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Preface

The present thesis addresses the theoretical and the numerical analysis of the Hodge
Laplace equation within the framework of finite element exterior calculus. The
content of this thesis is partially based on the following research articles, which have
been accepted for publication or submitted for peer review:

[A] M. W. LicHT, Complezes of discrete distributional differential forms and their
homology theory. Accepted for publication in Foundations of Computational
Mathematics, (2016), DOI: 10.1007/s10208-016-9315-y.

[B] S. H. CHRISTIANSEN AND M. W. LICHT, Poincaré-Friedrichs inequalities of
complexes of discrete distributional differential forms. Submitted

|C] M. LicHT, Smoothed projections over weakly Lipschitz domains. Submitted
[D] M. LicHT, Smoothed projections and mized boundary conditions. Submitted

[E] M. LicHT, Higher order finite element de Rham complexes, partially localized
flux reconstructions, and applications. Submitted

For the purpose of a streamlined, thorough, and comprehensive exhibition, the con-
tent of the submitted versions has been rearranged and some proofs have been
expanded. Additionally, the remarks of anonymous referees have been taken into
account for the completion of this thesis. Specifically,

e Chapter IV is based on parts of [E],

e Chapter VII is based on |C] and parts of [D],
e Chapter VIII is based on parts of [D],

e Chapter IX is based on [A] and [B],

e and Chapter X is based on parts of [E].

The remaining chapters provide unpublished background material.

In addition, some of the ideas in Chapter IX were written down first for my unpub-
lished Diplom thesis submitted at the University of Bonn in 2012.

[F] M. W. LicHT, Discrete distributional differential forms and their applications.
University of Bonn, August 2012.
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I. Introduction

Partial differential equations relate to almost every area of mathematics, and so a
plurality of methods and perspectives has enjoyed a productive history of research.
For example, the analysis of partial differential equations in the mathematics of
electromagnetism and elasticity has led to the discovery of differential complexes
that are composed of the classical differential operators of vector analysis. The study
of those differential complexes has revealed structural insights which, in return, have
fostered our understanding of the original partial differential equations.

The formalism of differential complexes originated in the field of algebraic topol-
ogy and inspired the entire branch of mathematics that is now known as homo-
logical algebra. Differential geometry and differential topology have driven much
of the research on differential complexes throughout the last century and provide
a considerable share of the mathematical background of this thesis. This includes
in particular the calculus of differential forms, or exterior calculus, which enables
a unifying perspective on many aspects of classical vector calculus. The de Rham
compler over a smooth manifold is a prominent example of a differential complex
and can be regarded as one of the most extensively studied objects in mathematical
analysis. A central result in the theory of the de Rham complex leads back to the
origins of differential complexes in algebraic topology: the de Rham cohomology is
isomorphic to the singular cohomology of the geometric ambient. Many variations of
the de Rham complex have emerged in applications and in interactions with different
branches of mathematics.

Mathematical electromagnetism is an especially important and rich field of appli-
cation for the techniques of exterior calculus. Many insights on the Poisson problem,
the curl curl equation, and the vector Laplace equation can be obtained from the
differential complex of classical vector calculus, which is composed of the gradient
operator V, the curl operator Vx, and the divergence operator V-. We can fur-
ther deepen our mathematical, geometrical, and physical understanding of the topic
when moving from classical vector calculus to the calculus of differential forms. Here
the aforementioned differential operators are regarded as instances of the exterior
derivative, which are constitutive of the de Rham complex. One may argue that the
de Rham complex is an indispensable concept in the analysis of these partial differ-
ential equations. For example, the dimensions of the de Rham cohomology spaces
describe the dimensions of the solution spaces of homogeneous vector Laplace equa-
tions. In the larger picture, the solution theory of partial differential equations
reflects topological properties of the domain.

Therefore it appears natural to incorporate differential complexes and exterior
calculus in the numerical analysis of partial differential equations. Applications in



1. Introduction

numerical electromagnetism have been a significant motivation for this development,
which has gained momentum during the past decades [29, 109]. A publication of
Arnold, Falk, and Winther from 2006 [9] has received attention from a broader
mathematical audience and has popularized finite element exterior calculus as a
theoretical framework to unify and complete several research efforts in numerical
analysis. Finite element exterior calculus [10, 11| provides a framework to utilize a
plethora of results in pure analysis for the theory of finite element methods and has
given a comprehensive perspective on the construction of finite element spaces for
vector-valued problems.

The topic of this thesis is the numerical analysis of partial differential equations
in the framework of finite element exterior calculus. In addition to concepts of
the mathematical theory of finite element methods, the framework of finite element
exterior calculus involves many branches of mathematics, which include algebraic
topology, differential geometry, and functional analysis. We give a brief outline of
the theory in order to communicate the underlying ideas and to indicate the starting
points of the research in this thesis.

We start with the background in global analysis. Suppose that 2 C R" is a
bounded Lipschitz domain and let L2A*(Q) be the Hilbert space of square-integrable
differential k-forms over ). The exterior derivatives of such differential forms exists
in the sense of distributions, and hence we define

HAM(Q) == { v e L’A*(Q) | d*v € L*AFH(Q) }. (1.1)

This is the Hilbert space of square-integrable differential k-forms whose exterior
derivative is square-integrable too. This is precisely the Sobolev space H'(f2) in the
special case k = 0, but HA*(Q) generally contains much more than the differential
k-forms with coefficients in H'(2). Since the exterior derivative of an exterior
derivative is zero, we obviously have d* HA*(Q2) C HA*1(Q). As a consequence, we
may formulate the L? de Rham complex

d° dn—

0 — HAY(Q) LoHAY Q) S A w0 (12)

as a first but important example of a differential complex in this thesis. The theory
of Hilbert complexes shows that this differential complex satisfies a certain duality
relation with another differential complex,

04 L2AY(Q) <2 H:ANQ) <« O mAn@Q) 0. (13)

Here, 6 denotes the codifferential and H; A*(Q) denotes the space of square-integrable
k-forms whose codifferential is square-integrable and which in addition satisfy a spe-
cific type of boundary conditions along 02, the details of which we omit at this point.
The nature of the aforementioned duality is precisely that 6**! is the adjoint of d*
in the sense of unbounded operators between L? spaces of differential forms.

The Hodge Laplace problem has been studied extensively in analysis. It general-
izes many partial differential equations in vector analysis such as the Poisson prob-
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lem and the vector Laplace problem. Its precise form is as follows: given a square-
integrable k-form f € L2A*(Q), the Hodge Laplace problem is finding u € L2A* ()
such that

u € HAF(Q) N H;AR(Q), d"u e HiATHQ), &Fu e HAFY(Q), (I.4a)
d*15ky 4 8 dRy = f. (1.4b)

The first line of these conditions implies regularity of u and its higher derivatives
and several boundary conditions, whereas the second line states that u solves the
Hodge Laplace equation. The numerical analysis of the Hodge Laplace problem
has constituted a major motivation for the development of finite element exterior
calculus.

To improve our understanding of the Hodge Laplace problem, we introduce the
space $%(Q) of harmonic k-forms,

H°Q) = { pe HA*(Q) N HZA*(Q) | 6*p =0, d*p=0}, (1.5)

This space is of particular relevance for the analysis of the Hodge Laplace equation
because $*(Q2) is both the kernel of the Hodge Laplace operator and the orthogonal
complement of its range. On the other hand, it is a fundamental fact that

N {ve HA Q) |d*v =0}

T {d e |w e HARY(Q)

where the factor space on the right-hand side is precisely the k-th cohomology space
of the L? de Rham complex. It can be shown that the dimension of the k-th coho-
mology space, and thus the dimension of the space of harmonic k-forms, equals the
k-th absolute Betti numbers of the domain. This exemplifies a feature of a partial

differential equation that reflects properties of the geometric ambient and can be
expressed in terms of differential complexes.

95 ()

Corresponding to the usage of differential complexes in the analysis of partial
differential equations, it appears promising to study differential complexes of finite
element spaces. Indeed, finite element de Rham complexes constitute the foundation
of finite element exterior calculus. Given a triangulation 7 of the domain (2, we
study finite element de Rham complexes

0= PAYT) — . 25 pAri () L pAr(T) 0 (L6)
consisting of piecewise polynomial differential forms that have single-valued traces
along inter-element boundaries. These are subcomplexes of the original L? de Rham
complex. Arnold, Falk and Winther have determined classes of finite element
de Rham complexes that realize the k-th absolute Betti numbers on cohomology.
The study of finite element de Rham complexes has guided the design of stable and
convergent mixed finite element methods for the Hodge Laplace problem.

A first tentative approach to the finite element analysis of the Hodge Laplace
equation could begin with switching from the strong formulation (I.4) to a weak
formulation, where we seek u € HAF(Q) N HA(Q) such that

(dFu, d*) + (6Fu, 6™v) = (f,v), v € HA*(Q)N HIA(Q). (L.7)
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Here the products denote the usual L? products. Several issues, however, oppose this
as the foundation of a Galerkin method. On the one hand, the kernel of the symmet-
ric bilinear form associated to (1.7) is precisely $¥(2), which is generally a non-trivial
space unless the domain is contractible. We need a Lagrange multiplier to accom-
modate the kernel, and in many applications $*(2) can only be approximated in
the finite element space. On the other hand, and much more severely, one can show
that the piecewise polynomial k-forms in the intersection space HA®(Q) N HZA®(Q)
are generally not a dense subset unless the domain is convex [62]. Consequently,
Galerkin methods based on (1.7) will generally not converge to the solution of the
original problem.

These problems can be circumvented at the cost of an auxiliary variable for the
solution’s codifferential. Much research effort has been invested into the analysis of
mixed finite element methods where we only need to provide finite element spaces
conforming to HA*~1(Q) and HA¥(Q2). Specifically, we consider the following mixed
formulation of the Hodge Laplace problem: we seek o € HA*Y(Q), u € HA*(Q),
and p € $H*(Q) such that

(0,7) — (u,d"'7) =0, 7€ HA"(Q), (L.8)
(d* 1o, v) 4 (dFu, d¥0) 4 (p,v) = (f,v), v e HA¥Q), (1.9)
(u,q) =0, qeHQ). (1.10)

One can show that this formulation is uniquely solvable with compact solution op-
erator, and it is easily seen to be equivalent to the original problem except for the
introduction of a Lagrange multiplier to handle the space of harmonic forms.
Finite element exterior calculus replicates this variational formulation over the L?
de Rham complex as a mixed finite element method over the finite element de Rham
complex. We seek oy, € PA*Y(T), uy, € PA*(T), and p;, € H*(T) such that

<0'h, Th> — <Uh,dk717'h> = 0, Th € ,PAk71<T>, (111)
<dk_10'h, Uh> + (dkuh, dk’l}h> + <ph,Uh> = <f, Uh>, vy € PAk(T), (112)
(un, qn) =0, g, € H*(T). (1.13)

Here $*(T) denotes the space of discrete harmonic k-forms,
HT) = { pn € PAMT) | " '"PA*"N(T) L pp, d*p =0}, (1.14)

which is a (generally non-conforming) approximation of $*(Q2). An important struc-
tural property of the harmonic k-forms is nevertheless preserved by their discrete
counterparts: their dimension equals the k-th absolute Betti numbers and thus cor-
responds to topological properties of the domain.

We have replicated important structures of the original problem in the discrete
setting. But in order to relate both worlds and especially in order to obtain ap-
proximation estimates for the Galerkin method, we need a concept of uttermost
importance to finite element exterior calculus: commuting uniformly bounded pro-
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jections. Suppose that we have a commuting diagram

0 —— HAYQ) —4 HAYQ) —5 ... —5 L2AMQ) —— 0
T{'?Ll W}Ll ﬂﬁl
0 — PAYT) — PANT) — .. — PANT) —— 0,

where the vertical operators are idempotent and uniformly L? bounded in the rele-
vant discretization parameters. Then a multitude of abstract results is immediately
instantiated, including the stability and convergence of mixed finite element meth-
ods for the Hodge Laplace problem, corresponding results for eigenvalue problems,
upper bounds for Poincaré-Friedrichs constants, and approximation estimates for
the harmonic forms.

Significant work has been accomplished on finite element exterior calculus, but
several unresolved questions and untapped possibilities have remained at its very
foundations. In the course of this thesis we explore such topics. The error analysis
of finite element exterior calculus is a thematic priority. The following observations
have inspired this research in particular.

e The class of Lipschitz domains, even though a common choice for the geometric
ambient in numerical analysis, is unnecessarily restrictive in theory and appli-
cations. There is no difficulty in finding polyhedral domains in R? that are not
Lipschitz domains. We propose the class of weakly Lipschitz domains as more
natural for the purposes of numerical analysis. Both the L? de Rham complex
and the finite element de Rham complexes can be formulated on weakly Lip-
schitz domains in the usual manner, but we need a smoothed projection over
weakly Lipschitz domains in order to instantiate the abstract Galerkin theory
of Hilbert complexes and enable a priori error estimates. Previous works have
constructed smoothed projections only over Lipschitz domains.

e The Poisson equation with mized boundary conditions is standard. Much less
literature is available on mixed boundary conditions in mathematical and nu-
merical electromagnetism. More generally, the Hodge Laplace equation with
mixed boundary conditions has been discussed only in a few selected contribu-
tions to global analysis (e.g., [99]). The lack of literature on mixed boundary
conditions in pure analysis might be the reason that mixed boundary con-
ditions have not yet been incorporated into finite element exterior calculus:
even the Poisson equation with mixed boundary conditions has remained in-
accessible. We have incentive to improve this situation since mixed boundary
conditions are relevant in theory and practice. For the numerical analysis of the
Hodge Laplace equation with mixed boundary conditions, we need to identify
a variant of the L? de Rham complex with corresponding partial boundary con-
ditions and construct the smoothed projection. Harmonic forms with mized
boundary conditions are especially interesting here.

e Apart from the a priori error analysis, we are also interested in the a posteriori
error analysis in finite element exterior calculus. The classical residual error

7



1. Introduction

estimator has been studied in finite element exterior calculus by Demlow and
Hirani [72]. But several other error estimators in the literature show potential
for a productive interaction with finite element exterior calculus. This is espe-
cially true for Braess and Schoberl’s equilibrated a posteriori error estimator
for the curl curl equation [34]. We will study their results in this thesis with
particular attention to distributional finite element sequences. Our agenda
moreover includes generalizing their intricate error estimator to higher order
edge elements. This provides new tools in numerical analysis and solves an
open problem of practical interest.

e Last but not least, we are inclined to address the discrete foundations of finite
element exterior calculus, namely the construction of finite element spaces
and their bases. Despite many contributions to this topic, the theoretical
framework cannot be regarded as finished yet, and a comprehensive way of
representation is yet to be developed. We illuminate some aspects that might
be of interest to a broader audience.

This thesis comprises the research which has evolved from these observations. It is
organized into several chapters that are based on accepted publications, submitted
articles, and unpublished material. Chapter II addresses several topics related to
simplices, simplicial complexes, and chain complexes, which serve as a technical
background for subsequent chapters. Chapters I1I and TV describe the construction
of finite element spaces. The remaining chapters treat three different thematic areas
that can be read independently of each other. In Chapters VI-VIII we extend the a
priori error estimates in finite element exterior calculus. In Chapter IX we develop
the notion of discrete distributional differential form. Eventually, in Chapter X we
address equilibrated a posteriori error estimates. The thesis is concluded with an
outlook to possible future directions of research.

