ,U)→ PΛk(T ,U) (X.12)

there exists a solution ξ ∈ PΛk−1(T ,U) to the �ux equation dk−1ξ = ω. One
possibility to computationally solve the �ux equation is treating it as a least-squares
problem: we �x a Hilbert space structure on the �nite element spaces and compute
the action of the Moore-Penrose pseudoinverse of the operator (X.12). This is a
standard topic of numerical linear algebra. A drawback of this method is that
the spectral properties of the operator (X.12) for higher polynomial order can be
disadvantageous with regards to the L2 norm. The condition number of the least-
squares problem generally grows with the polynomial order, as does the size of the
linear system of equations, which negatively a�ects the performance of the numerical
methods. In particular, the stability and size of the problem on higher order spaces
is comparable to computing the �ux variable in a mixed �nite element method.

How to avoid solving a global problem on a high order �nite element space is
now apparent by Theorem X.1.2. We invoke the following steps.

1. As outlined above, with a block of mutually independent local computations
we split the main problem into two independent subproblems: one subproblem
is to solve a �ux equation dk−1ξlo = IkWω over the space of Whitney forms,
whereas the second subproblem involves the higher order contributions.

2. In the �rst subproblem we seek a �ux reconstruction ξlo ∈ WΛk−1(T ,U) for
IkWω ∈ WΛk(T ,U). Hence we still need to solve a global least-squares problem
but this time only for the operator dk−1 : WΛk−1(T ,U) → WΛk(T ,U) over
�nite element spaces of lowest order.

3. In the second subproblem we calculate ξhi by iterating over the dimension
of the simplices in T from lowest to highest; at each step we solve a block
of mutually independent local subproblems. In particular, at each step the
computation is amenable to parallelization.

In this sense the �ux reconstruction is partially localized: the only remaining global
operation involves a �nite element space of merely lowest order instead of the full
�nite element space. A fully localized �ux reconstruction is feasible when additional
structure is provided; this will be crucial to our application in the next section.

Remark X.1.4.

We can rearrange the construction of ξhi such that, instead of solving a sequence of
parallelizable blocks of mutually independent local computations, we process only
one parallelizable block of mutually independent local problems associated to full-
dimensional simplices. This comes at the cost of redundant computations.
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Remark X.1.5.

The L2 stability of the global lowest-order problem depends only on the mesh quality
and the domain, and the L2 stability of the local problems depends only on the mesh
quality and the polynomial order. Whether the dependency on the polynomial order
can be dropped remains for future research (but see [33]).

Remark X.1.6.

We brie�y compare the �ux reconstruction of this chapter with the �ux recon-
struction encountered in Chapter IX. In the latter case, the purpose of the �ux
reconstruction was to derive Poincaré-Friedrichs inequalities. In this chapter, the
problem of �ux reconstruction is approached from a di�erent point of view. In par-
ticular, we pose the problem over conforming �nite element spaces. We emphasize
at this point that the construction is similar but strictly di�erent. The �ux recon-
struction in Chapter IX can be used on conforming �nite element spaces too, but
the structure of the construction is very di�erent. A global �ux reconstruction is
performed as a subproblem in both cases. But the �ux reconstruction in this chapter
can be conducted independently from �ux reconstruction on local patches (only the
interpolant onto the Whitney forms needs to be computed), whereas the global �ux
reconstruction on simplicial chains in Chapter IX is both preceded and succeeded
by local computations. Furthermore, the �ux reconstruction of this chapter can be
applied in a posteriori error estimation as we demonstrate in the next section.

X.2. Applications in A Posteriori Error Estimation

In this section we use the partially localized �ux reconstruction to obtain a
fully localized �ux reconstruction for the equilibrated a posteriori estimation of the
curl curl equation. The original construction of Braess and Schöberl works only
for �nite element spaces of lowest polynomial order. With the partially localized
�ux reconstruction at our disposal, it is no di�culty to generalize this to the case
of higher order �nite element spaces. We demonstrate the theory by the means
of an example in three dimensions, which has already been alluded to in the intro-
duction of this chapter. The construction works fully analogously in two dimensions.

Let Ω ⊆ R3 be a bounded weakly Lipschitz domain. We let C∞(Ω) denote
the space of restrictions of smooth functions over Rn to Ω and de�ne C∞(Ω) :=
C∞(Ω)3. We let C∞c (Ω) denote the space of smooth functions over Ω with support
compactly contained in Ω. We let C∞c (Ω) := C∞c (Ω)3. Moreover, we let L2(Ω)
and L2(Ω) := L2(Ω)3 denote the Hilbert spaces of square-integrable functions and
vector �elds, respectively, over Ω. The corresponding scalar products and norms are
written 〈·, ·〉L2 , ‖ · ‖L2 , 〈·, ·〉L2 , and ‖ · ‖L2 . The partial derivatives of such tensor
�elds are well-de�ned in the sense of distributions, and hence we may set

H1(Ω) :=
{
v ∈ L2(Ω)

∣∣ grad v ∈ L2(Ω)
}
,

H(curl,Ω) :=
{

v ∈ L2(Ω)
∣∣ curl v ∈ L2(Ω)

}
,

H(div,Ω) :=
{

v ∈ L2(Ω)
∣∣ div v ∈ L2(Ω)

}
.

These are Hilbert spaces when equipped with the canonical norms. We also consider
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subspaces of these with boundary conditions imposed. Speci�cally, we de�ne

H1
0 (Ω) := C∞c (Ω)

H1(Ω)
,

H0(curl,Ω) := C∞c (Ω)
H(curl,Ω)

,

H0(div,Ω) := C∞c (Ω)
H(div,Ω)

.