In addition, several basic notions are given in the appendix of this thesis and
assumed throughout this work. The reader may briefly consult the appendix before
approaching the actual content of this thesis.

Finite Element Differential Forms

The analysis of finite element methods builds upon the notion of finite element
spaces. In the case of finite element exterior calculus we build upon the notion of
finite element differential forms. A pivotal concept here are geometrically decom-
posed bases.

We set up the theory of polynomial differential forms on simplices in Chapter III.
The finite element spaces P,.A*(T) and P, A*(T) over a simplex T" have been stud-
ied in many publications [9, 10, 29, 52, 53, 57, 107, 108, 109, 153, 154| which build
upon previous research on Nédélec and Raviart-Thomas spaces |2, 103, 161, 174]. In
Chapter IIT we give an outline of these spaces over simplices. We do not, however,
aim at a complete construction ab initio. Hence the reader is strongly assumed to
be familiar with prior publications, in particular [9] and [10]. Even though many
of these results are known in principle, our way of exposition is new and possi-



bly interesting for experts, and even though Chapter III is not intended as a text
book chapter, its content may contribute to popularizing the bases in finite element
exterior calculus to practitioners in computational science.

We give a complete derivation of geometrically decomposed bases for the spaces
P.A*(T) and P-A*(T) and the corresponding spaces with boundary conditions
P.A*(T) and P-AR(T). Moreover, we construct extension operators

exty : PoAF(F) — PANT),  extil « PrARNE) — PrANT),

from subsimplices I’ onto a simplex 7. This is sufficient to facilitate the geometric
decomposition of finite element spaces.

The construction of the basis forms and the geometric decomposition in finite el-
ement exterior calculus has so far been distributed over two publications by Arnold,
Falk, and Winther [9, 10]. Our manner of presentation is inspired by these works
but features also some modest novelties. We first construct bases for P.A*(T)
and P, AF (T') and derive the geometric decomposition. Analogously we address the
spaces P, A¥(T) and 757TA’“(T) and their geometric decomposition.

A significant innovation in Chapter III is our exposition of the isomorphisms

PANT) =~ P A"E(T),  Prpn e AM(T) = PTAYH(T),

r+n—k+1

and corresponding duality pairings, which have been used only implicitly in many
previous works. A recent publication by Christiansen and Rapetti [57] is a major
inspiration here and we generalize their results.

Having studied finite element differential forms over simplices, we turn our at-
tention to finite element differential forms over triangulations in Chapter IV. We
begin with a brief review of the classical Whitney forms over a triangulation, which
constitute the finite element de Rham complex of lowest order, and their duality to
the simplicial chain complex of the triangulation. A minor novelty is that we study
the complex of Whitney forms with a general class of boundary conditions.

Proceeding to the construction of higher order finite element spaces, we draw
inspiration from the dissertation of Zaglmayr [183] and a publication by Demkowicz,
Monk, Vardapetyn, and Rachowicz [69] in the area hp finite element methods. We
obtain a new description of finite element spaces of higher and possibly non-uniform
polynomial order. The basic idea is constructing finite element spaces of higher
order through the local augmentation of the space of Whitney forms. Extending
that line of thought, we understand finite element de Rham complexes of higher
and possibly non-uniform polynomial order as the augmentation of the complex of
Whitney forms by local higher order finite element de Rham complexes. Eventually,
we devise the finite element interpolant, building upon prior work in the area of
hp finite element methods. The interpolant is notably different from the canonical
interpolant in previous publications on finite element exterior calculus, but it agrees
with the harmonic interpolation in the theory of finite element systems [56].

9



1. Introduction

Smoothed Projections

A fundamental topic in the theory of finite element methods are a priori error
estimates, which estimate the approximation error of a Galerkin solution in terms of
the data (e.g., its Sobolev norm) and some parameters of the finite element spaces
(e.g., the mesh size). Another fundamental topic is the stability of finite element
methods, which affects their practical solvability by numerical algorithms. Within
the Galerkin theory of Hilbert complexes admitted by finite element exterior calcu-
lus, stability and convergence can be studied in terms of one single concept: uni-
formly bounded commuting projections. These are known specifically as smoothed
projections in this context.

Smoothed projections are critical to finite element exterior calculus, but actu-
ally constructing and analyzing smoothed projections is a technically sophisticated
endeavor. Building upon earlier works of Christiansen [52] and Schéberl [160], the
publication by Arnold, Falk, and Winther [9] approached L? de Rham complexes
over Lipschitz domains and finite element spaces over quasi-uniform families of tri-
angulations. This was successively extended by Christiansen and Winther [58] who
addressed L? de Rham complexes over Lipschitz domains with homogeneous bound-
ary conditions and merely shape-uniform families of triangulations.

A major part of this thesis is dedicated to the extension of those contributions.
On the one hand, we have incentive to transcend the class of Lipschitz domains and
develop finite element exterior calculus over weakly Lipschitz domains, as has been
brought to our attention above. Constructing a smoothed projection over weakly
Lipschitz domains will accomplish this.

On the other hand, we address the Hodge Laplace equation with mized bound-
ary conditions in finite element exterior calculus. Mixed boundary conditions are
standard for the Poisson problem, but the state of research is entirely different for
the Hodge Laplace equation and its translations to classical vector analysis. For our
understanding of mixed boundary conditions, it is instructive to study the founda-
tional de Rham complexes in the first place: in this case, L? de Rham complexes
with partial boundary conditions. For the analytical background we point to a ma-
jor publication by Gol'dshtein, Mitrea, and Mitrea [99], whose results we apply to
the Hodge Laplace equation with mixed boundary conditions over weakly Lipschitz
domains. The challenge is to construct a smoothed projection that preserves partial
boundary conditions. This is accomplished in Chapters V-VIII.

We begin with a review of Sobolev spaces of differential forms over domains in
Chapter V. For the sake of generality (and for subsequent use) we consider L”
spaces of differential forms. In particular, we introduce the WP classes of differ-
ential forms, which are LP integrable differential forms with L? integrable exterior
derivative [100], to the literature of numerical analysis. We study the behavior of
those differential forms under pullback along bi-Lipschitz mappings.

Next we discuss the class of weakly Lipschitz domains in Chapter VI. A weakly

Lipschitz domain is a domain whose boundary can be flattened locally by a bi-
Lipschitz coordinate transformation. Arguably, this class is very large: it contains
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Lipschitz domains and also all polyhedral domains in R? (see Theorem VI.3.2). With
a recourse to Lipschitz topology [134], we introduce the concept of Lipschitz collar
(see Theorem VI.1.8) to the numerical literature. Moreover, we prepare our dis-
cussion of mixed boundary conditions with the foundational notions of admissible
boundary patch and admissible boundary partition.

The construction and analysis of the smoothed projection is completed in Chap-
ter VII over the course of several stages, reminiscent of the constructions in published
literature |9, 52, 58| even though notable changes are made.

First, a commuting extension operator extends the differential form to a neigh-
borhood of the domain. The basic idea is the extension-by-reflection, for which we
utilize a Lipschitz collar along the domain boundary. A modification of this idea
accommodates for partial boundary conditions: the differential form is extended by
zero to a bulge attached along the boundary part along which essential boundary
conditions are imposed. Subsequently, the pullback along a bi-Lipschitz deformation
extends this bulge. The resulting differential form vanishes in a neighborhood of the
boundary and the degree of deformation can be controlled locally. This step is cru-
cial for the handling of boundary conditions. In the next stage of the construction,
a commuting mollification operator smooths the differential form. The mollification
radius is locally controllable.

When we combine the canonical commuting interpolation operator with the
aforementioned commuting smoothing operator, and let the mollification radius be
controlled by a mesh size function, then we obtain a uniformly bounded commuting
mapping from the L? de Rham complex with partial boundary conditions to a finite
element subcomplex. But this is not yet a projection because it does not leave the
finite element space invariant. As a compensation, we employ what is sometimes
called the Schdéberl trick: carefully adjusting the parameters in our construction,
we can control the interpolation error over finite element differential forms. This
ensures the existence of a uniformly bounded commuting operator that corrects the
interpolation error. Putting all this together we recover the projection property.

Estimating the aforementioned interpolation error is far from trivial though. We
model our proof after material in earlier publications [9, 58]. To the author’s best
knowledge and understanding, however, the proofs in those papers are not complete
(see Remark VIL.8.9). In order to finalize the proof, we utilize an assortment of
concepts in geometric measure theory.

The technical effort to derive the smoothed projection is significant, but eventu-
ally we instantiate the Galerkin theory of Hilbert complexes, as described in Chap-
ter VIII. We give an outline of Hilbert complexes and then discuss the L? de Rham
complex with partial boundary conditions. Harmonic forms satisfying mixed bound-
ary conditions are of particular interest because they feature a quality not present
in the case of non-mixed boundary conditions: their dimension not only depends on
the topology of the domain but also on the topology of the boundary partition. As
an example application of the Galerkin theory of Hilbert complexes, we recapitulate
the a priori convergence estimates in finite element exterior calculus and apply them
to the Hodge Laplace equation with mixed boundary conditions.
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1. Introduction

De Rham complexes with partial boundary conditions over weakly Lipschitz
domains have not been subject of much research yet. As a secondary outcome of our
research we obtain a new result on the density of smooth differential forms in Sobolev
spaces of differential forms with partial boundary conditions (see Theorem VIIL.4.3).
This has not been available in the literature previously.

Discrete Distributional Differential Forms

After our study of a priori error estimates and smoothed projections we turn the
focus towards a very different topic. In Chapter IX we investigate discrete distribu-
tional differential forms.

This track of research originates from the seminal publication of Braess and
Schoberl on equilibrated a posteriori error estimates for edge elements [34]. One of
the many novel concepts in their publication have been distributional finite element
sequences, which generalize the classical conforming finite element sequences. For a
motivating example, let 7 be a three-dimensional triangulation and consider a finite
element sequence of lowest polynomial order,

P(T) 55 NAQ(T) =% RTY(T) — PL(T),

consisting of the first-order Lagrange space Pg(7) with Dirichlet boundary condi-
tions, the lowest-order Nédélec space Ndj(7) with homogeneous tangential bound-
ary conditions, the lowest-order Raviart-Thomas space RTH(7) with homogeneous
normal boundary conditions, and the space of piecewise constant functions P°, (7).
The subindex —1 in the latter symbol indicates that no continuity conditions are
imposed on members of P%,(7T) along inter-element faces.

Similarly, let RT?,(7") denote the space of vector fields that are piecewise in the
Raviart-Thomas space but which do not necessarily satisfy any normal continuity
along inter-element faces or any normal boundary conditions. The divergence of
such vector fields in the sense of distributions is contained in the space P%,(T), the
space of distributions spanned by integrals over tetrahedra and integrals over faces
of the triangulation. We have a well-defined differential complex

PH(T) 55 NAJ(T) =% RTL(T) — PL(T).

We generalize this construction. Let Nd°,(7) denote the space of vector fields
that are piecewise in the lowest-order Nédélec space but that do not necessarily
satisfy any tangential continuity along inter-element faces or tangential boundary
condition along boundary faces. The curl of such a vector field is contained in
the space RT?,(T), which is defined as the space of vector-valued distributions
spanned by integrals against piecewise Raviart-Thomas vector fields and integrals
of the tangential component of a vector field against Nédélec vector fields over faces.
The divergence of a distributional vector field in RT",(7) is contained in P°,(7),
which is the direct sum of P%,(7) and the span of integrals over edges. We can

12



assemble the differential complex

— PO(T).

Once again, we may repeat this principle and consider the space P!, (T) of piecewise
affine functions over 7, which is a discontinuous version of the first-order Lagrange
elements. Proceeding in a completely analogous manner as above, we generate a
differential complex

PUT) 224 Nd°,(T) 2L RTO,(T)

PL(T) =24 N (T) -2 RTO,(T) -2 P0,(T)

of distributional finite element spaces.

In this thesis we translate their notion of distributional finite element sequence
into the setting of finite element exterior calculus, which gives rise to the notion
of discrete distributional differential form. The original contribution of Braess and
Schoberl treated only the case of lowest polynomial order over local patches. We
develop discrete distributional de Rham complexes over arbitrary triangulations and
allow for finite element spaces of higher order.

The two major points of investigation are the homology theory of discrete dis-
tributional de Rham complexes and Poincaré-Friedrichs inequalities with respect to
mesh dependent norms. This work was originally conceived prior to the research
on smoothed projections, and one achievement has been the characterization of the
cohomology spaces of conforming finite element sequences when partial boundary
conditions are imposed.

Flux Reconstruction and A Posteriori Error Estimation

We conclude this thesis with another approach to the work of Braess and Schéberl.
In Chapter X we give an affirmative answer to an open question in the area of a
posteriori error estimation: can the equilibrated error estimator for edge elements of
lowest order be generalized to the higher order case?

In order to put this question into proper context, we recall the problem of error
estimation in the finite element method. We not only want to compute an approxi-
mate solution to a partial differential equation, but we also want to quantitatively
estimate the approximation error. The terminology is suggestive of the fact that
a priori error estimates bound the approximation error prior to the computation
of the Galerkin solution. By their very nature these error bounds only involve the
initial data of the problem.

While a priori error estimates prove the asymptotic convergence of a Galerkin
method, they are not as suitable for adaptive finite element methods and reliable
error estimation. On the one hand, they typically involve many unknown constants
which are difficult to estimate in practice. On the other hand, we may reasonably
assume that we can bound the Galerkin error more precisely given the approximate
solution as additional information.

This motivates a posteriori error estimation, conducted posterior to the com-
putation of an approximate solution. Past decades have seen considerable research

13



1. Introduction

activity on a posteriori error estimators and many rigorous and heuristic methods
have been proposed (see [4, 156, 172| for a small overview). The persistent research
interest is especially due to the significant role of a posteriori error estimation in
adaptive finite element methods (see, e.g., [46, 111]).

The classical residual error estimator is the prototypical example of an a pos-
teriori error estimator and can be found in many introductory textbooks on finite
element methods. For a basic outline let f € L*(Q) and let w, € HL(Q) be an
approximate solution to the Poisson problem Au = f with Dirichlet boundary con-
ditions. The residual r, € H '(Q) is defined as 7, := f — Auy, which means
rn = A(u — uy) in the sense of distributions. Since A : H}(Q) — H () is an
isomorphism we conclude that the H* norm of the error v — uy, is comparable to the
H~! norm of r,. The latter can be estimated explicitly in terms of a mesh-dependent
norm if f and wu; are piecewise polynomial and wu;, is the Galerkin solution.

The classical residual error estimator, however, suffers from practical short-
comings that have motivated further research: the estimate involves anonymous
constants that are difficult to estimate in practice and it is outcompeted in numer-
ical experiments. This thesis will not explore the classical residual error estimator
in finite element exterior calculus in further detail; we refer to the publication of
Demlow and Hirani for a detailed exposition [72].

Instead we explore alternative a posteriori error estimators that promise sharper
error bounds. Among these, the class of equilibrated or implicit error estimators has
attracted considerable attention [3, 33, 118]. They utilize the hypercircle method
[170]. For a brief outline of the idea, consider again the Poisson problem Au = f
with Dirichlet boundary conditions and let u;, € HJ(£2) be any approximate solution.
Suppose that o € H(div, Q) with —dive = f. The hypercircle theorem (or Prager-
Synge theorem) states that

o — gradup||5. = ||o — grad ulf;» + || grad u — grad uy,[|72.

We obtain a simple L? estimate for the error grad u—grad uy, in terms of the L? norm
of o0 —grad uy,. Practically using the equilibrated error estimator, however, comes at
a price: whereas the approximation uy, is assumed to be known from the outset, the
flux o needs to be reconstructed with additional computational effort. In principle,
o can be obtained as the flux variable in a mixed finite element method for the
same Poisson problem, which requires the solution of a global problem. But if w,
is the Galerkin solution over, say, the Lagrange elements of some polynomial order,
then this additional structure enables a more efficient flux reconstruction: we can
compute a flux o in, say, the Raviart-Thomas space using only local computations
over patches. Numerical experiments indicate that this error estimator bounds the
error more tightly than the classical residual error estimator [47].

In the light of those research activities, we are interested in a posteriori error
estimators for the curlcurl problem. The largest share of previous research has
focused on the classical residual error estimator (see, e.g, [16, 144, 160]). A notable
exception is Braess and Schoberl’s a posteriori error estimator, which has already
been mentioned above. For a brief outline, let f € L?(Q) and let u € H(curl, Q) be
a solution to the partial differential equation curl curlu = f. When u;, € H(curl, 2),
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then it is reasonable to ask for an L? estimate of the error curl (u — uy).

If the domain is contractible, and f has vanishing divergence and vanishing nor-
mal component along 0€, then there exists o € H(curl, Q) with vanishing tangential
component along 02 such that curlo = f. Under these conditions one can show a
vector field analogue to the Prager-Synge identity above,

o — curluy||fe = ||o — curlu||fz + || curlu — curl u,|3.,.

Therefore the H(curl, Q) seminorm of the error u — uy, is bounded by the L? norm
of the vector field o — curl uy,.

But as before, there is no free lunch: the computation of the flux variable o must
precede the equilibrated error estimation. Computing a flux by a mixed method is a
global problem, but the computation can be localized under additional conditions:
if u;, is contained in the Nédélec space and satisfies the (Galerkin property for the
curl curl equation, then computations over local patches recover a flux . In practice,
we assume f in a Raviart-Thomas space with normal boundary conditions and we
compute o in a Nédélec space with tangential boundary conditions.

This instance of localized flux reconstruction, however, is considerably more in-
tricate, both mathematically and algorithmically, than for the Poisson problem.
Braess and Schoberl have addressed the problem of flux reconstruction for vector-
valued finite elements only in the lowest-order case. How to generalize to the higher
order case is far from obvious and has remained an unresolved problem for years.

Solving this open problem is the main agenda of Chapter X. We address the
topic of flur reconstruction, the algorithmic solution of the flux equation curle = f
between finite element spaces, and we introduce the partially localized fluz recon-
struction as a novel concept. Here we build upon Chapter IV, where we have
constructed the finite element de Rham complexes via local augmentation of the
complex of Whitney forms. The partially localized flux reconstruction reduces the
flux reconstruction for curl ¢ = f between finite element spaces of higher (and pos-
sibly non-uniform) polynomial order to the case of lowest polynomial order. This
reduction uses only parallelizable local computations.

As a closure of Chapter X we address the problem of equilibrated error esti-
mators for the curl curl problem once again: the fully localized computation of the
equilibrated error estimator in the case of higher order finite elements is achieved by
combining the partially localized flux reconstruction with the fully localized com-
putations of Braess and Schéberl for the lowest order case. This solves the open
problem mentioned above.

This outcome demonstrates how abstract mathematical methods can lead to
surprising new insights and practical applications.
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II. Simplices and Triangulations

Simplices are studied in many branches of mathematics, such as combinatorics, ge-
ometry, or algebraic topology. Simplices also provide the mathematical background
for meshes in many finite element methods. In this thesis we draw on these different
accesses to simplices in mathematics and have them come together in the study of
mixed finite element methods. For that reason, an entire chapter is dedicated to a
thorough exposition of simplicial concepts.

We begin with gathering definitions concerning simplices, simplicial complexes,
and local patches in Section II.1, in order to establish the combinatorial background.
We then turn our attention to quantifying the quality of simplices and simplicial
complexes in several sections. In Section I1.2 we define the geometric shape measure
and relate it to properties of reference transformations. Subsequently, we discuss
solid angles of simplices in Section I1.3, and show how the geometric shape measure
determines a lower bound for the minimum solid angle of a simplex. Having studied
the regularity of single simplices, we address the regularity of simplicial triangula-
tions in Section I1.4. Finally, we discuss the regularity of reference transformations
in Section II.5. Those sections elaborate the technical details of mesh regularity in
the theory of finite element methods, which seem to be mathematical folklore. We
study those technical details (i) to make the presentation self-contained and fully
rigorous, (ii) to make explicit results formally available in the higher-dimensional
case, and (iii) because explicit and quantitative estimates are of inherent interest in
a computational setting. Lastly, we put simplicial complexes into the perspective
of algebraic topology, and study simplicial chain complexes in Section I1.6. Here we
pay special attention to simplicial chain complexes associated to local patches.

Simplicial complexes have been referred to before in research on finite element
differential complexes (e.g., [56, 57, 109, 154]). Throughout this chapter, we discuss
combinatorial and algebraic properties of a simplicial complex 7 always relative to
a subcomplex U wherever this is applicable. The consideration of subcomplexes is
a natural prerequisite for the discussion of de Rham complexes with boundary con-
ditions. Even though a basic concept of algebraic topology, simplicial subcomplexes
have not received much attention in numerical literature.

The decomposition of a domain into smaller elements has been the seminal idea
of finite element methods, but those elements are not necessarily simplices. Histor-
ically, quadrilateral elements have been used since the beginnings of finite element
methods [59, 65]. Moreover, prismatic and pyramidal elements appear naturally

17
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when connecting tetrahedral and quadrilateral meshes (e.g., [183]). Finite element
methods based on discretizations by general polytopes have seen a surge of interest
in recent years. There are far too many developments in that area to list them here;
two particular examples that we mention are virtual finite element methods |19, 39|
and polytopal finite element methods based on generalized barycentric coordinates
[90, 91, 96, 137, 173]. Finite element systems are an abstract framework for gen-
eral polyhedral methods [56]. The combinatorial and algebraic aspects of simplicial
complexes carry over with only technical changes to general polyhedral complexes;
indeed, general cellular complexes are a standard concept in combinatorial and al-
gebraic topology (e.g. polyhedral complexes [5]). By contrast, the understanding of
shape measures for general polytopes is only in its beginnings [95].

I1.1. Basic Definitions

Let m,n € Ny. Points vy, ..., v, € R™ are called affinely independent if no single
of these points is an affine combination of the others. Moreover, if vy, ..., v,, are
affinely independent, then m < n.

A set S C R" is a closed m-simplez if it is the convex closure of affinely indepen-
dent points vy, . .., v, € R", which we call the vertices of S. We write Ver(S) for the
vertices of S, and note that Ver(S) is uniquely determined by S. We say that S is
m-dimensional or has dimension m. We call S full-dimensional if S is an n-simplex.
An important simplex is the m-dimensional reference simplex A,, C R™,

A, = convex {0,ey,...,€n}, (IL.1)

defined as the convex closure of the origin and the m different standard coordinate
vectors eq, ..., e, of R™.

If F' is another simplex with Ver(F') C Ver(S), then we call F' a subsimplez of S,
and in turn we call S a supersimplex of F'. We write A(S) for the set of subsimplices
of S. For any F' € A(S) we let 1pg : F' — S denote the inclusion. In the sequel, we
call O-simplices also wvertices and 1-simplices also edges. If T is an m-simplex and
F € A(T) is a simplex of dimension m — 1, then we call F' a face of T.

Remark I1.1.1.

(i) Even though considering the empty set as a simplex is not unheard of in the
literature, we do not consider the empty set as a simplex in this thesis. (ii) Our
definition of simplex does not allow for “degenerate” simplices whose vertices are not
affinely independent. We will not consider those in this thesis. (iii) A O-simplex is
a set containing one single point of R", not the point itself, but we will often ignore
this difference to simplify the discussion.

A set T of simplices in R” is called a simplicial complex if

VIeT :VSeAT):SeT, (I1.2a)
VLT € T: (INT £0 = TNT € AT)NA(T)). (I.2b)

The first condition means that 7 is closed under taking subsimplices, and the second
condition means that the intersection of two simplices is either empty or a common
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1. Basic Definitions

subsimplex. A simplicial complex U with U C T is called a simplicial subcomplez
of T. For m € Z we define

T ={TecT|dmT=m}, TM.={TecT|dmT <m}.

In other words, 7™, m € Z, is the set of m-dimensional simplices in 7, and 71",
m € 7, is the smallest subcomplex of 7 that contains all of the m-dimensional
simplices of 7. The set 71" is also known as the m-dimensional skeleton of T. We
say that T is m-dimensional or has dimension m if

VSeT : AT eT™:SCT.

We note that 7™ =0 if m ¢ {0,...,dim 7T }.
Simplicial complexes appear as discretizations of topological spaces. We write

m=UT (11.3)

TeT

We then say that T t¢riangulates the closed set [T]. We may sometimes ignore the
difference between 7 and [T] in the notation for the sake of simplicity.

Example II.1.2.

(i) If T is an m-simplex, then A(T") is a simplicial complex of dimension m. Then
A(T)! is the set of I-dimensional subsimplices of T for [ € Z. (ii) Any affine triangula-
tion of an m-dimensional topological submanifold of Euclidean space with boundary
is an m-dimensional simplicial complex. (iii) Suppose that a simplicial complex T
triangulates a topological manifold with boundary. Then a simplicial subcomplex
of T triangulates the boundary of that manifold. Throughout this thesis, we will
consider subcomplexes U of T that triangulate a part of the boundary.

We are interested in the local structure of simplicial complexes. For this purpose
we introduce notions of patches. To begin with, we define

TT):={SeAT)| T €T, TNT £0}. (IL.4)

We call T(T') the local patch or macropatch of T in T. Tt is the smallest simplicial
complex which contains all simplices of 7 with non-empty intersection with 7.
A different notion of simplicial patch is

M(T,F):={SeT|3ITeT:{S,F}CAT)}. (IL.5)

Note that M (T, F) is the smallest simplicial complex containing all simplices of T
that contain F. We call M(T, F) the micropatch around F in T.

It will be of interest to construct a subcomplex of M(T, F) that models the
boundary of the micropatch M(T, F). Furthermore, 7 triangulates a topological
manifold with boundary in our applications, and then it will be of interest to take a
subcomplex U of T into account in our study of micropatches, where U/ triangulates
a boundary part of the manifold. Formally, if I/ is a simplicial subcomplex of T,
then we define

N(TUF)={SeM(T,F)|F¢A(S)orSeld}. (I1.6)
We call N(T,U, F) the micropatch boundary of F in T relative to U.
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Remark II.1.3.

If 7 is a simplicial complex of dimension m, then 7(T") and M(T,T) are simplicial
complexes of dimension m. If additionally I/ is a subcomplex of 7 of dimension
m — 1, then N(T,U, F) is a simplicial complex of dimension m — 1.

Remark I1.1.4.

We use micropatches to describe the local combinatorial structure of 7 relative to U.
For example, suppose that T triangulates a topological manifold M with boundary
and that I/ triangulates a part of the boundary of that manifold. If V € T? is vertex
in the interior of M, then M(T,V) is the simplicial ball around V', and N (T,U,V)
triangulates the boundary of that simplicial ball; here N'(7,U, V) does not depend
on U. If V is instead a vertex at the boundary, then M(T,V) triangulates a
simplicial ball that contains V in its boundary. The simplicial complex N (T,U,V)
triangulates a part of the boundary of the simplicial ball; it contains those simplices
that do not contain V', and in addition those that are contained in Y. In this
example, the subcomplex U enters the definition of N(7,U,V) only for boundary
vertices. The micropatch M (T, F') and its subcomplex N (7,U, F) appear in our
discussion of discrete distributional differential forms.

Figure II.1: Tllustration of macropatch and micropatch in a triangulation. The
macropatch around the thick edge segment is displayed. The hatched area indicates
the micropatch of the edge.

I1.2. Regularity of Simplices

In this section we introduce regularity criteria for simplices and relations with
quantities of interest. We express the shape regularity of a simplex both in geo-
metric terms and in terms of linear algebra. The central notions of this section are
the geometric shape measure p(7") (see (I1.9)) of a simplex 7" and its relation to the
generalized condition number of associated matrices (see (I1.21)).

Let m,n € Ny with m < n. Let T" C R™ be an m-simplex with vertices
Vo, VL, - -+, Uy, € R™. We let diam(7") denote its diameter, and we let vol™(7") denote
its m-dimensional volume. We observe that diam(7’) is the largest distance between
two vertices of T, i.e., the length of the longest edge of T'. If T is a vertex, i.e., if

20




2. Regularity of Simplices

Figure I1.2: Illustration of micropatches and micropatch boundaries of a triangula-
tion 7 which triangulates a two-dimensional domain. U is assumed to triangulate
a part of the boundary. Left: a micropatch around an interior vertex of a trian-
gulation. The thick line indicates the micropatch boundary. Middle: a micropatch
around a boundary vertex that is not contained in /. Only the boundary edges not
adjacent to the vertex are the micropatch boundary. Right: a micropatch around
the same boundary vertex when the micropatch contains parts of U, which is in-
dicated in dashed lines. The micropatch boundary is the dashed and non-dashed
thick lines.

m = 0, then diam(7) = 0 and vol’(T) = 1.

Throughout this section, we assume that 7" is a simplex of positive dimension,
so 1 < m. But we may explicitly mention whenever a result extends formally to the
case of zero-dimensional 7. The convention 0° = 1 will be useful in this regard.

First we introduce the shape measure of a simplex in purely geometric terms.
Assume that T has positive dimension m. For 0 < i < m we let F € A(T)™!
denote the face of T opposite to the vertex v;, and we let hl denote the height
of FI' over v;, which is the distance of v; from the affine closure of F}'. Applying
Cavalieri’s principle, we easily find

T

h
vol™(T) = E vol™ 1 (F). (IL.7)

Recursive application of this identity gives the estimate

diam (7)™

vol™(T') < i

, (I1.8)

which bounds the volume of T"in terms of its diameter. The geometric shape measure
u(T) of T,

_ diam(T)™
w(T) = W(T)’ (I1.9)
measures in how far the reverse inequality holds. The idea is that simplices with
low geometric shape measure have “good quality” whereas a high geometric shape
measure indicates “bad quality”.

We note that the geometric shape measure (I1.9) of a vertex is well-defined due
to 00 = 1. We observe that (7)) = 1 for simplices of dimension 0 or 1. Generally,
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(IL.8) implies u(T) > m! as a lower bound.