We can assemble the di�erential complexes

H1(Ω)
grad−−−→ H(curl,Ω)

curl−−−→ H(div,Ω)
div−−−→ L2(Ω) (X.13)

and

L2(Ω)
div←−−− H0(div,Ω)

curl←−−− H0(curl,Ω)
grad←−−− H1

0 (Ω). (X.14)

Here, the di�erential operators have closed range. If moreover the domain is con-
tractible, then the di�erential complexes (X.13) and (X.14) are exact. We also recall
the integration by parts formulas

〈gradu,v〉L2 = −〈u, div v〉L2 , u ∈ H1(Ω), v ∈ H0(div,Ω), (X.15)
〈curl u,v〉L2 = 〈u, curl v〉L2 , u ∈ H(curl,Ω), v ∈ H0(curl,Ω), (X.16)
〈div u, v〉L2 = −〈u, grad v〉L2 , u ∈ H(div,Ω), v ∈ H1

0 (Ω). (X.17)

Conceptually, the curl-curl problem for a given vector �eld f asks for a vector �eld u
that satis�es curl curl u = f . Speci�cally, we consider the following weak formulation
of the problem in terms of Sobolev spaces. We assume that f ∈ L2(Ω) and search
for u ∈ H(curl,Ω) with

〈curl u, curl v〉L2 = 〈f ,v〉L2 , v ∈ H(curl,Ω). (X.18)

One can show that (X.18) has a solution. Without further conditions, there is
no unique solution because the curl operator has a non-trivial kernel. To ensure
uniqueness one may require the solution u to be orthogonal to the gradients of
functions in H1(Ω); one can show that this enforces u ∈ H0(div,Ω) with div u = 0.
Conditions to ensure uniqueness of u, however, are not central to our exposition in
this section.

Let us assume additionally that Ω is contractible and that f ∈ H0(div,Ω) with
div f = 0. Then the di�erential complex (X.14) is exact at H0(div,Ω) and f is the
curl of a vector �eld in H0(curl,Ω). Under these conditions, any weak solution u of
(X.18) satis�es curl u ∈ H1

0 (Ω) with curl curl u = f , and thus is a strong solution.

In order to address a posteriori error estimation we �x a solution u ∈ H(curl,Ω)
and let uh ∈ H(curl,Ω) be arbitrary. Furthermore, we let σ ∈ H0(curl,Ω) with
curlσ = f . By the binomial theorem we see

‖σ − curl uh‖2
L2 = ‖σ − curl u + curl u− curl uh‖2

L2

= ‖σ − curl u‖2
L2 + ‖ curl u− curl uh‖2

L2

− 2 〈σ − curl u, curl u− curl uh〉L2 .
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2. Applications in A Posteriori Error Estimation

Using (X.16) and curlσ = f = curl u we note

〈σ − curl u, curl u− curl uh〉L2 = 〈curl(σ − curl u),u− uh〉L2 = 0.

Thus we conclude

‖σ − curl uh‖2
L2 = ‖σ − curl u‖2

L2 + ‖ curl u− curl uh‖2
L2 . (X.19)

Equation (X.19) generalizes what is known as Prager-Synge identity or hypercircle
identity in the literature (see [34]).

This identity has the following practical signi�cance. Let u ∈ H(curl,Ω) with
curl u ∈ H0(curl,Ω) be a strong solution of (X.18). Given any exact solution σ ∈
H0(curl,Ω) of curlσ = f and any uh ∈ H(curl,Ω), we obtain via (X.19) that

‖σ − curl uh‖L2 ≥ ‖ curl u− curl uh‖L2 . (X.20)

The left-hand side of (X.20) is given in terms of known objects and dominates the
right-hand side of (X.20), which depends on the generally unknown true solution u.
Seeing uh as an approximation of u, we may regard (X.20) as an error estimate in
the H(curl,Ω) seminorm.

In a typical application, uh is the Galerkin solution of a �nite element method.
We can apply (X.20) to obtain an upper bound on one component of the error in
the H(curl,Ω) norm provided that an exact solution σ ∈ H0(curl,Ω) of curlσ = f
is available. Note that curl u is generally unknown and hence not a candidate for
σ. But numerical algorithms for �ux reconstruction make (X.20) productive for
applications.

As a technical preparation, we consider �nite element de Rham complexes over
the domain Ω. Let T be a simplicial complex triangulating Ω and let U denote the
subcomplex of T triangulating ∂Ω. We focus on higher order �nite element spaces
of uniform order; the generalization to spaces of non-uniform polynomial order is
straight forward.

Let r ∈ N0. With respect to T we let Pr(T ) denote the Lagrange space, let
Ndr(T ) denote the Nédélec space, let RTr(T ) denote the Raviart-Thomas space,
and let PrDC(T ) denote the space of piecewise polynomial functions, each with poly-
nomial order r. From spaces of this form we may assemble the �nite element
de Rham complexes

Pr+1(T )
grad−−−→ Ndr(T )

curl−−−→ RTr(T )
div−−−→ PrDC(T ). (X.21)

Next we recall �nite element spaces with boundary conditions. We let Pr(T ,U),
Ndr(T ,U), RTr(T ,U) denote the subspaces of Pr(T ), Ndr(T ), RTr(T ) with
Dirichlet, tangential, and normal boundary conditions along ∂Ω, respectively. Again
we may assemble a �nite element de Rham complex

PrDC(T )
div←−−− Ndr(T ,U)

curl←−−− RTr(T ,U)
grad←−−− Pr+1(T ,U). (X.22)

The di�erential complex (X.21) is a �nite-dimensional subcomplex of (X.13) and
the di�erential complex (X.22) is a �nite-dimensional subcomplex of (X.14).
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X. Flux Reconstruction and Applications

Let f ∈ H0(div,Ω) be as before except for the additional assumption that f ∈
RTr(T ,U). Then there exists a member of Ndr(T ,U) whose curl equals f . In
order to utilize the error estimate (X.20) in practical computations, it remains to
algorithmically construct a generalized inverse for the operator

curl : Ndr(T ,U)→ RTr(T ,U). (X.23)

One possibility is solving a least-squares problem over the whole �nite element space.
We have seen, however, that a global computation over only lowest-order �nite
element spaces is su�cient. In the light of Theorem X.1.2 and the subsequent
discussions in the previous section, we decompose

f = f0 + curl ξr,

where f0 ∈ RT0(T ,U) is the canonical interpolation of f onto the lowest-order
Raviart-Thomas space with homogeneous normal boundary conditions and where
ξr ∈ Ndr(T ,U) is computed through a number of local problems over simplices
whose computation is parallelizable. This reduces the �ux reconstruction problem
to the special case r = 0.