A simple application of this notion is relating geometric properties of subsimplices
of T' to the corresponding properties of T" itself. By (I1.7) we have

vol™(T)

hl =m- ol T(FT) (I1.10)
Using (I1.10), (I1.9), and (IL.8), we obtain a lower bound for h!" by
pr > o diam(D)” (IL.11)
W(T) ol (FT)
m__diam(T)™ M fam(T). (1L.12)

= W) Tam(F)™ = u(T)

This formalizes that non-degenerate simplices have heights comparable to the sim-
plex diameter.
The diameter of T is an upper bound for the diameter of any subsimplex of
T. A converse estimate involves p(7') and is a direct consequence of (I1.11). For
0 < j < m with i # j we have ||v; — v;|| > h;. Hence for S € A(T) with positive
dimension dim S > 0 we find
|

w(T)
This formalizes that for non-degenerate simplices, the diameter of each subsimplex
of positive dimension is comparable to the diameter of the whole simplex.

The geometric shape measure of a simplex T" bounds the geometric shape measure
of its subsimplices. More precisely, by (II.7) we have

diam(£FF)™=t Al diam(T)™!
/’L(F;T) = m(_1 >T S : 'r(TL )
vol™ (F) m vol™(T)

An iteration of (I1.14) shows for 0 < p < m and S € A(T)P that

diam(S) >

diam(T). (I1.13)

< — (7). (IL.14)

1
m

u(s) < 2. (IL15)

_mﬂ

A converse inequality does not hold in general, as we easily see from considering a
generic triangle.

We have quantified the shape quality of T in geometric terms with u(7"). Another
access to the shape quality of T' opens through linear algebra. We assume that
0 <i < mis an index of an arbitrary vertex of 7" and that M € R™™ is the matrix

. ‘Um—Ui).

We let || M]|ne denote the maximum of the ¢2 norm of the columns of M. We let
| M]|22 denote the classical ¢* operator norm of M. An elementary computation
shows that

Vi1 — U

MI(’Ul—'Ui

‘ ‘ Vi—1 — Vs

[ M| me < [[M]]22 < m|[M]me. (I1.16)
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The triangle inequality implies
[ M][me < diam(T7) < 2| M || e (T1.17)

We note from this in particular that
1 .
—[M]lz22 < diam(T) < 2{|M]]s,2. (IL18)

Hence the diameter of T' is comparable to matrix norms of M.

We let 01(M),...,0,(M) denote the singular values of M in ascending order.
We also write oyin(M) = 01(M) and opax(M) = 0, (M). Note that oy, (M) > 0.
It is well-known that

M |l22 = Omax(M),  [|M |22 = omin(M) ", (IL.19)

where MT denotes the Moore-Penrose pseudoinverse of M.
One can show that

Vmﬂ:ijjﬂMy (11.20)

In combination, we observe that

diam(T)"™ _ o G (W)™ (e (M)
vol™ () = JL[L (M) = Tmin (M) 7

and conversely

diam(T)™ _ m! Omax(M)™ _ m! Omax(M)
vol™(T) — mm[[2, 0s(M) = m™ opin(M)

The generalized condition number k(M) of M is the quantity
K(M) = omax(M) /omin(M).
The central observation is that
— k(M) < u(T) < mi2™k(M)™ 1, (I1.21)

which relates the geometric shape measure of 7" to the generalized condition number
of M.

Remark II.2.1.

Different shape measures are used throughout the literature of numerical analysis
and computational geometry to quantify the quality of simplices (see |78, 133] for
overviews). Another shape measure that is commonly used in finite element liter-
ature is the ratio of the diameter and the largest inscribed circle of a simplex (see
[37, p.97, Definition (4.2.16)], [32, p.61, Definition 5.1]). Our notion of geometric
shape measure equals what is known as fatness in differential geometry [50| and is
precisely the reciprocal of the fullness discussed by Whitney [180]. The thickness of
a simplex is the ratio of its smallest height to its diameter [146].
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Remark I11.2.2.

Practical applications have been driving the research on shape regularity for a long
time with almost exclusive attention to triangles and tetrahedra (see, e.g., [35, 36,
78, 133|). Considering shape regularity in arbitrary dimension is not only a purely
mathematical musing but is also motivated by the emergence of (four-dimensional)
space-time methods in recent years (see, e.g., [147, 169]).

I1.3. Solid Angles

We dedicate a section to the discussion of solid angles of simplices. We relate
the solid angles to the geometric shape measure. Solid angles can be regarded as
higher-dimensional generalizations of the classical angle between two vectors. The
main result of this section can be paraphrased as follows: non-degenerate simplices
do not have small solid angles.

Let n € N. Assume that T" C R" is an n-dimensional simplex. The solid angle
of T at vertex v; is the limit

<(T) := lim vol” (Be(vi) N T)

I = T B (o) (I1.22)

It is easy to see that this limit assumes a constant for € > 0 small enough. For
example, the n-dimensional reference simplex A, has a solid angle of 27" at the
origin.

Remark II.3.1.

In the special case n = 2, the solid angle coincides with the classical two-dimensional
angle of the triangle at vertex v; when measured as the ratio of radians over 27. One
of the earliest studies of higher-dimensional solid angles was conducted by Euler
[85]. Beyond dimension two, their theory is considerably more complex, and very
few results are known beyond dimension three (see [81, 157]).

For the purposes of this thesis, the following result gives helpful upper and lower
bounds for the solid angle.

Lemma I1.3.2.
Let T' = convex {vg, v1,...,v,} be an n-simplex in R". Let M € R™™™ denote the

matrix with columns v; — vy, ..., v, —vy. Then
| det(M)| | det(M)|
— = < G(T) < ————. I1.23
2ngrnrlax =4 ( ) N 2n0_r7;01in ( )

Proof. Let QQ = (]Rar )n denote the non-negative quadrant. It is well-known that the
radially symmetric function f(z) = (27)~2 exp (—3||z[?) has unit integral over R,
By the law of substitution and radial symmetry, we conclude that for every o > 0

we have
| g (< lel?) de=2
— 7 €X ——||T Tr = .
o@2mi T\ 2

24



3. Solid Angles

Next, since f is radially symmetric and has unit integral, we see

«(T) :/M(Q)(QW)_;eXp <—%qu2> dz.

Combining these observations, we obtain

«(T) = /Q (27)% exp (—%(Ma:, M@) | det(M)] dz

n 2 det(M
> [[m o (T el ) - den(an)] o = LEEL
Q 2 270 o
This proves the lower bound of (I1.23). Analogously,
n 1
<(T) = /(2%)2 exp <—§<Mx,Mx>) - | det(M)| da
Q
n 2. det(M
< /(2%)_2 exp <—@||x”2) Vdet(M)] dz = 9]
Q 2 2n0_rrrllin
provides the upper bound. The proof is complete. ]
We combine Lemma I1.3.2 with (I1.21) to derive bounds for the solid angle in
terms of the geometric shape measure. Let T' be the simplex with vertices vy, ..., v,
and let M € R™*" be the matrix with columns v; — vy, ..., v, —vy. By the definition

of the generalized condition number we find
27" k(M) " < (T) < 27"w(M)" 1. (11.24)
Combining this with (I1.21) gives

n

n\ 1—-n n—1

9~n ("—‘) W < (T) <27 (”—') W(T) ! (I1.25)
n! n!

Consequently, we have lower and upper bounds for the solid angles of a simplex in

terms of its geometric shape measure.

Remark I1.3.3.

Solid angles are generally bounded above by 1 in contrast to the geometric shape
measure of a simplex, so it is intuitive that (I1.25) does not give a sharp bound for
the solid angle. The lower bound, however, shows that “good” simplices do not have
small solid angles.

It is intuitive that the reciprocal of the minimum solid angle of a simplex also
bounds the geometric shape measure. This has been proven for low dimensions (see
[133]). But for the higher-dimensional case, no proof seems to be available in the
literature.

Example 11.3.4.

An equilateral triangle 7" with unit side lengths has a volume of v/3/4, and so
uw(T) = 4/+/3. Its solid angles are all 1/6. Inequality (I1.25) gives the (trivial)
upper bound 2/v/3 > 1 and the (non-trivial, non-sharp) lower bound v/3/32 for the
solid angles.
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I1. Simplices and Triangulations

11.4. Regularity of Triangulations

We have discussed regularity criteria for single simplices. In this section we
extend that discussion to regularity criteria of entire triangulations and eventually
families of meshes. Here, the central notion is the geometric shape measure u(7) of
a triangulation. Its applications are discussed in Lemmas I1.4.1, I1.4.3, and II.4.6.
These results require stronger conditions on the triangulations, such as being the
triangulation of a full-dimensional subset of R", as can be seen by simple counterex-
amples.

Throughout this section, we let 7 be an n-dimensional simplicial complex. The
geometric shape measure p(T) of the triangulation T is defined as

w(T) := sup u(T), (I1.26)

TeT

and bounds the degeneracy of simplices in 7. In the remainder of this section, we
show how (7)) quantifies further properties of the triangulation.

First, we bound the local combinatorial complexity of the mesh in terms of its
geometric shape measure. Formally, we define the quantity ux(7) as

pn(T) ::1%1621%#{567‘|SF‘|T7£@}. (I1.27)

This quantity bounds the number of simplices adjacent to a given simplex. We prove
that ux(7) can be bounded in terms of the geometric shape measure.

Lemma I1.4.1.
Assume that 7 triangulates an n-dimensional topological manifold in R™. Then

pn(T) <2 (n+1) - {2” (Z—T) _ W w(T)" (I1.28)

Proof. Consider the special case that V € T? is a vertex of 7. Then the solid angles
of the n-simplices adjacent to V satisfy the lower bound in (II.25). By the additivity
of the Hausdorff measure, we obtain the upper bound

H#{TeT"|VeAT) } < {2” (Z—?)n_ —‘ w(T)"L

More generally, let T" € T. We recall that T has at most n + 1 vertices, and
that every simplex S € T adjacent to T' has at least one vertex in common with

T. Furthermore, every simplex in 7 has at most 2""! subsimplices. The claim
follows. O

Remark 11.4.2.

The upper bound in Lemma II.4.1 is generally not sharp. It is easy to see that, if
T triangulates a manifold of positive codimension in R", then the quantity ux(7)
can generally not be bounded in terms of x(7) alone.

26



4. Regularity of Triangulations

The second class of inequalities that we consider relates to the question in how
far adjacent simplices in 7 have comparable diameters. As a preparation, if T € T
is a simplex of positive dimension, then we set hp := diam(7'), and if instead V € T°
is a vertex of 7, then we define

hy ==inf{ hg | E€T', V € AE)" }

as the infimum length of the edges of T adjacent to V. Now, the local quasi-
uniformity constant g, (7) of T is defined as

ulqu(T)::sup{Z—T'S,TET:SOT#Q)}. (I1.29)
s

This can be bounded in terms of the mesh quality.

Lemma 11.4.3.
Assume that 7 triangulates a topological manifold of dimension at least 2. Then

tiqu (T) < (T, (I1.30)

Proof. Let T € T have positive dimension. For S € A(T) with positive dimension
we have hg/hr < 1 and hy/hs < u(T), as follows from a simplification of (I1.13).
Next, let 7" € T be adjacent to T and write S := TN T'. If S has positive
dimension, then we observe hr/hg = hy/hg - hs/hr < u(T). More generally, if
T' € T(T) has positive dimension and V € T° is a common vertex of 7" and 7",
then there exists L € N and a finite sequence Tj,..., T, € T such that T, = T
and T;, = T and such that for all [ € [1 : L] we have V € A(T;) and T;_; N'T;
is a simplex of positive dimension. The existence of such a sequence follows from
the assumption that 7 triangulates a topological manifold. We have L < ux(7),
and thus hp/hp < p(T)NT) is easily verified. Lastly, if V € A(T)°, then there
exists an edge £ € T(T')! such that hy = hg, and we can simply apply the previous
observations. The proof is complete. O

Remark 11.4.4.

The previous proof has explicitly used that 7 triangulates a manifold. We show
that this is generally necessary. Consider a triangulation consisting of two triangles
that only meet at one vertex. This triangulation does not triangulate a topological
manifold. If we iteratively refine one of the triangles in a uniform manner while
not changing the other triangle, then the local quasi-uniformity constants of that
sequence of triangulations diverge to infinity although the quality of simplices in the
triangulation remains the same. See also Figure 11.3 for an illustration. Moreover,
the statement does not apply if dim M = 1 as is easily verified.

Remark 11.4.5.

The definition of hy enables us to assign a “length” to each vertex V € 79 The
important property is that hy is comparable to the local mesh size. We could have
chosen slightly different definitions, such as the average or maximum diameter of
edges adjacent to V, and that would serve our purpose equally. Associating a local
mesh size to vertices has been a useful formalism in several publications (e.g., [34])
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I1. Simplices and Triangulations

Figure I1.3: Two triangles that do not triangulate a manifold. If the left trian-
gle is subject to iterated uniform refinement, then the produced triangles do not
degenerate, but the length between adjacent triangles become incomparable.

Our third quantity considers the diameter of neighborhoods of a simplex. We will
quantify in terms of the geometric shape measure in how far local patches around a
simplex T" € T contain an Euclidean neighborhood of T" whose size is proportional
to the diameter of T'. Specifically, we define the neighborhood constant as

{ e ‘ Bi.giam(r)(T) N M is contained in the

#x(T) i= sup sup interior of [T (T)] relative to M. } - (1131

TeT

We use the following bound on the neighborhood constant.

Lemma 11.4.6.
Let T be a triangulation. Then

n!

(T) < — .
) S T
Proof. Let m € N. For 0 <[ < m — 1 we let S/" be the smallest subsimplex of
A,, that contains the origin and the first [ unit vectors, and let ;™ be the smallest
subsimplex of A,, containing the remaining m — [ unit vectors. It is evident that
F{™, the face of A, opposite to the origin, has distance 1//m from the origin. More
generally, the distance of S* and F/™ is 1/v/m — .

Let T € T and let 77 € T(T)" with T" # T'. We denote the vertices of 7"
by vy, ...,v, and assume that vg,...,v; are precisely those vertices that 7" has in
common with 7. We let ¢ : A, — T’ be the unique affine mapping that maps
the origin to vy and the unit vectors e; € R"” to v; for 1 < ¢ < n. We may write
o(x) = Mx + vy, where the i-th column of M € R™*" is v; — vg. Consequently,

©(S') = convex{ug, ..., v}, @(F") = convex{v1,...,0m}

By (IL.18) we see that the distance between these two sets is at least oy (M)/\/n,
where o (M) > k(M) 'diam(7")/2. We recall k(M) < T;—%,M(T) from (I1.21).
Furthermore, we have diam(7") > puqu (7)) 'diam(7T). .
This implies that a closed r-neighborhood of ¢(S;") has positive distance from
©(F"), where
< — n dia
2072 puqu(T)u(T)

This implies in particular that an r-neighborhood of 7" in [T (T)] is compactly con-
tained in [T (7). O

m(T)

r
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5. Regularity of Reference Transformations

Remark 11.4.7.