The partially localized �ux reconstruction can be extended to a fully localized
�ux reconstruction if additional information is given. Speci�cally, assume that uh ∈
Ndr(T ) satis�es the Galerkin condition

〈curl uh, curl vh〉L2 = 〈f ,vh〉L2 , vh ∈ Ndr(T ). (X.24)

As a �rst step towards the fully localized �ux reconstruction, we compute the de-
composition f = f0 + curl ξr with f0 ∈ RT0(T ,U) and ξr ∈ Ndr(T ,U). This can
achieved by independent local computations.

For the next step we observe that both curl uh and ξr are members of PrDC(T )3,
i.e., they are vector �elds piecewise polynomial of order r. We let γh ∈ P0

DC(T )3 de-
note the L2 orthogonal projection of ξr−curl uh onto the space P0

DC(T )3 of piecewise
constant vector �elds. Note γh can be computed for each simplex independently.
By construction we have

〈γh, τh〉L2 = 〈ξr − curl uh, τh〉L2 , τh ∈ P0
DC(T )3.

Using the Galerkin orthogonality (X.24) we verify

0 = 〈f ,vh〉L2 − 〈curl uh, curl vh〉L2

= 〈f0 + curl ξh,vh〉L2 − 〈curl uh, curl vh〉L2

= 〈f0,vh〉L2 + 〈ξr − curl uh, curl vh〉L2

= 〈f0,vh〉L2 + 〈γh, curl vh〉L2

for every vh ∈ Nd0(T ); here we have used that curl vh ∈ P0
DC(T )3. Moreover,

div f0 = 0 since the �nite element interpolant commutes with the di�erential op-
erators. The next crucial step is using the fully localized �ux reconstruction for

226
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lowest-order �nite element spaces in [34]. The original construction of Braess and
Schöberl gives %h ∈ RT0(T ,U) with

〈%h, curl v〉L2 = 〈f0,v〉L2 + 〈γh, curl v〉L2 , v ∈ H(curl,Ω), (X.25)

where %h is computed by solving local independent problems over element patches
around vertices. We refer speci�cally to Section 4.2 and Section 4.4 of [34] for the
details in the literature, but we outline the construction in Remark X.2.4 below too.

This leads us to

〈f ,v〉L2 − 〈curl uh, curl v〉L2

= 〈f0,v〉L2 + 〈ξr − curl uh, curl v〉L2

= 〈f0,v〉L2 + 〈γh, curl v〉L2 + 〈ξr − curl uh − γh, curl v〉L2

= 〈%h + ξr − curl uh − γh, curl v〉L2

for all v ∈ H(curl). Upon setting

σh := %h + ξr − γh,

this can be rewritten as

〈f ,v〉L2 − 〈curl uh, curl v〉L2 = 〈σh − curl uh, curl v〉L2 , v ∈ H(curl,Ω),

which immediately implies

〈f ,v〉L2 = 〈σh, curl v〉L2 , v ∈ H(curl,Ω).

We conclude that σh ∈ H0(curl,Ω). By construction we have σh ∈ Ndr(T ,U) with

f = curlσh.

Constructing σh has involved only local computations. This completes the fully
localized �ux reconstruction and enables the a posteriori error estimate (X.20).

Remark X.2.1.

Our techniques apply similarly to higher order �ux reconstruction for edge elements
in dimension two. Again, the lowest-order case is treated in [34]. Moreover, we may
treat the curl curl problem with mixed boundary conditions in an entirely analogous
manner as long as the di�erential complexes are exact.

Remark X.2.2.

Our construction has assumed a contractible domain and that f ∈ RTr(T ,U) with
div f = 0. We remark that the condition f ∈ H0(Ω, div) has appeared in the
discussions of Demlow and Hirani, who have discussed it under the label Hodge
imbalance [72]. In general, the �ux equation curl ξ = f is not solvable exactly. We
expect this to hamper the estimator in practical computations.

Remark X.2.3.

With Remark X.1.4 in mind, we see that ξr and γh are computable on each simplex
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using only the information given on that simplex. At the cost of redundant compu-
tations, we may rearrange the calculations so that σh is constructed with a single
parallelizable block of problems associated to patches.

Via Remark X.1.5 we furthermore see that the stability of the construction of σh
depends only on the mesh quality, the domain, and the polynomial order of the �nite
element spaces. We conjecture that the last dependence can be dropped, i.e. that
equilibrated a posteriori error estimators for edge elements are robust with respect
to the polynomial order (see [33]).

Remark X.2.4.

We have referred to the original publication of Braess and Schöberl for the details of
how to construct %h. In order to give a self-contained exposition, we provide more
details in this lengthy remark. We de�ne the distributional vector �eld β by

〈β,v〉 := 〈f0,v〉L2 + 〈γh, curl v〉L2 , v ∈ H(curl,Ω). (X.26)

Since γh is piecewise constant, integration by parts shows

〈γh, curl v〉L2 =
∑
T∈T 3

∫
T

γh · curl v ds =
∑
T∈T 3

F∈∆(T )2

∫
F

v · (γh × ~nT,F ) ds

for all v ∈ H(curl,Ω), where ~nT,F is the outward unit formal of T along the boundary
face F . We conclude that there exist unique constant vector �elds βT ∈ RT0(T )
for T ∈ T 3 and unique constant tangential vector �elds βF ∈ RT0(F ) over F ∈ T 2

such that we can represent β by

〈β,v〉 =
∑
T∈T 3

∫
T

βT · v dx+
∑

F∈∆(T )2

∫
F

βF · τF (v) ds (X.27)

for all v ∈ H(curl,Ω). Here τF (v) denotes the tangential component of v along F .
We have f0|T = βT for each T ∈ T 3, whereas βF for each F ∈ T 2 is the jump term
along F induced by the integration by parts over adjacent tetrahedra.

The idea is to decompose β into the sum of locally supported divergence-free dis-
tributional vector �elds βV associated to vertices V ∈ T 0. The vanishing divergence
of each βV then proves solvability of the local �ux equation curl%Vh = βV . Summing
the local solutions yields a solution %h to the global �ux equation curl%h = β.

We gather more information about the summands in the representation (X.27).
Since f0 is divergence free, we �nd for each T ∈ T 3 that

0 =

∫
T

div f0|T dx =

∫
T

divβT dx =
∑

F∈∆(T )2

F /∈U

∫
F

βT · ~nT,F ds. (X.28)

For v ∈ C∞(Ω) and F ∈ T 2 we observe

0 =

∫
F

βF · τF (grad v) ds =

∫
F

βF · grad τF (v) ds

= −
∫
F

divβF · τF (v) ds−
∑

E∈∆(F )1

E/∈U

∫
E

τF (v)~nF,E · βF de.

228
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Since v ∈ C∞(Ω) was arbitrary, we �nd for all F ∈ T 2 that

0 =

∫
F

divβF ds =
∑

E∈∆(F )1

∫
E

βF · ~nF,E de, (X.29)

and we �nd for all E ∈ T 1 that

0 =
∑
F∈T 2

E∈∆(F )1

∫
E

~nF,E · βF de. (X.30)

We equip every E ∈ T 1 with an arbitrary but �xed orientation, so that one vertex
of E is the back vertex and the other is the front vertex. For every tetrahedron T
containing the edge E we let F 1(T,E) and F 2(T,E) denote the two faces of T that
are opposite to the back and the front vertex of E, respectively. Similarly, for every
face F containing the edge E we let E1(F,E) and E2(F,E) denote the two edges of
F that are opposite to the back and the front vertex of E, respectively. It is then
possible to show that

0 =
1

6

∑
F∈T 2

E∈∆(F )

∫
E1(F,E)

βF · ~nF,E1(T,E) de−
∫
E2(F,E)

βF · ~nF,E2(T,E) de

+
1

12

∑
T∈T 3

E∈∆(T )

∫
F 1(T,E)

βT · ~nT,F 1(T,E) ds−
∫
F 2(T,E)

βT · ~nT,F 2(T,E) ds.

(X.31)

This is precisely Equation (4.9) of [34] except for a di�erent sign convention, and
can be seen by evaluating β on the basis vector �eld in Nd0(T ) associated with E,
and then recalling the Galerkin orthogonality

〈β,vh〉 = 0, vh ∈ Nd0(T ).

Having gathered these properties of β, we develop the localized decomposition.
Let V ∈ T 0 be any vertex of the triangulation. First we de�ne vector �elds over
tetrahedra. Whenever T ∈ T 3 with V ∈ ∆(T )0 is a tetrahedron containing V as a
vertex, and F ∈ ∆(T )2 is a face of T containing V as a vertex, then we let F 1(T, V )
and F 2(T, V ) denote the other two faces of T containing V in arbitrary order, and
furthermore we let F o(T, V ) denote the face of T opposite to V . We de�ne the
vector �eld βVT ∈ RT0(T ) by requiring∫

F

βVT · ~nT,F ds =
1

3

∫
F

βT · ~nT,F ds+
1

12

∫
F o(T,V )

βT · ~nT,F o(T,V ) ds

− 1

24

∫
F 1(T,V )

βT · ~nT,F 1(T,V ) ds− 1

24

∫
F 2(T,V )

βT · ~nT,F 2(T,V ) ds

for each F ∈ ∆(T )2 that contains V as a vertex, and by requiring∫
F o(T,V )

βVT · ~nT,F o(T,V ) ds = 0
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on the face opposite to V . Since these integrals are the degrees of freedom of RT0(T ),
this uniquely de�nes βVT .

Additionally we de�ne vector �elds over faces. Whenever F ∈ T 2 with V ∈
∆(T )0 is a face containing V as a vertex, and E ∈ ∆(F )1 is an edge of F containing
V as a vertex again, then we let E1(F, V ) denote the edge of F containing V and
opposite to E, and we let Eo(F, V ) denote the edge of F opposite to V . Moreover,
whenever T ∈ T 3 is a tetrahedron containing F , then we let F ′(T,E, V ) be the face
of T containing V but not containing E. We de�ne the vector �eld βVF ∈ RT0(F )
by requiringi∫
E

βVF · ~nF,E de =
1

2

∫
E

βF · ~nF,E de

+
1

6

∫
Eo(F,V )

βF · ~nF,Eo(F,V ) de− 1

6

∫
E1(F,V )

βF · ~nF,E1(F,V ) de

+
1

24

∑
T∈T 3

F∈∆(T )2

∫
F o(T,V )

βT · ~nF o(T,V ) ds−
∫

F ′(T,E,V )

βT · ~nF ′(T,E,V ) ds.

Similarly as for the terms on the tetrahedra, we set∫
Eo(F,V )

βVF · ~nF,Eo(F,V ) de = 0

over the edge opposite to V . Since these integrals are the degrees of freedom of
RT0(F ), this uniquely de�nes βVF .

For each V ∈ T 0 we de�ne the distributional vector �eld βV by〈
βV ,v

〉
:=

∑
T∈T 3

V ∈∆(T )0

〈
βVT ,v

〉
+

∑
F∈T 2

V ∈∆(T )0

〈
βVF ,v

〉
, v ∈ C∞(Ω).

It is easily checked that β is again the sum of all βV over the vertices of T .

β =
∑
V ∈T 0

βV .