The constant . (7) has the following alternative interpretation: for every T' € T,
the set [T(T)] contains the closed pu, (7 )hr-environment around 7 with respect to
the inner path metric of the space [T]. The distance of two points z,y € [T] with
respect to the inner path metric is the infimum of the lengths of rectifiable paths in
[T] between z and y. If this path metric and the Euclidean metric are comparable
over [T], then it is possible to modify the definition of u.(7) such that for every
T € T, the set [T(T)] contains the Euclidean closed p.(7)hr-environment around
T. It is easy to see that the equivalence of the Euclidean metric and the local path
metric depends on global properties of the metric space [T] which cannot be "felt*
by the local geometry of 7(T). The set [—1,1]*\ ([0,1] x {0}) is a compact space
where these two metrics are not equivalent.

Remark 11.4.8.

In applications we typically consider families (7,); of simplicial complexes that
triangulate a fixed topological manifold, where h ranges over some set of indices,
typically the mesh size. In this remark we relate the results above, which consider
regularity criteria for single fixed simplicial complexes, to regularity criteria for such
families of simplicial complexes, which can be found in finite element literature (e.g.
[37, Definition (4.4.13)], [32, Definition 5.1]).

Let (75)s be a family of simplicial complexes. We call (7)5, shape-uniform if the
geometric shape measures (u(7)), satisfy a uniform upper bound. For example, if
a sequence of simplicial complexes is constructed from an initial simplicial complex
To by successively applying local refinement of simplices via newest-vertex-bisection,
then the resulting family is shape-uniform (see Maubauch [135]). In two and three
dimensions one can implement local mesh refinement alternatively with red-green
refinement (see [13, 142]).

We call a family of simplicial complexes (73,)n quasi-uniform if their geometric
shape measures (u(7)), satisfy a uniform upper bound and if additionally

h
sup sup - < . (I1.32)
h sreT, hs

This means that the simplices have comparable diameters in each single simplicial
complex T,. For example, if a sequence of simplicial complexes is constructed by
successive global uniform refinement of an initial simplicial complex 7, then the
resulting family is quasi-uniform (see Bey [26]).

II.5. Regularity of Reference Transformations

Scaling arguments are the most important application of measures of shape reg-
ularity in finite element theory. The basic idea is to transform between the local
geometry and a reference geometry. The reference geometry should not depend on
the concrete mesh, and the quality of the reference transformations should depend
only on the mesh quality. We implement this idea for simplices, local patches, and
micropatches. The main point of this section is to define reference transformations
and establish their regularity. In this section, suppose that the simplicial complex
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I1. Simplices and Triangulations

T triangulates a compact topological manifold.

For every simplex T' € T of dimension m there exists My € R™™ and by € R"
such that the affine mapping pr(x) = Mrxz + by maps the reference simplex A,
onto the simplex 7. This implies that by € Ver(T) is a vertex of T and that the
edge vectors from by to the remaining vertices of T' constitute the columns of M.
Consequently, the results of Section II.2 apply and we can relate the generalized
condition number x(Mr) to the geometric shape measure of 7' by (II.21). We call
such an affine mapping o1 a reference transformation of T'.

In general, there are up to (n+1)! different reference transformations of a simplex.
Henceforth we fix a reference transformation ¢ for each simplex 7. With a slight
abuse of notation, we identify this affine mapping with its restriction to the reference
m-simplex

or A, = T. (I1.33)

This is a diffeomorphism of manifolds with corners (see [127]) whose Jacobian D ¢r
is constant. We define

K(T) :=supk (Depr). (I1.34)

TeT

Via (II.18) and (I1.19) we easily find

Omax (D or) < ndiam(T),  omm (D goT)_l < 2k (T) diam(T)*, (I1.35)
5(T) < "u(T). (T1.36)

In particular, if the triangulation 7 has a low geometric shape measure, then the
singular values of all reference transformations are comparable to the diameters of
the associated simplices.

We now attend to the construction of reference patches. We first construct a
reference patch and a reference transformation for the macropatch 7(7T') around a
simplex T € T.

We observe that for every finite triangulation the macropatch 7(T') has one of
finitely many combinatorial structures, the number of which can be bounded in
terms of pun (7). Thus there exist a finite number of simplicial complexes Sy, ..., Sy
in R™ such that for every T' € T there exists 1 < iz < N such that 7(7) has the
same combinatorial structure as S;,. We write T(T) = Si, in the sequel and call
this the reference macropatch.

Consequently, there exists a homeomorphism

~

O [T(T)} — [T(T)] (IL.37)

such that the restriction ®7g to S € 7A'(T) is affine. We conclude that the Jacobians
D ®7 and D &' exist almost everywhere, and that

k(D ris) < po - (T), S eT(T), (11.38)
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where g can be bounded in terms of n, ux(7), and (7).

In a similar manner, we construct the reference micropatch M\(T, F)yof FeT
and define the reference mapping

U [M\(T, F)] — [M(T, F)). (I1.39)
This homeomorphism restricts to a diffeomorphism on each simplex. We have
k (DUpis) < pw - p(T), S €M(T,F) (I.40)

where pg can be bounded in terms of n, ux(7T), and (7). Additionally, we let
N(T,U,F) € M(T,F) denote the simplicial subcomplex which ¥ maps onto

~

N(T, U, F). We call N(T,U, F) the reference micropatch boundary of F.

I[1.6. Chain Complexes

We finish this chapter with a discussion of simplicial complexes from the point
of view of algebraic topology. We refer to specialized literature (e.g., [31, 93, 122,
126, 127, 168]) for further background. While most of this section covers standard
material, it also contains some concepts particular to this thesis.

To begin with, we introduce the notion of orientation of simplices. This can be
done in different ways; we use a purely combinatorial definition here, which is equiv-
alent to the notion of orientation of manifolds (with corners) known in differential
geometry (see Lee [127]).

Let S C R" be a simplex of dimension m = dim S. If m = 0, then we define an
orientation over S as a choice of sign in {—1,1}. If m > 0, then an orientation of
S is defined as an equivalence class of enumerations of the vertices of S, where two
enumerations are considered equivalent if they can be transferred into each other by
a permutation of positive sign. An oriented simpler is a simplex equipped with a
choice of orientation.

If S = {vp} is a vertex, then we let [vg] denote the oriented vertex with positive
orientation. If S has positive dimension m, and p : [0 : m] — Ver(S) is an enumer-

ation of the vertices of S, then we write [p(0),..., p(m)] for the oriented m-simplex
with vertices Ver(S) and the orientation induced by p.
If [vg, ..., vy is an oriented m-simplex, then we write —[vy, ..., v,,] for the ori-

ented m-simplex with the same vertices but the opposite orientation. For every
permutation 7 € Perm(0 : m) we have

[Vn(0)s - - -+ Un(my| = sgn(m)[vo, .. ., Um).- (I1.41)
Lastly, if S € T with Ver(S) = {vo,...,v,}, then we say that the orientation of
the oriented simplex [vg, ..., v;,] induces the orientation of the oriented subsimplex
(_1)Z[U07 cos Vi1, Uity - - - 7Um]-

Often we understand each simplex with a fixed orientation. In that case we may
identify a simplex S with the corresponding oriented simplex in order to simplify
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I1. Simplices and Triangulations

the notation. If S € 7™ and F € A(S)™ !, then we let o(F,S) =1 in the case that
the fixed orientation of S induces the fixed orientation of F, and let o(F,S) = —
in the contrary case.

Let 7 be a simplicial complex in R". For m € Z, the space of simplicial m-
chains of T is the real vector space C,,(T) generated by the oriented m-simplices
[Vo, - -+, U] With {vg, ..., v} € T™, where we make the identification

[Vr(0)s - - - » Un(m)] = s80(T)[v0, ..., V), 7 € Perm(0: m).

Note that the set 7™ is empty for negative m or m > n, in which case C,,(7T) is the
zero vector space. The simplicial boundary operator

O+ Coo(T) = Cor (T (IL.42)

is the linear operator that is defined by setting

m

Omlvo, - vm] =Y _(=1)[vo,- - 0im1, Vi1, - Vm]s [V, -, U] € Cn(T)

i=0
and taking the linear extension. The following observation is fundamental.

Lemma I1.6.1.
Let m € Z. Then 0,,_10,,5 =0 for S € T™.

Proof. Tt suffices to consider the case m > 2. Fix [vg, ..., 0] € Cn(T). Then

Om—10m[v0, - -+, U]
m
E 7
= (—1) am_l[l)o,...,’l}i_l,Ui+1,...,Um
=0
m  i—1
_E E z+
= Jam 1UO’-.-,U‘j717vj+1’...,Uifljv/l}i,l,...’vm]
=0 5=0
m m
E § H—
Jam 1UO;-H;Ui—hUH—ly-"7Uj—17Uj+1>-'-7Um]'
=0 j=i+1

Rearranging the sum, we obtain

8m718m[1)0, cee avm]
_ § : i+j
= (—1) Jamfl[v(]; s U1, U541y - -5 Vi1, Ui - - ;Um]
0<j<i<m
E ' i+J —
- (—1) ]am_l[vo, ey U1, V415 oo o3 Uj—1, Vg1, - - - ,Um] =0.
0<i<j<m
By linear extension, the desired result follows. O]

Remark 11.6.2.
If a fixed orientation is understood for each simplex S € T, then these oriented
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simplices constitute a canonical basis of C,,(7), and the boundary operator can be
written as

OnS= Y oFS)F SeT™

FeA(S)m—1

The boundary operator and the spaces of simplicial chains can be assembled into
a differential complex, the simplicial chain complex of the triangulation T,

2y C(T) =2 Co(T) 225 (IT.43)

Let U C T be a simplicial subcomplex of 7. This induces the corresponding spaces
Cm(U) of simplicial chains and simplicial chain complex over U,

Imit e U) <2 Ch ) 2 (I1.44)

Since C,,(U) is a subspace of C,,(T), we may consider the quotient space
Co(T U) :=Cp(T)/Crra(UU).
We call C,,,(T,U) the space of simplicial m-chains of T relative to U. Since
OmCn(T) CCrai(T), O0mCir(U) C Cprm1(U)
we conclude that we have a well-defined operator
O = Con (T, U) = Coret (T, U)
that satisfies the differential property
Om-10,C =0, C€Cn(T,U).

Remark I1.6.3.
If orientations on the simplices in 7 are understood, then the canonical basis of
Cm(T,U) is given by (the equivalence classes of) the m-simplices in 7™\ U™.

Next we approach the homology theory of these differential complexes. We
introduce the quotient spaces

ker (am  Co (T U) — cm,l(T,U))

Ho(T,U) = :
ran (am+1  Couin (T, U) — Cm(T,u)>

(I.45)

We call H,,(T,U) the m-th simplicial homology space of T relative to U. If U = 0,
then we call

Hon(T) == Hum(T,0)

the m-th (absolute) simplicial homology space of T. The dimensions of the simpli-
cial homology spaces,

b (T, U) = dim Hon (T, U), by (T) := dim H (T,
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are of particular interest. We call b,,(T,U) the m-th simplicial Betti number of T
relative to U, and we call b,,(7) the m-th absolute simplicial Betti number of T.
Note that b, (7T) = b, (T, 0).

The homology spaces of simplicial chain complexes reflect the topological features
of the triangulated topological spaces. Assume that M is a topological space and
that T' is a topological subspace. The m-th topological Betti number b,,(M,T) of M
relative to I' is defined as the dimension of the m-th singular homology space of M
relative to I'. We refer to |168, Chapter 4, Section 4| for the details of this concept.
In the case T' = () we call b,,(M) := b, (M, () the m-th absolute topological Betti
number of M.

In the presence of a triangulation of M by a simplicial complex 7, the topolog-
ical Betti numbers can be expressed in combinatorial terms. Assume that 7 is a
simplicial complex that triangulates M and that & C T is a simplicial subcomplex
that triangulates I'. In that case we have the identity

b (T, U) = bo(M,T), m € Z. (I1.46)

This is Theorem 8 in [168, Chapter 4, Section 6|. If the simplicial complex T is finite,
then this implies in particular that the topological Betti numbers are effectively
computable.

Example 11.6.4.
The following topological Betti numbers are of frequent interest. Let p € Ny and
m € Z.

(i) All Betti numbers b,,(BP) of the p-ball B? vanish except for by(BP) = 1.

(ii) All Betti numbers b,,(S?) of the p-sphere SP vanish except for b,(SP) =1 and
bo(S?) = 1.

(iii) All Betti numbers b,,(B?,0B?) of the p-ball relative to its boundary vanish
except for b,(B?,0BP) = 1.

(iv) If DP~! C OBP is homeomorphic to BP~!, then all Betti numbers b,,(B?, DP~1)
of the p-ball relative to a disk on the boundary vanish.

Remark 11.6.5.

The Betti numbers have a geometric interpretation. For example, the 0-th absolute
Betti number equals the number of path-connected components of a topological
space (Corollary 8 in [168, Chapter 4, Section 4]).

For a two-dimensional bounded domain, the 0-th absolute Betti number counts
the number of path-connected components, and the first Betti number counts the
number of holes inside the domain.

More complicated examples are possible in higher dimensions. Consider a three-
dimensional cube inside of which a “doughnut” has been cut out. The 0-th Betti
number is still the number of path-connected components. The first Betti number
is 1, and the first homology space can be represented by a circle wrapped around
the doughnut and piercing through the hole. The second Betti number is 1, and
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the second homology space can be represented by the internal spherical surface that
encloses the doughnut.

The presence of a boundary patch leads to more complex situations too. Consider
the unit cube in dimension two and pick a non-trivial boundary patch. The first
Betti number then equals the number of path-connected components of the boundary
patch minus one. The homology space is represented by line segments that lead from
one boundary patch to the other one.

I1.7. Homology of Micropatches

We have introduced the notion of micropatch in Section II.1. We close this
chapter with a study of simplicial chain complexes associated to micropatches. The
micropatches of a simplicial complex encode its local combinatorial structure, which
can be analyzed in terms of chain complexes. We will revisit this notion later in our
study of discrete distributional differential forms.

Let 7 be a simplicial complex and let ' € 7. Then M(T,F) induces the
simplicial chain complex

Imty e (M(T,F)) =22 Cro o (M(T, F)) 2224 (I1.47)

Assume that U is a simplicial subcomplex. Then N (7,U, F') induces the simplicial
chain complex

S CuN(TUF) 2 ConsW(TUF)) 2 (T148)

We will study the simplicial chain complex of M(T, F') relative to N (T,U, F). In
order to simplify the notation, we write

CH(T U) == Con(M(T,F),N(T,U,F)), (11.49)
HE (T U) = H,,( M(T, F),N(T U, F)), (I1.50)
bh (T U) := by (M(T, F),N(T,u, F)), (I1.51)

for the spaces of simplicial chains, the simplicial homology spaces, and the simplicial
Betti numbers, respectively, of M(T, F) relative to N (T,U, F). We consider the
simplicial chain complex

Loty eP (T U) <2 CE_(ToU) 22 (IL52)
Our goal is to determine the simplicial Betti numbers of the simplicial complex
M(T, F) relative to its subcomplex N (T ,U, F'). This can be complicated in general.
For the purpose of this thesis, it is sufficient to carry out the analysis in the following
special case.

Lemma I1.7.1.