To see this, we use symmetries in the de�nition to �nd∑
V ∈T 0

∫
F

βVT · ~nT,F ds =
∑

V ∈∆(F )0

∫
F

βVT · ~nT,F ds =

∫
F

βT · ~nT,F ds

for every T ∈ T 3 and F ∈ ∆(T )2, and to �nd∑
V ∈T 0

∫
E

βVF · ~nF,E de =
∑

V ∈∆(E)0

∫
E

βVF · ~nF,E de =

∫
E

βF · ~nF,E de,

iTo the author's best understanding, the de�nition of the local face terms in Equation (4.18)
of [34] are subject to a sign error.
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for every F ∈ T 2 and E ∈ ∆(T )1.
We want to show that each βV has vanishing distributional divergence. Let

V ∈ T 0 be an arbitrary but �xed vertex. For every v ∈ C∞(Ω) we observe

〈
βV , grad v

〉
=

∑
T∈T 3

V ∈∆(T )0

 ∑
F∈∆(T )2

V ∈∆(F )0

∫
F

v ·
(
~nT,F · βVT

)
ds−

∫
T

v · divβVT dx



+
∑
F∈T 2

V ∈∆(F )0

 ∑
E∈∆(F )1

V ∈∆(E)0

∫
E

v ·
(
~nF,E · βVF

)
ds−

∫
F

v · divβVF ds

 .

For every tetrahedron T ∈ T 3 containing V we see∫
T

divβVT dx =
∑

F∈∆(T )2

∫
F

βVT · ~nT,F ds =
1

3

∑
F∈∆(T )2

∫
F

βT · ~nT,F ds = 0

as a consequence of (X.28). When F ∈ T 2 is a face containing V , then∫
F

divβVF ds−
∑
T∈T 3

F∈∆(T )2

∫
F

βVT · ~nT,F ds = 0

follows by a direct combination of (X.28) and (X.29). Lastly, when E ∈ T 1 contains
the vertex V , then (X.30) and (X.31) imply that

0 =
∑
F∈T 2

E∈∆(F )1

∫
E

~nF,E · βVF de.

In summary, the distributional divergence of βV vanishes. Since βV is supported
only over the macropatch around V , it is possible to construct %Vh ∈ L2(Ω) with
support in the local macropatch around V that is piecewise in the Raviart-Thomas
space of lowest order and that satis�es curl%Vh = βV . Summing over V , we obtain
%h as desired. This �nishes our remark on the localized �ux reconstruction.
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XI. Conclusions and Perspectives

This thesis has addressed the theoretical foundations of �nite element exterior cal-
culus. We have contributed to the understanding of basis constructions, we have
clari�ed and extended the applications of smoothed projections, and we have made
important progress in the theory of a posteriori error estimation. These mathemat-
ical investigations open perspectives for future research.

We have commenced our mathematical investigations with one of the most basic
concepts of mathematics, namely simplices and triangulations, in Chapter II. We
have approached how to quantify the regularity of simplices and simplicial triangu-
lations. The purpose of this exposition was providing rigorous and explicit proofs
for several mathematical results which are usually treated as mathematical folklore.
An interesting qualitative observation is that global properties of the triangulated
domain enter local estimates (see, e.g., Remark II.4.7). The quantitative bounds in
Chapter II, however, are generally far from sharp, and more technical e�ort may
produce more precise results. In addition, similar tracks of research emerged in dif-
ferent areas of geometry [50, 78, 133, 180], and connecting these developments may
lead to results interesting to a broader mathematical audience.

In Chapter III we have outlined �nite element spaces of di�erential forms with
particular attention to the construction of geometrically decomposed bases for the
PrΛk and P−r Λk families of �nite element spaces. We have elaborated several con-
tributions in the literature that have not found as much attention yet, and we have
also provided some new results. This includes a new presentation of geometrically
decomposed bases, and we have given a detailed analysis of the two isomorphic pairs

PrΛk(T ) ' P̊−r+n−k+1Λn−k(T ), P̊r+n−k+1Λk(T ) ' P−r Λn−k(T )

in �nite element exterior calculus. This has enabled the identi�cation of linear
dependencies in the canonical spanning sets and has produced explicit formulas for
the canonical duality pairings. Here, our major point of reference has been a recent
publication by Christiansen and Rapetti [57].

Future work could integrate ideas of Chapter III into a fully self-contained ex-
position that can be used in introductions to �nite element exterior calculus. More-
over, the techniques of �nite element exterior calculus can potentially contribute to
the already considerable e�orts of research in higher order �nite element methods,
which have addressed properties of �nite element bases, such as sparsity, hierarchical
structure, condition numbers of �nite element matrices, or fast evaluation of �nite
element matrices (see, e.g., [20, 21, 22, 23, 24, 116, 119, 120, 136, 161]).
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We have then proceeded from �nite element spaces on single simplices to �nite
element de Rham complexes over entire triangulations. Combining ideas from dif-
ferent sources ([9, 11, 56, 69, 183]), we have set up the theory in a new manner
that emphasized the locality of the higher order parts of �nite element spaces. The
resulting framework formalizes �nite element de Rham complexes of non-uniform
polynomial order in �nite element exterior calculus.

A short-coming of our exposition is that our representation of the degrees of
freedom involves generally non-canonical Riemannian metrics, whereas the degrees
of freedom of �nite element spaces of uniform polynomial order have well-known
metric independent descriptions [9]. This open problem might be subject to future
research but does not a�ect our applications in this work.

Finite element de Rham complexes with non-uniform polynomial order have been
only of secondary interest in this thesis: their theory has emerged naturally from our
way of constructing the �nite element de Rham complexes, motivated by preparing
the partially localized �ux reconstruction in Chapter X. Of course, �nite element
spaces of non-uniform polynomial order are an active topic of research in their own
right and constitutive for hp-adaptive �nite element methods. This thesis prepares
an access for research on mixed hp-adaptive �nite element methods in �nite element
exterior calculus.

We have invested considerable e�ort in a detailed exposition of the smoothed
projection in �nite element exterior calculus and its applications to a priori error es-
timates in Chapters V, VI, VII, and VIII. On the one hand, this has extended �nite
element exterior calculus to a broader class of domains and boundary conditions. On
the other hand, our detailed calculations have revealed some interesting qualitative
relations (see, e.g., Remark VII.8.3 or Remark VII.8.13), and have pointed out non-
trivial gaps (and small mistakes) in the existing literature (see Remarks VII.8.12 and
VII.8.9). As a remedy for the latter, we have introduced new mathematical tech-
niques into numerical analysis based on Lipschitz topology and geometric measure
theory, which may be helpful in future research.

The construction of our smoothed projection has followed the line of thought of
previous publications (which is why we call it a smoothed projection) but there have
been considerable modi�cations. We have implemented the �rst step of extending
a di�erential form by re�ection across the boundary with a result from Lipschitz
topology that seems to be a new tool for numerical analysis. We have accommodated
the possibility of partial boundary conditions with a bi-Lipschitz deformation, again
with reference to Lipschitz topology. The extended di�erential form is then molli�ed
with a generalization of the classical convolution by a smooth molli�er that allows
us to locally control the molli�cation radius.

The next step towards the smoothed projection has instantiated this smoothing
operator with a function that indicates the local mesh size. Here we have identi�ed
a small mistake in the literature, which, however, has also pointed out a hitherto
overlooked qualitative property of smoothing operators (see Remark VII.8.12). The
�nal stage in the construction of the smoothing operator has employed the Schöberl
trick to bound the interpolation error over the �nite element spaces. During the
course of this research, a gap in the proof of Lemma 5.5 of [9] was identi�ed (which
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applies similarly to Lemma 4.2 in [58]). This has been our driving motivation for
using geometric measure theory in numerical analysis.

Since the construction and analysis of the smoothed projection involves coor-
dinate transformations of low regularity, we have related our entire discussion of
the smoothed projection with research on analysis on �rough� spaces. This includes
Lipschitz topology and geometric measure theory, and we have pointed out the class
of weakly Lipschitz domains as a natural choice of geometric ambient in the theory
of �nite element methods. Furthermore, we have related the theory of �nite element
exterior calculus with the analysis of W p,q di�erential forms on Lipschitz manifolds.
Our analysis of the Hodge Laplace equation with mixed boundary conditions is
based on recent contributions in global analysis [99], and we have emphasized the
role of de Rham complexes with partial boundary conditions.

There are several interesting perspectives for future research on smoothed pro-
jections. One direction is to further generalize the admissible geometric background.
In this thesis we have only considered domains in Rn, but the numerical analysis of
partial di�erential equations on manifolds is an active topic of research [60, 71, 80].
Finite element exterior calculus uses the language of di�erential geometry and thus
admits a natural background for such research. In the opposite direction of research,
local additional regularity is used, for example, in the design of a priori hp-adaptive
methods [49, 162, 163, 164], and even in the case of scalar-valued problems, this is
still an area of active research with numerous open problems.

The smoothed projection can be seen as a generalization of the classical smooth-
ing operator on Rn, which is de�ned by convolution with the classical molli�er.
Apart from numerical analysis, this idea has emerged in the global analysis on man-
ifolds [66, 97, 100, 101]. Relating the developments in both areas is an intriguing
research perspective, and one result of this thesis can be regarded as a step to-
wards that direction: we construct a commuting molli�cation operator over weakly
Lipschitz domains from W p,q de Rham complexes into the complex of smooth di�er-
ential forms (see Theorem VII.4.1). In particular, this smoothing operator preserves
partial boundary conditions. As an application, we have proven a result of purely
analytical interest: we have shown the density of smooth di�erential forms in the
W p,q classes of di�erential forms over weakly Lipschitz domains with partial bound-
ary conditions.

We do not leave unmentioned that a considerably more detailed study of smooth-
ing operators is feasible, as demonstrated by Karkulik and Melenk [117]. More-
over, whereas explicit calculations have been a guideline in the construction of the
smoothed projection, we have used abstract existence results at several points when
�xing Lipschitz collars. It seems plausible that explicit constructions of Lipschitz
collars are possible for polyhedral domains.

We have concluded our research on smoothed projections with a priori error es-
timates for the Hodge Laplace equation with mixed boundary conditions. We have
omitted eigenvalue problems, which are another straightforward application of the
Galerkin theory of Hilbert complexes. With regards to partial boundary conditions,
two particularly noteworthy topics justify further research. First, not many Ga�ney-
type inequalities are available in the case of partial boundary conditions, besides a
general H

1
2 estimate ([113]). Second, the approximation of harmonic forms has at-
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tracted special attention in numerical analysis [70] and we have seen that non-trivial
harmonic forms appear in the presence of partial boundary conditions, even if the
domain itself has a simple topology.

After a priori error estimates we have addressed a posteriori error estimation in
�nite element exterior calculus. The classical residual error estimator was treated by
Demlow and Hirani [72]. We have directed our interest instead towards equilibrated
a posteriori error estimation [4, 156, 172] and focused on Braess and Schöberl's
equilibrated a posteriori error estimator for edge elements [34].

In Chapter IX, we have investigated di�erential complexes of discrete distribu-
tional di�erential forms. These generalize the distributional �nite element sequences
of Braess and Schöberl [34]. During the development of this PhD thesis the homology
theory of discrete distributional di�erential forms was completed and the Poincaré-
Friedrichs inequalities were successfully analyzed. An aspect that deserves further
attention are duality relations between discrete distributional di�erential forms and
conforming �nite element spaces.

The �nal chapter has approached the seminal contribution of Braess and Schöberl
from a di�erent perspective. Here we have introduced partially localized �ux recon-
structions, which build upon the principle that has already been central to Chap-
ter IV: the global properties of the �nite element space are encoded in the lowest-
order part, whereas the higher-order part is localized. In Chapter X we have reduced
the problem of �ux reconstruction between higher-order �nite element spaces to �ux
reconstruction between lowest-order �nite element spaces, using only local computa-
tions. This has extended Braess and Schöberl's equilibrated residual error estimator
to the case of edge elements of higher and possibly non-uniform polynomial order.
This opens several possibilities for future research in computational science, even
though many basic questions still remain. For example, not many computational
studies of this error estimator are presently available in the literature. An interest-
ing question is how to generalize the results of [34] from the case of edge elements
in two and three dimensions to the full framework of �nite element exterior calculus.

This thesis has investigated the foundations of �nite element exterior calculus.
We have contributed several extensions to the theoretical framework, which have
already stimulated successive research activities. The elaboration of technical de-
tails has provided new qualitative insights and has driven the development of new
techniques for future research in numerical analysis.