Assume T triangulates an n-dimensional topological manifold M with boundary,
and that U triangulates a topological submanifold I of M of dimension n — 1 with
boundary. Let V C T be the simplicial subcomplex that triangulates the closure of
the complement of I' in 0€2. Then

bE (T, U) = { 50 L i Y FeT (I1.53)
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I1. Simplices and Triangulations

Proof. The proof uses the identity of simplicial and topological Betti numbers (11.46).
It thus remains to determine the topological Betti numbers of [M (T, F)] relative to
IN(T,U, F)]. We accomplish this by reducing the question to the instances Exam-
ple 11.6.4, for which the Betti numbers are known.

It is easy to see that the closed set [M (T, F')] is homeomorphic to a topological
n-ball. We let B(T, F) denote the subcomplex of M(T, F) that triangulates the
topological boundary of [M(T, F)]. Then N(T,U, F) is a subcomplex of B(T, F).
We make a case distinction.

1. Suppose that FF € I'. Then B(T, F) = N(T,U, F). The relevant case are the
Betti numbers of a ball relative to its boundary, and so bf (T,U) = 6™™.

2. Similarly, suppose that FF C T but F ¢ V. Again, B(T,F) = N(T,U, F), and
so bF (T, U) = 6",

3. Finally, suppose that FF C T" with FF € V. Then N(T,U, F) triangulates a
topological ball of dimension n — 1 embedded in [B(T, F')]. We conclude that
bE(T,U) = 0.

This shows (I1.53). The proof is complete. O

Another helpful observation is that the homology spaces of the simplicial chain
complexes of micropatches are well-behaved with respect to restriction to subcom-
plexes. Unfolding definitions, we observe that CZ (T,U) is spanned by the (oriented)
simplices of 7 \ U that contain F' as a subcomplex:

CE(T,U) ~span{ C € T"\U™ |IT € T: F€ A(F), C€ A(T)}, FeTM,

Consequently, we only need to consider m-simplices in the definition of CE (T ,U).
In particular,

ch_(T.u)y=ch_, (T ym1)  FeTtm (I1.54)

As a consequence, the lower homology spaces of M(T, F) relative to N (T,U, F)
can be calculated from considering the lower-dimensional skeletons only.

It will be of interest to us that a result similar to Lemma I1.7.1 holds for lower
dimensional skeletons provided that the original simplicial complex satisfies a gen-
eralization of (I1.53). This is a simple consequence of (I1.54).

Lemma I1.7.2.
Let T be an m-dimensional simplicial complex and let & be a subcomplex of 7. Let
FeTm-1f

F
b, (T,U) =0, p<m,
then
F m— m—
bp(T[ Uuym=thy =0, p<m-—1.

Proof. This is verified by linear algebra. If the simplicial chain complex of M (T, F)
relative to N(T,U, F) is exact at indices k < m, then the corresponding simplicial
chain complex of the (m — 1)-skeleton is exact at indices k < m — 1. O

36
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A particular achievement of finite element exterior calculus has been the identifica-
tion of spaces of polynomial differential forms invariant under affine transformations,
and subsequently the construction of finite element de Rham complexes. This chap-
ter is dedicated to the study of finite element spaces of polynomial differential forms
over simplices. Our main goal in this chapter is constructing geometrically decom-
posed bases for the spaces P,A*(T) and P, A*(T) over a simplex T

We regard the exposition [9, Chapter 4] of Arnold, Falk, and Winther as our
starting point. First they review geometrically decomposed bases for the spaces
P.AT) and Py A*(T) and their degrees of freedom. Then they develop a pre-
liminary basis for P, A*(T'). Towards geometric decompositions, they subsequently
determine a geometrically decomposed basis of the degrees of freedom of P,A*(T),
and a geometrically decomposed basis of the degrees of freedom of P A*(T). Fi-
nally, they give geometrically decomposed bases for P A*(T) and P-AR(T), the
latter implicitly, and next for the spaces P, A*(T) and P,A*(T), again implicitly in
the latter case. Their derivation of the geometrically decomposed bases for the finite
element spaces utilizes isomorphisms

PAT) ~ F AT, Pyt AF(T) ~ PZAH(T). (111.1)

A subsequent publication of Arnold, Falk, and Winther [10] has extended these stud-
ies and is another major point of reference to us. There they give explicit bases for
the spaces with vanishing trace P AF(T) and P,A*(T). The geometrically decom-
posed bases in [10]| provide additional algebraic conditions that are of independent
interest: not only the basis forms are associated to a subsimplex (vertices, edges, ...)
of T" each, but also the spaces themselves are decomposed into subspaces associated
to a subsimplex each. The construction is more complex for the spaces P,.A*(T)
than for the spaces P~ A*(T).

r4+n—k+1

There are still incentives for reapproaching geometrically decomposed bases in
finite element exterior calculus. The foundational parts of the theory are distributed
over two research articles. A new systematical approach may help a larger audience
access the theory. Even though we do not aim at a completely self-contained expo-
sition in this thesis and still assume some basic familiarity with the theory of finite
element differential forms, it seems reasonable to illuminate some new approaches
to the topic. Another motivation is that the 2006 publication of Arnold, Falk, and
Winther [9] already provides very simple geometrically decomposed bases in finite
element exterior calculus; we give a new presentation of those results.
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We give a brief outline of the calculus of differential forms over simplices in Sec-
tion III.1 and introduce polynomial differential forms over simplices in Section III.2.
The subsequent Section III.3 is dedicated to several auxiliary lemmas which have
appeared in publications on finite element exterior calculus and which we frequently
use throughout this chapter. In Section IT1.4 we introduce the spaces P.A*(T)
and P A*(T) and some of their basic properties. This also includes the subspaces
P.A*(T) and P-A*(T) with vanishing traces along the simplex boundary.

We then focus our attention to the major topic of this chapter: the construction
of geometrically decomposed bases in Sections I11.5 and II1.6. In contrast to prior
expositions, we first derive geometrically decomposed bases for the spaces P, A*(T)
and then independently for the spaces P-A*(T). In particular, this naturally pro-
duces consistent extension operators in the sense of [10, Section 4| and bases for the
spaces P,A*(T), and P-A*(T). Moreover, our construction does not involve the
degrees of freedom or the isomorphisms (III.1) mentioned above.

For the space P~ A*(T) our basis is the same as given in |9, Subsections 4.4, 4.7]
and in [10, Theorem 6.1, Section 7|). By contrast, our basis for the space P,A*(T)
coincides with the one given in [9] and is thus different from the one in [10, Section §].
An advantage of the basis of the space P,A*(T) in [9] is its simplicity, but a disad-
vantage is that the subspaces associated to different subsimplices generally depend
on the numbering of the vertices. No such trade off is made for the geometrically
decomposed bases of P, A*(T).

Even though we establish geometrically decomposable bases, the spanning sets
are still of interest. We show that the isomorphisms (III.1) have a natural expression
in terms of the canonical spanning sets. Thus we can transfer linear dependencies
between the canonical spanning sets of the spaces in each isomorphic pair. For the
first isomorphic pair, this follows from Proposition 3.1 of [57], which has been a
major inspiration for this research. With different techniques, we reproduce the
result and its analogon for the second isomorphic pair.

Duality pairings that correspond to these isomorphisms are another concept in
the seminal publication of Arnold, Falk, and Winther, which only recently has been
identified as a subject worth independent study by Christiansen and Rapetti [57].
They have discovered more details about the first isomorphism in (III.1) and the
corresponding duality pairing. Their results for the second isomorphic pair are less
extensive. Using different methods, we reproduce and refine their result on the first
isomorphic pair and give an analogous result for the second isomorphic pair.

Our primary sources for this chapter are the expositions by Arnold, Falk, and
Winther [9, 10]. Their work is preceded by several contributions in numerical anal-
ysis that address the construction of bases for finite element spaces of vector fields.
(e.g., [2, 103,107, 108, 109, 174]). We refer to [153] and [154] for additional algebraic
approaches.

III.1. Smooth Differential Forms over Simplices

We commence this chapter with a discussion of smooth differential forms over
simplices. This is only a review of basic notions, with particular attention to affine
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1. Smooth Differential Forms over Simplices

diffeomorphisms between simplices and traces onto subsimplices. For a rigorous
discussion of smooth differential forms on simplices, we refer to the treatment of
manifolds with corners in Lee’s monograph [127].

Let T C RY be a simplex of dimension n. We let C*°(T) denote the space of
restrictions of smooth functions over R onto 7. More generally, for k € Z we let
C*A*(T) denote the space of traces of smooth differential k-forms on RY onto 7.
We have C®A°(T) = C>°(T) and C*A*(T) = {0} for k ¢ {0,...,n}.

When w € C®°A¥(T) and n € C®AYT), then w An € C®A**(T) denotes their
exterior product . We recall that w A n = (—1)¥n A w. Furthermore, we recall the
exterior derivative

ds. . C°AF(T) — CA*TY(T). (I11.2)
It is well-known that for w € C*°A*(T) and w € C*AY(T) we have
dit(wAn) =dhw A+ (—=1)Fw A dhn.

We also recall that the integral of an n-form over T is well-defined provided that an
orientation of T is fixed.

Suppose that S is another simplex of dimension n and that pg7 : S — T is an
affine diffeomorphism from S onto 7. Then the pullback induces linear mappings

o C®AF(T) — C=A*(S).
These commute with the exterior derivative, and distribute over the exterior product,
SOE,TdI’j’w = dlfq(,OETW, w e COOAk<T)a
Psr (WAN) = P50 A@srn, we CCANT), we C®A(T).

For the pullback along the inverse gog’lT : T — S we use the special notation ¢g7.
Moreover, the integral transformation

/<P*S,TW = 0(¢S,T)/w, we C*A(T)
S T

holds for n-forms, where o(pgr) = 1 if pgr is orientation preserving and o(p) = —1
if g1 is orientation reversing.

We also consider the trace operator onto subsimplices. For every m-dimensional
subsimplex F' € A(T) of T, we have the inclusion g7 : ' — T, and the pullback
along that inclusion defines the trace operators

trfp : CCANT) — CAM(F), keZ.

Since gt = 150 for F € A(T) and f € A(F), we also have tr}, , trf o = trf .
As with the pullback along affine diffeomorphisms, we observe

trg}l dhw = db, tr;Fw, w e CA¥T),

i (WA D) = trf pw At pn, we CPANT), we CA(T).
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III. Finite Element Spaces over Simplices

We note at this point that trf mw = 0 for every w € C®A*(T) if & > dim F. In
particular, if F' # T then tr pw = 0 for every n-form w € C*A™(T).

Having discussed the exterior derivative and traces, we recall a version of Stokes’
theorem that states

/ d"lw = Z o(F,T) / trf g w, we CCAN(T). (I11.3)
T F

FeA(T)m—1

Sometimes we will use the existence of Riemannian metric over simplices. We refer
to the literature on differential geometry for further information on this topic (cf.
Agricola and Friedrich [92]). At this point, we merely remark that there exists a
bilinear pairing

Br : C®A*(T) x C®A¥(T) - R

for simplex T that is scalar product. In particular, By(w,w) > 0 for each w €
C>*A*(T) holds true. The choice of By is generally not canonical: it depends on a
Riemannian metric and the orientation.

IIT.2. Polynomial Differential Forms over Simplices

A specific class of differential forms over simplices are polynomial differential
forms. Whereas polynomial differential forms on R™ can be discussed easily within
the canonical Euclidean coordinate system, polynomial differential forms over a sim-
plex can be discussed with the help of barycentric coordinates. In this section we
develop polynomial differential forms primarily with barycentric coordinates.

We recall that T is the convex closure of its n + 1 different vertices, which we

enumerate by vl ..., vl. The barycentric coordinates A\, T, ... A\l € C>(T) are

)V n

the unique affine functions over T' that satisfy the Lagrange property
M (v) =0y, 4,5 €1[0:n]. (111.4)

The exterior derivatives dA\],dAT, ... dA\] € C®AYT) of the barycentric coordi-
nates are constant 1-forms, corresponding to the gradients of the barycentric co-
ordinates. The Lagrange property of the barycentric coordinates implies the linear
independence of the barycentric coordinate functions and that they constitute a par-
tition of unity, i.e. 1 = Al +---+ AT over T. As a consequence, we have the partition
of zero 0 = dAl + -+ + dAT of their exterior derivatives. It can be shown that this
is the only linear independence up to scaling between the exterior derivatives of the
barycentric coordinate functions.

Lemma III.2.1.
Let ¢; € Rfori € [0 : n] and assume that 0 = codAg+- - -+ ¢p,dA,. Thency = - = c¢,,.

Proof. From the assumption we have ¢ = cgAg + - - - + ¢, A\, for some ¢ € R. Via the
Lagrange property we find that c =c¢y = -+ = ¢,. O
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2. Polynomial Differential Forms over Simplices

The barycentric coordinates and their exterior derivatives can be combined to
new objects. For a multiindex o € A(0 : n) we define the barycentric polynomial

n

Ag =TT, (IIL.5)

=0
For k € Ny and o € (1 : k,0: n) we define the basic k-alternator as
dA7 = dAZ ) A AdA LG (I11.6)

Note that d\; = 1. Moreover, for k € Ny and p € %(0 : k,0 : n) we introduce the
Whitney k-form

6p =Y elp,p—p)ArdrL,. (T1L.7)

p€[p]

We henceforth agree to the convention that the sums and exterior products of differ-
ential forms of the form (IIL.5), (II1.6), and (I11.7) are called polynomial differential
forms. We will use products and sums of these objects to construct spaces of poly-
nomial differential forms.

Remark III1.2.2.
In the sequel, we may simplify the notation by

NEAN, A =)2Y, dh, =dN, ¢, =60

P )
whenever the simplex 7' is fixed and understood,

In the previous section we have studied the transformation behavior of differ-
ential forms over simplices, and we give special scrutiny to the case of polynomial
differential forms. As above, we suppose that S is another n-dimensional simplex
and that g7 : S — T is an affine diffeomorphism from S onto T'. We first observe

that ¢gr necessarily maps the vertices v, ...,v5 of S bijectively to the vertices
vl ..., vl of T. Hence, with a mild abuse of notation, we introduce a permutation
psr 1[0 n] — [0 n] by setting v, = v? for i € [0 : n]. Now it is easy to

observe that

CorA; = A", a € A(0:n),
purdAl =dAS o€ X(1:k,0:n),

ps, 10

Pordp =03 PES(0:K0:n),

This shows how to transform polynomial differential forms along affine transforma-
tions of simplices.

Similarly, we observe that polynomial differential forms are preserved by taking
traces onto subsimplices. Let F' € A(T) be an m-dimensional subsimplex of T. We

assume to have fixed enumerations of the vertices vl , ..., vl of T and of the vertices
Vg s+ U Of F such that there exists 1pr € X(0 : m,0 : n) with v = v for

41



III. Finite Element Spaces over Simplices

i € [0 : m]. Note that such a mapping exists if and only if our ordering of the vertices
of T restricts to our ordering of the vertices of F'. Via the Lagrange property we
easily obtain for ¢ € [0 : n] that

00 T — )\f if i € [ZF,T]; 1= ZF,T(j>7
T.F 7 0 if 4 §é [ZRT].

It is easily observed that for a € A(0 : n) we have [a] C [1pr] if and only if there
exists o' € A(0 : m) with o = aupp. In that case, |o/| = |aepr|. Thus, for every
multiindex o € A(0 : n) we observe that

0 e 2 if [a] € [ipr], o € A(0:m), o = aipr,
T.F T 0 if [CY] ,¢— [ZF,T]-

For 0 € ¥(1 : k,0 : m) we have 1ppo € 3(1 : k,0 : n). Conversely, for o €
Y(1: k,0 : n) we have [o] C [ipr] if and only if there exists o' € (1 : k,0 : m)
with ¢ = 1ppo’. In that case, ¢’ is unique. Analogous statements hold for any
p € X(0:k,0:n). Thus we observe

b anT = { g il[o] C [pg], o' € S(1:k,0:m), [pro’] = [0,
e 0 if o] & [err,
k6T — b it [p] C [ir], P € B(0:k,0:m), Lerp] = [p],
T.EYp — 0 if [p] g [ZF,T]-

These basic relations describe the behavior of polynomial differential forms under
taking traces to subsimplices.

Having established these basic definitions and results, we introduce some differ-
ential forms of particular interest in the sequel. We let 17 € C°°(T) denote the
function over 7" with constant value 1, and we let voly € C®A"(T) denote the
constant n-form over T' whose integral [, voly = vol™(T') over T equals the volume
vol"(T'). The n-form voly is also known as the volume form of T. There are different
ways to represent the volume form in terms of polynomial differential forms.

Lemma III.2.3.
Let 0 € ¥(1:n,0:n) and let p € [0:n]\ [¢]. Then

dr, — e(p,o)

=PI,
nl-vol"(T) " F

Proof. We let or : A, — T be the unique affine diffeomorphism which maps 0 to
vg and e; to v; for 1 <7 < n. We then find that

[ax = [era s [ a2
T T A, n!

where s, 51 € {—1,1} are specified as follows. Let 7 € (1 : n,0 : n) satisfy
[7] = [1 :n]. If o = 7, then we let s; = €(0,0) = 1. Otherwise, 0 € [¢] and there
exists a unique p € [1:n]\ [o]. We then let s; = €(p, o). Lastly, we let so = 1 if pr
preserves the orientation and so = —1 otherwise. The proof is complete. O
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3. Auxiliary Lemmas

Lemma I11.2.4.
Let p € 3(0:n,0:n). Then

¢T _ VOlT
£ nlvol™(T)
Proof. Using Lemma II1.2.3, the identity
Gp =Y ep,p—p)ALdAl_, = AdAT  =d\] = mvolgp
PE(p] PElp] '
is easily verified. O

We finish this section with some special notation and results considering Whitney
k-forms. Any enumeration of the vertices of T induces an enumeration of the vertices
of each subsimplex of T. Suppose that we have fixed enumerations of the subsim-
plices of T' that are all compatible with each other. For every p € 3(0 : £,0 : n)
we let FI' € A(T) be the unique k-dimensional subsimplex of T with [igr] = [p].
In other words, FPT is the subsimplex of T" whose vertices have the indices indicated
by p. The enumeration of the vertices of T" thus yields a bijective mapping between
A(T)" and X(0: k,0: n). We then let ¢f, := ¢, where F' = F.

We first verify that trf, . o7 = ¢ for all F' € A(T) and f € A(F). With our
observations about the traces of Whitney forms and Lemma I11.2.4, we get

/F%_{ ) riG FRGeAD: (IIL8)

I11.3. Awuxiliary Lemmas

We give elementary proofs for some auxiliary lemmas concerning polynomial dif-
ferential forms. All of these results have been proven in the literature several times.
In this section, let 7" be an n-simplex assumed be understood.

Consider o € X(1: k,0: n) for some k € [1:n] and p € [0]. We then have
d\, = €(p,o — p)dA, AdA,_,. (I11.9)
This follows from the definition of d\, and properties of the alternating product.

We interpret this as a recursive formula for the basic alternators. The following
lemma gives a recursive formula for the Whitney forms.

Lemma III.3.1.
Let ke[0:n]. fpeX(0:k,0:n)and g € [0:n]\ [p], then

€(q, P)Pprq = AgdAp — dAg A . (111.10)
Proof. Let k, p, and ¢ be as in the statement of the lemma. Unfolding definitions

gives

€(q, ) bprg — MdNo = €(a,0) D €l p+q—DNdAppgr — AgdA,

le[p+q]

=e(q.p) Y _ell,p+q—DNdApqer.

l€[p]
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III. Finite Element Spaces over Simplices

A simple calculation yields

e(q,p) Y ell.p+q—DNdA, g

lelp]

= e(q.p) Y e(l,p+q—De(a,p— DAdAg AdA,

lelp]

=€(q, p) Z €(l,q)e(q, De(l, p — Ve(q, p)MidAg AdA,—y

L[]

= —d\ A Z e(l,p—DNdA,
lelp]

= —dA\; A ¢,
where we have used

E(qa g — l) = 6(Q7 U)E(qv l)? E(l, o+q-— l) = 6(l7 q)ﬁ(l, 0 — l)a
valid for [ € [o]. This completes the proof. O

Lemma II1.3.2 (Proposition 3.4 in [57], Equation (6.6) in [10]).
Let k€ [0:n]and p € X(0: k,0:n). Then

d*¢, = (k+ 1)d),. (I1L.11)
Proof. For k € [0:n] and p € ¥(0: k,0: n) we find
dég, =Y " elp,p—p)dA) AdAT = (k + 1)d),,
PElp]
which is the desired result. O]

Remark III.3.3.
The preceding observation motivates the notation A\, := ¢, for the Whitney forms,
which can be found in several publications (e.g. Christiansen and Rapetti [57]).

Lemma II1.3.4 (Proposition 3.4 in [57]).
Let k€ [0:n]and 0 € 3(0: k,0:n). Then

dAe = Y €(q,0)borq. (I11.12)

q€(o]

Proof. Via Lemma II1.3.1 we find

D ea,0)b0rg = Y (AdAs —dAg A 65)

q€lo”] q€lo?]
= YA [ d— [ D dy | Ade
q€(o°] q€lo*]
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4. Finite Element Spaces

Using the partition of zero, the definition of the Whitney forms, Equation (IIL.9),
and eventually the partition of unity, we derive

ST €q,0)0000 =Y ApdAs +Zd>\ A by

q€fo*] q€loe]
= > AdA, + Z d\, A €(p, o — p)AdA,_,
g€loc] pElo
— Z Apd A, +Z>\d>\ —Z)\d)\ = d)\,.
q€(o]
This had to be shown. O

The following identity describes an elementary linear dependence between Whit-
ney forms of higher order.

Lemma II1.3.5 (Proposition 3.3 in [57], Equation (6.5) in [10]).
Let k€ [0:n]and p € (0: k,0:n). Then

Z (psp = P)Apdp—p = 0. (II1.13)

PE[p]

Proof. Using (I11.7), we expand the left-hand side of (IIL.13) to see

S =D Abop =D cmp =Py D Aecls,p—p—5)dA,p s

PE(p] PE[p] s€[p—p]

= Z 6(p7p - p)e(s, p—D— S)ApAsdAp—p—s

p,s€[p]
P#S

= Z e(p,p—p)e(s, p— s)e(s, p)ApAsdA,_p_s.

p,s€[p]
p#s

It is evident that the last expression vanishes, since the sum contains for each sum-
mand also its negative. O]

IT1.4. Finite Element Spaces

We are now in the position to introduce spaces of polynomial differential forms
and discuss some basic properties. Let T" be an n-dimensional simplex. For r, k € Z
we define the space P,A*(T) by

P.AM(T) :=span { A7dA] | @ € A(r,0:n), 0 € S(1:k,0:n) }, (II1.14)
and we define the space P~ A¥(T) by

Py AN(T) :=span{ \jor |a € A(r—1,0:n), c €X(0:k,0:n) }.  (IIL15)
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III. Finite Element Spaces over Simplices

We first study the transformation properties of these spaces. Suppose that T is
another n-dimensional simplex and let ¢ 7 : T — T be an affine diffeomorphism.
In that case we have isomorphisms

g PeNN(T) = PAMTY), o g o Py AN(T) — PrANTY),

for r, k € Z, as follows from the discussion in Section TI1.2. We also consider traces
to subsimplices. Let F' € A(T) be a subsimplex of T'. Tt is easy to verify that the
traces preserve the spaces P, A*(T) and P A¥(T) and that they are even surjective.
We have

PAF(F) =t} PANT),  PrAMF) = ol o P AN,

for v,k € Z. Tt is now of particular interest to consider the subspaces of P,A*(T)
and P, AF(T) with vanishing traces along the boundary. We introduce

P,AMT) = span { w € P.ANT) |VF € A(T)\{T} :tth pw=0},  (IIL16)
PrAMT) :=span { w € PTANT) |VF € A\ {T} : tthpw=0}. (IIL17)

Similar as above, if 7" is another n-dimensional simplex and @z p : 77 — T is an
affine diffeomorphism, then we have isomorphisms

G s PAAR(T) = PoAR(T), @l s PTART) — PrAMTY),

for r, k € Z.

We note that for some combinations of parameters r, k,n € Z, the above spaces
are linear hulls of the empty set, in which case the respective spaces are the zero-
dimensional vector space. In particular, we have

PAN(T) = PTAMT) = PAK(T) = PTAMT) = {0}

if k ¢ [0:n]orifr <0. We also note at this point that PyA°(T) = span{1r} but
Py A%(T) = {0} in our definition (see also Remark II1.4.2 below).
We consider some inclusion properties. We have

Pr_1A*(T) C PyANT) C PAKT), rk€Z,
by Lemma II[.3.4 and an iteration of Lemma III.3.1. We immediately obtain
P,_1N*(T) C P-AMT) C P,AMT), rkeZ (IT1.18)
From definitions we have
PAYT) = P7ANT),  PAYT) = PrAT)
in the case r > 1. On the other hand,
PraA(T) = Py AYNT) = Py A™(T) = Py AM(T)

is implied by Lemma II1.2.4. But for » > 0 and k € [1 : n—1], the inclusions (III.18)
are strict.
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4. Finite Element Spaces

Remark I1I.4.1.

In this section we have described the spaces P,A*(T) and P A*(T) only in terms
of barycentric coordinates, but we can define the spaces P,A*(T) and P A*(T)
alternatively as the traces of P,A*(RY) and P A*(RY) onto T, where P,A*(RY)
and P~ A*(RY) are spaces of polynomial differential forms over RY. Our definition
of P,-A¥(T) is equivalent to the definition of P, A*(T) in the literature, where the
Koszul operator is used (see [9]).

Remark I11.4.2.
The case r = 0 is the only instance where P,A%(T) and P-A%(T) differ. This is
noted explicitly in the seminal paper of Arnold, Falk, and Winther [9, p.34].

The exterior derivative gives rise to linear mappings between these spaces of
polynomial differential forms. We have

db s PANT) — P, AT, db: PAKT) — PrAMY(T),
dj : PrANT) = Poa AT, df s PANT) — PrAMY(T),

and corresponding mappings between spaces with boundary conditions,

db : PART) — Py AT, dh s PART) — PrAMY(T),
db POART) — P AT, dE o POAR(T) — POAMTN(T,

Moreover, one can show that

daPoAR(T) = d5P.AM(T), (I11.19a)
dE P AR(T) = dbPLAR(T), (I11.19b)
and that
ker d¥. N P-A*¥(T) = kerdi NP, A¥(T), (T11.20a)
kerdb. N P-AR(T) = kerdb N P, AR(T). (I11.20b)

These identities have been proven in [9], and we will prove them in Section IIL.9.
They will not be used in the remaining sections of this chapter.

The constant function 17 spans the kernel of d% : C*°A%(T) — C*AY(T). On
the other hand, C*A™(T') is the direct sum of d""'C>*A"}(T') and the span of volz.
Analogous statements hold for polynomial differential forms. It will be convenient
to introduce notation for spaces with those special differential forms removed. Let
Jp : C°AXT) = Rand [, : C°A"(T) — R denote the respective integral mappings
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of 0- and n-forms over T'. We set

P, AKT) = { PrAT) gi?f(% gtﬁejw(i);e, (IT1.21)
PAK(T) = {PAO( P@i?f(% ftﬁejw(i);e, (T11.22)
PANT) = { PoANT 72 i?(fT) ftﬁenge, (IT1.23)
P, AN(T) = { PrAM(T) Pmﬁr(fT) ftﬁe?w?;e. (I11.24)

We obviously have for » > 0 the direct sum decompositions

AY(T) @ span {17}, ( )
1 AY(T) @ span {17}, ( )
A™(T) @ span {volr}, (LIL.27)

( )

75;+1An T)=P, A"(T) @ span {volr},

and no changes in the other cases. With these definitions at our disposal, we may
concisely state that

Vw e PANT): (d"'w=0 = IneP A :d"n=uw), (I11.29a)
vw € BANT) : (dw =0 — Fpe P A id i —w). (IT1.29b)

The implications (II1.29) will be proven in Section II1.9 and will not be used in the
remaining sections of this chapter.
II1.5. Basis construction for P,A*(T) and P,A*(T)

Let T be a simplex of dimension n and let r,k € Z. In this section we review
bases for the spaces P,A*(T") and P,A*(T). This includes geometric decompositions
for the space P.A*(T) and extension operators.

The canonical spanning set for P.A*(T) is given by

SPANT) = { MgdAL | a € A(r,0:n), 0 €2(1:k,0:n) }. (111.30)

The members of SP,A*(T) are not linearly independent in general, but we can
specify linearly independent subsets. A first possible choice is

ByP.AF(T) := { AgdAT

a€ A(r,0:n),

€ X(1:%,0:n), minfo] >0 } ' (TTL.31)
In the case that k = 0 we have [0] = () and by convention min[o] = oo. So the basis
for the barycentric polynomials over T is included as a special case. Formally we
prove the following two lemmas.
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5. Basis construction for P,A*(T) and P,A*(T)

Lemma III.5.1.
Let r € Z. The set ByP,A°(T) is a basis for P.A%(T).

Proof. By definition, ByP,A°(T) is a spanning set for P,A°(T), so it remains to
prove the linear independence of the members of ByP,A%(T). Suppose that (cq)a
are real numbers indexed over A(r,n) and suppose that

0= ) cahy. (I1L.32)

acA(rn)

We prove that ¢, = 0 for all @« € A(r,n) by induction along the dimension of the
simplex. If T' is a vertex, dim 7T = 0, then A(r,n) has only a single member and the
statement follows. Next, suppose that the statement holds true over simplices with
dimension strictly smaller than 7. We know that tr9, , ByP,A%(T) = ByP,A°(F).
By the induction assumption we conclude that ¢, = 0 for all « € A(r,n) with
[a] # [0 : n]. It remains to show the linear independence of the interior basis
functions.

To complete the proof, we use another induction argument along the polynomial
order. If r < n+ 1, then [a] # [0 : n] for all & € A(r,n) and the claim is already
proven. Next, suppose the claim is already proven for polynomial orders strictly
smaller than 7 and that » > n + 1. Then for each a € A(r,n) there exists o/ €
A(r—n—1,n) such that X = ATAT - AT X2 Note that AJ AT - -- AT is positive over
the relative interior of 7. The linear independence of ByP,A°(T) is a consequence
of the linear independence of ByP,_,,_1A°(T). This completes the second induction
argument. O

Lemma III.5.2.
Let k,r € Z. The set ByP,A*(T) is a basis for P, A (T).