Revisiting the foundations of a mathematical theory can be demanding as much
as it can be rewarding. The great book of mathematics is constantly being rewritten
and annotated. I hope that this work will be useful both to present and future
mathematicians, and that it will encourage other researchers to contribute their
ideas to the greater good.
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A. Appendix

This appendix outlines notational conventions, de�nitions, and results that are as-
sumed to be known throughout this thesis and that may be used without any further
explanation.

Basic Conventions and Combinatorics

We follow the tradition of Dedekind and Piano and let N denote the set of natural
numbers, i.e. the positive integers, and let N0 := N ∪ {0}. We let Z denote the set
of integers and let R denote the set of real numbers. We write R+ for the positive
real numbers and R+

0 for the non-negative real numbers. For every set A we let #A
denote its cardinality.

For every real number s ∈ R we let dse ∈ Z denote the smallest integer that is
not smaller than s. Moreover, we de�ne

sgn(s) =


−1 if s < 0,
0 if s = 0,
1 if s > 0.

The Kronecker delta δij for i, j ∈ Z is de�ned by

δij =

{
1 if i = j,
0 if i 6= j.

(A.1)

We let [a : b] = {a, . . . , b} for a, b ∈ Z. Note that [a : b] = ∅ if b < a. We let
Perm(a : b) denote the group of permutations acting on the set [a : b]. The signum
of π ∈ Perm(a : b) is written sgn(π).

Given integers m,n ∈ Z with m ≤ n, we let A(m : n) be the set of functions
from [m : n] to N0. The members of A(m : n) are called multiindices over [m : n].
The absolute value of α ∈ A(m : n) is de�ned as |α| := α(m) + · · · + α(n). We let
A(r,m : n) be the set of all multiindices over the index set [m : n] with absolute
value r ∈ Z. We may abbreviate A(r, n) := A(r, 0 : n). Whenever α ∈ A(m : n), we
write

[α] := { i ∈ [m : n] | α(i) > 0 } , (A.2)

and we write bαc for the minimal element of [α], provided that [α] is not empty.
The sum α+ β of multiindices α, β ∈ A(m : n) is de�ned in the obvious manner. If
α ∈ A(m : n) and p ∈ [m : n], then we let α+ p ∈ A(m : n) be identical to α except
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for (α + p)(p) = α(p) + 1, and if q ∈ [α] then we let α − q ∈ A(m : n) be identical
to α except for (α− q)(q) = α(q)− 1.

For a, b, c, d ∈ Z we let Σ(a : b, c : d) be the set of strictly ascending mappings
from [a : b] to [c : d]. If a > b, then this set contains only the empty function ∅, and
hence Σ(a : b, c : d) := {∅} in that case. Whenever σ ∈ Σ(a : b, c : d), we write

[σ] := {σ(i) | i ∈ [a : b]} , (A.3)

and we write bσc for the minimal element of [σ], provided that [σ] is not empty.
Furthermore, if q ∈ [c : d] \ [σ], then we write σ + q for the unique element

of Σ(a : b + 1, c : d) with image [σ] ∪ {q}. In that case, we also write ε(q, σ)
for the signum of the permutation that brings the sequence q, σ(a), . . . , σ(b) into
ascending order, and we write ε(σ, q) for the signum of the permutation that brings
the sequence σ(a), . . . , σ(b), q into ascending order. Thus

ε(q, σ) = (−1)#{ p∈[σ] | q>p }, ε(σ, q) = (−1)#{ p∈[σ] | q<p }.

Conversely, if p ∈ [σ], then we write σ−p for the unique element of Σ(a : b−1, c : d)
with image [σ] \ {p}.

When σ ∈ Σ(1 : k, 0 : n) and ρ ∈ Σ(0 : l, 0 : n) with [σ] ∩ [ρ] = ∅, then we let

σ + ρ ∈ Σ(0 : k + l, 0 : n)

be the unique strictly ascending from [0 : k + l] to [0 : n] with image [σ] ∪ [ρ],
and we let ε(σ, ρ) denote the signum of the permutation that orders the sequence
σ(1), . . . , σ(k), ρ(0), . . . , ρ(l) in ascending order. In particular,

ε(σ, ρ) = (−1)#{ (p,q)∈[σ]×[ρ] | q<p }.

If n is understood and k, l ∈ [0 : n], then for any σ ∈ Σ(1 : k, 0 : n) we
de�ne σc ∈ Σ(0 : n − k, 0 : n) by the condition [σ] ∪ [σc] = [0 : n], and for any
ρ ∈ Σ(0 : l, 0 : n) we de�ne ρc ∈ Σ(1 : n− l, 0 : n) by the condition [ρ]∪ [ρc] = [0 : n].
In particular, σcc = σ and ρcc = ρ. We emphasize that σc and ρc depend on n, which
we choose to suppress in the notation.

Above we have introduced symbols for several signs that appear in combinatorial
calculations. For p, q ∈ Z with p 6= q we additionally introduce ε(p, q) := 1 if p < q
and ε(p, q) = −1 if q < p. Obviously we have ε(p, q) = −ε(q, p) for p, q ∈ Z with
p 6= q. With some combinatorial insight it is easily veri�ed that

ε(q, σ − p) = ε(q, p)ε(q, σ), (A.4)

for σ ∈ Σ(a : b, c : d), p ∈ [σ] and q /∈ [σ], and that

ε(p, σ + q − p) = ε(p, q)ε(p, σ − p) (A.5)

for σ ∈ Σ(a : b, c : d), p ∈ [σ], and q /∈ [σ + p].

Remark A.0.1.

The notion of multiindex is commonplace, while the de�nition of Σ(a : b, c : d) is
not. The latter notion is a minor generalization of the sets Σ(k, n) and Σ0(k, n) in
several publications on �nite element exterior calculus (e.g. [10, 11]). There does not
seem to be an established name for them in natural languages. The author proposes
alternating index as a spoken term.
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Notions of Linear Algebra

We brie�y summarize basic notions and notation from the �elds of linear algebra,
metric spaces, and analysis.

All vector spaces in this thesis are over the real numbers. If X is a vector space
and A is a linear subspace, then we let X/A or X

A
denote the quotient space obtained

from X by factoring out A. We let Rn be the canonical n-dimensional real vector
space. If p ∈ [1,∞] and x ∈ Rn with entries (xi)1≤i≤n, then the p-norm is given by

‖x‖p := (|x1|p + · · ·+ |xn|p)
1
p

for 1 ≤ p <∞ and by

‖x‖∞ = max
1≤i≤n

|xi|

for p =∞.

If T : X → Y is a linear mapping from a vector space X into another vector
space Y , then we let kerT ⊆ X denote the kernel of T and let ranT ⊆ Y denote
the range of T .

Let M ∈ Rn×m be a matrix with entries (Mij)1≤i≤n,1≤j≤m. If m = n and M
is invertible, then M−1 denotes the inverse of M . In any case, we let M † ∈ Rm×n

denote the Moore-Penrose pseudoinverse of M . For p, q ∈ [1,∞] the operator norm
‖M‖p,q of M is given by

‖M‖p,q := sup
x∈Rm\{0}

‖Mx‖q
‖x‖p

.

Assume that m ≤ n. We let the non-negative scalars σ1(M), . . . , σm(M) denote
the singular values of M in ascending order. We also write σmin(M) = σ1(M) and
σmax(M) = σm(M) for the smallest and the largest singular value ofM , respectively.
If the singular values of M are all positive, then

‖M‖2,2 = σmax(M), ‖M †‖2,2 = σmin(M)−1.

The generalized condition number κ(M) of M is the quantity

κ(M) := ‖M‖2,2‖M †‖2,2.

If σmin(M) > 0, then it can be expressed equivalently as κ(M) = σmax(M)/σmin(M).
The determinant det(M) of a square matrix M ∈ Rn×n can be estimated by

det(M) ≤
n∏
i=1

‖Mi‖ ,

known as Hadamard's inequality, where M1,M2, . . . ,Mn denote the columns of M .
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Notions of Metric Spaces

Whenever X is a topological space, taken to be understood, and U ⊆ X is a
subset, then U denotes the closure of U and U c denotes the complement of U in the
topological space X.

Throughout this thesis, and unless stated otherwise, we let �nite-dimensional
real vector spaces Rn and their subsets be equipped with the canonical Euclidean
metric. We let Br(U) be the closed Euclidean r-neighborhood, r > 0, of any set
U ⊆ Rn, and we write Br(x) := Br({x}) for the closed Euclidean ball of radius
r > 0 centered at x ∈ Rn.

More generally, suppose that ρ : U → R is a function over some set U ⊆ Rn.
For any subset A ⊆ U we then write ρinf(A) and ρsup(A) for the in�mum and the
supremum, respectively, of ρ over A whenever these exist, and we write ρmin(A) and
ρmax(A) for the minimum and the maximum, respectively, of ρ over A whenever
these exist.

Suppose that v0, . . . , vN ∈ Rn. We de�ne the convex hull by

convex{v0, . . . , vN} =

{
N∑
i=0

aivi
∣∣ a0, . . . , aN ∈ [0, 1],

N∑
i=0

ai = 1

}
.

The following important result is also known as Lebesgue's number lemma.

Lemma A.0.2.

Let U ⊆ Rn be compact and let U1, . . . , Um be a �nite covering of U by sets that are
relatively open in U . Then there exists γ > 0 such that for all x ∈ U there exists
1 ≤ i ≤ m satisfying Bγ(x) ∩ U ⊆ Ui.

Notions of Analysis

If m,n ∈ N and U ⊆ Rn is an open set, and if u : U → Rm is a di�erentiable
function, then we let ∂1u, . . . , ∂nu denote the partial derivatives of u into the co-
ordinate directions. We let Du : U → Rm×n denote the Jacobian of u over U . If
α ∈ A(1 : n) is a multiindex in n variables, then we write

∂αu := ∂
α(1)
1 · · · ∂α(n)

n u

for the corresponding higher order derivative of u. The same notation is applied
when the derivative only exist in the weak sense or in the sense of distributions.

The standard molli�er is the function

µ : Rn → [0, 1], y 7→

{
C exp

(
1

‖y‖2−1

)
if ‖y‖ < 1,

0 if ‖y‖ ≥ 1,

where C > 0 is chosen such that µ has unit integral. The function µ is smooth and
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is supported in B1(0). For ε > 0 we de�ne the scaled molli�ers

µε : Rn → [0, 1], y 7→ 1

εn
µ
(y
ε

)
.

In particular, µ = µ1.

Di�erential Complexes

Suppose that V = (Vi)i∈Z is a family of real vector spaces indexed over the
integers and that ∂ = (∂i)i∈Z is a family of linear operators ∂i : Vi → Vi+1 indexed
over the integers such that for all i ∈ Z we have ∂i+1∂i = 0. Then the tuple (V, ∂)
is called a di�erential complex . A di�erential complex can be written as a diagram

. . .
∂i−1−−−→ Vi

∂i−−−→ Vi+1
∂i+1−−−→ . . .

We have the inclusion ran ∂i−1 ⊆ ker ∂i, and the homology spaces can be seen as
a measure in how far this inclusion is proper. The i-th homology space of (V, ∂) is
de�ned as the factor space

Hi :=
ker ∂i

ran ∂i−1

.

We say that (V, ∂) is exact at index i if Hi = {0}, and we say that (V, ∂) is exact if
Hi = {0} for all i ∈ Z.

Sometimes we use the notion of di�erential complex with di�erent index conven-
tions, where the indices of successive operators are not ascending but descending.
Moreover, most di�erential complexes in this thesis have only �nitely many non-zero
terms, and we often display only those non-zero terms.

Remark A.0.3.

The terms homology and cohomology generally designate di�erent concepts in ho-
mological algebra, but for the purposes of this thesis they are used interchangeably.
Which of the terms we use depends on terminological conventions.
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