Proof. Let a € A(r,0 : n) and 0 € (1 : k,0 : n). If 0 ¢ [0], then \¢d\] €
ByP,A*(T). 1f instead 0 € [o], then A3dA\! is in the span of ByP,.A*(T), as can be
seen by the partition of zero property. We conclude that ByP,A*(T) is a spanning
set for P.AR(T).

The case kK = 0 has been treated above. For the case k£ > 1 we recall that the
constant 1-forms d)\{, ce d)\g span the cotangent space at each point. Consequently,
the constant k-forms dA\l with o € (1 : k,1 : n) span the k-th exterior power of
the cotangent space at each point. Since the monomials A for a € A(r,0 : n) are
linearly independent, so are the members of ByP,A*(T). The proof is complete. [

The basis ByP,A*(T) is straight-forward to derive, but there are disadvantages
when working with ByP,A¥(T). For example, traces of members of ByP.A*(T") onto
a face F' € A(T) generally do not contain P.A*(F) unless k = 0. We introduce a
basis that has better properties and is almost as easy to describe. However, we need
to impose the restriction that » > 1. We define

a€ A(r,0:n), c € 5(1:k,0:n), }

minja] & o] (111.33)

BP,AK(T) = { AedAD

Theorem III.5.3.
If r > 1, then the set BP,A*(T) is a basis of P.A*(T).
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Proof. First we show that BP,A¥(T) spans P,A*(T). Let a € A(r,0 : n) and
o€ X(1:k,0:n) with |a] € [¢]. We find

AGdAL = €e(la),0 — |a J))‘TdALaj AdAT o]

= —e(lal,o = [a)AF > dAT AdAL |,
q€lo*]
= —¢(|la], 0 — |a])\F Z e(q,0 — [aj)dAZ,mm
q€lo*]
= Z 6( LCYJ,O' - LaJ)€<Q7U)>‘%d>‘57LaJ+q'
q€lo’]

Hence the spanning set property is shown. Suppose that the members of BP,A*(T)
are linearly dependent. Then there exist coefficients ¢, , € R such that

0= ) caopdAL.

a€A(r,0:n)
o€X(1:k,0:n)
la]¢[o]
We define the constant k-forms
Vo = Z Caod\l, a € A(r,0:n).
o€X(1:k,0:n)
La]¢lo]

We note for each aw € A(r,0: n) that V,, = 0 if and only if for all 0 € (1 : k,0 : n)
with |« ¢ [0] we have ¢, , = 0. Suppose there exists 5 € A(r,0 : n) with V,, # 0.
Then we let V# denote the constant k-vector field over T such that V(V?) =
everywhere over T'. By assumption, we have

0= > MLVH=X+ > AN

acA(r,0:n) acA(r,0:n)
oA

But this contradicts the linear independence of the barycentric monomials. Hence
no such [ exists, and we conclude that all coefficients c, , vanish. This shows linear
independence of BP,A*(T) and completes the proof. ]

Our next objective is to relate this basis to the combinatorial structure of the
simplex T. Specifically, we show that BP,A*(T) is well-behaved under taking the
trace to subsimplices. This is formalized in the following lemma.

Lemma III.5.4.
Let F € A(T) and m = dim F. For each A\3d\. € BP,A*(T) we either have
0] Ufo] € o) and

trf p AZdAL =0

or we have [a]U[o] C [tpr], in which case there exist o/ € A(r,0: m) and ¢’ € X(1 :
k,0:m) with

trh p AFAAL = A5 dAL, MY dAL € BPAR(P),

/ /
& =g, g0 = 0.
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5. Basis construction for P,A*(T) and P,A*(T)

Conversely, if A\xd\S € BP.A¥(F), then there exist o/ € A(r,0: n) and ¢’ € %(1 :
k,0 : n) such that

AFdAL € BPART),  trh o AYdAL = A3dAL,
a=dpr, ipro=o0.
Proof. This follows from the results of Section II1.2. [

Having discussed spanning sets and bases for P,A¥(T), we now address a span-
ning set and a basis for P,A¥(T). Ideally, the basis should be a subset of the basis
BP.A*(T) for P.A*(T). We introduce

ok vaanr | a€Ar,0:n), 0 €X(1:k,0:n),
SP,AF(T) = { A2d AL oL lol = 05l } (I11.34)
and
ok vaanr | a€A(r,0:n), 0 €X(1:k,0:n),
BP,AK(T) = { AN | il g o] U o] = 0 s n] } (ITL.35)

It is evident that
SP,.A*(T) C SP.AMT), BP,.AYT) C BP.AMT), BP.A*T)C SP.A*T).

Moreover, the following is verified easily.

Theorem III.5.5. ) )
The set BP,A*(T) is a basis for P,A*(T), and SP,A*(T) is a spanning set for that
space.

Proof. Let w € P,A*(T). Then w € P,A*(T), and thus there exist unique coefficients
Ca,oc such that

W= Y CaoAfdAL
o€X(1:k,0:n)
Le] ¢lo]

Form e [0:n—1] and F € A(T)™ we then find

0= trlan w= Z Cao trl},F AedA] = Z Coo tr[}?F AedAT
o€X(1:k,0:n) o€X(1:k,0:n)
La]¢[o] La]¢[o]

[a]U[o]Cler, 7]

By Lemma II1.5.4 we thus have ¢,, = 0 whenever [a] U [o] # [0 : n]. We thus
find that BP,A*(T) is a spanning set of P,A¥(T), and a fortiori SP,A*(T) is a
spanning set too. Furthermore, B7ODTA'“(T) is linearly independent, being a subset of
BP,A*(T). Thus BP,A*(T) is a basis of P,A*(T). The proof is complete. O

We are now in a position to address the geometric decomposition of finite element
spaces. This means that we decompose the space P,A*(T) into the direct sum
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of subspaces associated to the subsimplices of 7. The key ingredient for this are
extension operators. For every subsimplex F' € A(T) of T we introduce the operator

extil « PoAR(F) — PANT), (I11.36)
by taking the linear extension of setting
ext];i} ALdA = AT dAL, A%dAD € BPAR(F),
where o' = 1pro and o € A(r,0 : n) is aigy over ipr] and zero elsewhere. Since
BP,A*(F) is a basis of P,A¥(F), this is well-defined.

Lemma III.5.6.
The following observations hold.

(i) For all T € T we have
ext?’}w —w, wePANT).
(ii) Foral T € T, F € A(T), and f € A(F) we have

ext];:TF w = trf p ext];:; w, wePA).

(iii) Forall T € T and f, F € A(T) with f ¢ A(F') we have

tr%F ext];:;w =0, wePA(f).

Proof. This follows again from Lemma II1.5.4 and Theorem IIL.5.5. 0

Theorem IIIL.5.7. )
For every w € P,A*(T) there exist unique wp € P,A*(F) for FF € A(T) such that

w = Z ext’;i}cf)p.
FeA(T)
Proof. According to Theorem III.5.3 there exist unique coefficients ¢, such that

w= Y CaoAfdAl

oc€X(1:k,0:n)
L] ¢[o]

We define wp € PAR(F) for F e A(T) by

Opi= Y Cagtrh o AZdAL.
o€X(1:k,0:n)
ler] ¢[o]

[ulo]=[eF,T]
These terms satisfy the required relation. The proof is complete. O
Remark III1.5.8.
The definition of extl;;’rT depends on the enumeration of the vertices of F' and T.
Though this dependence is perhaps not desirable, it is sufficient for the purpose of

this thesis. We refer to Section 8 of [10] for extension operators that do not depend
on the enumeration of vertices.
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6. Basis construction for P-A*(T) and P A*(T)

II1.6. Basis construction for P7A*(T) and P A*(T)

The agenda of the previous section for the P,.-family of spaces is repeated in this
section for the P -family of spaces. Let T" be a simplex and let k,r € Z with r > 1.
We consider the sets

SP,ANT) = { Mo, |ac Alr—1,n), peX(0:k,0:n) }, (I11.37)

and

BP;AM(T) = { Aio) (T11.38)

a€Alr—1,n), pe X(0:k,0:n), }
la] = [p] '

We easily observe that

BP; N(T) € SPAM(T).

By construction, SP,A*(T) is a spanning set for P A*(T). Our goal is to show
that the subset BPA*(T) is even a basis of P-A*(T). In a first step, we prove that
it is a smaller spanning set.

Lemma II1.6.1.
The set BP,A*(T) is a spanning set of P~ A*(T).

Proof. We need to show that any A%qﬁf can be written as a linear combination of
elements of BPA*(T). If r = 1, then there is nothing to show, so let us assume
that r > 1. To see this, suppose that A\j¢! € SP;A*(T) such that |a] < [p].

There exists 8 € A(r — 2,n) such that A\ = )\g)\faj. Using Lemma I11.3.5, we find
that

k

a T _ \B\T T _ \B i\T T

Ay = NeAla) 8y = N7 D (=1 NG00 (o))
=0

This shows the desired result. O

Similarly as in the preceding section, we study the behavior of BPA*(T) under
taking traces.

Lemma III.6.2.
Let F € A(T)™. For each X\§¢! € BP; A*(T) we either have [o] U [p] & [1pr] and

tr;F A%gbf =0,

or we have [a] U [p] C [tpr], in which case there exist o/ € A(r — 1,0 : m) and
p € 3(0:k,0:m) with

thp AFGp = A3 dp,  AE Gy € BPANE),
o =gy, wprp = p.

Conversely, if \x¢) € BPA*(F), then there exist o/ € A(r — 1,0 : n) and o/ €
¥(0: k,0:n) such that

)\%'gzﬁf, € BP,AK(T), thp )\%'gzﬁf, = \poh

/ /
a=aolpr, TP =Pp0-
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Proof. This is again a consequence of the results of Section III.2. [

It remains to prove that the members of BP, A*(T) are linearly independent.
To this end, we make a small detour and consider the set

ByP-AH(T) = { Ajoh (I11.39)

ac€Alr—1,n), pe X(0:k,0:n), }
lp] =0 '

Clearly, we have the inclusion
BoPAF(T) C BPA*(T).
We prove the following auxiliary result first.

Lemma III.6.3.
The set ByP A*(T) is linearly independent.

Proof. Let w € PA*(T) be in the span of ByP,” A*(T). Then there exist coefficients
Ca,p With

a T
w = g Cap TP, -

a€A(r,0:n)
pEX(0:k,0:n)
Lp]=0

We observe that w = wy + w4, where

wo= > CapAPATAL

p—0»
a€A(r,0:n)
p€X(0:k,0:n)
Lp]=0

w+ = Zn:d)\;r Z Z p,P 0 p)ca pAT)‘ad)‘Z 0—p-
=1

acA(r,0:n) pel[p—0]
pEX(0:k,0:n)
Lp]=0

From the definitions of wy and w, we obtain a descriptions of wy and w, in terms
of the basis BP,A*(T) of P.A*(T).

Let us assume w = 0. We prove that all coefficients ¢, , vanish by induction.
First, it is evident that ¢, , = 0 for «(0) = r—1. Now let us assume that s € [1 : r—1]
such that ¢, , = 0 for all ®(0) € [s : r—1]. Since the terms A}y with a(s) = s—1in
the definition of wy always have a higher exponent in index O than the terms )\gA%
in the definition of w, we conclude that ¢, , = 0 for a(0) = s — 1. Eventually we
derive ¢, , = 0 for all coefficients. The proof is complete. O

Theorem II1.6.4.
The set BP,A¥(T) is a basis of P A*(T).

Proof. Since BP,; A¥(T) is a spanning set of P~ A*(T), it only remains to prove its
linear independence. We prove the claim by induction on the dimension of T'. We
start with the case dim 7" = k. Here we notice that (0 : £,0 : k) has only one single
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6. Basis construction for P-A*(T) and P A*(T)

member, and so the claim holds due to the linear independence of the barycentric
polynomials.

Next, let dim7 = m + 1 and let us assume that the claim holds the face F' €
A(T)™. We have

PAT) = span ByP; A*(T) + span BP,A*(T) \ ByP, AF(T)

It is now evident that ByPA*(T) C kertrf . On the other hand, trf, » yields an
isomorphism between the span of BPA(T)\ ByP,”A* and the span of BPA*(F).
This implies the desired result. [

Next we study bases and spanning sets for the spaces with homogeneous bound-
ary conditions. We first introduce the sets

SP~AN(T) = { agpr | @ €A _[Oj’j)[’p]pf[ozf%: k,0:m), } (TT1.40)
and
A aur| a€Alr—1,mn), peX(0:k,0:n),
BP-AF(T) = { Ao o =0 el O = 0w } . (TIL41)

We observe the inclusions

SP-AF(T) C SPAM(T), BP-A*T) C BP.AF(T).
Theorem II1.6.5. ) )
The set BP, A*(T) is a basis of P, A*(T), and SP;A*(T) is a spanning set for
P-AR(T).
Proof. Let w € P-AF(T). Then w € PA¥(T), and thus there exist unique coeffi-
cients ¢, , such that

a T
w = g Cap TP, -

a€A(r—1,n)
pEX(0:k,0:n)
la)>1p]

When F'is a face of T, then we find

O=trppw= D, Capttppdidy = D captippXicy.
acA(r—1,n) acA(r—1,n)
pEX(0:k,0:n) pEX(0:k,0:n)
la]>[p] o] >1p]
[a]U[p]Cler,T]

We thus find that
w= Z cayp/\%gbz.

a€A(r—1,n)
pEX(0:k,0:n)

la)>p]
[a]up]=[0:n]

Hence BP-A¥(T) is a spanning set of P-A*(T), and moreover it is linearly inde-
pendent, being a subset of BP,A*(T). It follows that SP,A*(T) is a spanning set
of P-A(T). The proof is complete. O
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Eventually, we can define an extension operator that facilitates a geometric de-
composition. Whenever F' is a subsimplex of T, we consider the operator

extis P AR(F) — PrANT),
which is defined by setting
extily Agol = M, Al € BPAN(E).
where p) = 1prp and o/ € A(r — 1,0 : n) is az;}T over (17| and zero elsewhere.
Since BP.AF(F) is a basis of PA*(F), this is well-defined.
Lemma III.6.6.

The following observations hold.

(i) For all T' e T we have

ext?}_ w=w, wePAHT).
(ii) Forall T € T, F € A(T), and f € A(F) we have
ext’;:;l_ w= tr%F ext];:;_ w, wePAS).
(iii) Forall T € T and f, F € A(T) with f ¢ A(F) we have
try, g ext];cj’gfw =0, weP AF).

Proof. This follows again from Lemma III.5.4 and Theorem IIL.5.5. O

Theorem IIIL.6.7. )
For every w € P, A¥(T) there exist unique wp € P A*(F) for F € A(T) such that

Z ext FT WE.
FeA(T)
Proof. According to Theorem II1.6.4 there exist unique coefficients ¢, , such that

w= Y capAfdAl.

p€X(0:k,0:n)
L] &[]

We define wp € PAR(F) for F e A(T) by

Wp = Y Captrhp ATdAT
pEX(0:k,0:n)
La) €[]

[a]Up]=[erT]
These terms satisfy the required relation. The proof is complete. O
Remark II1.6.8.
The bases for P A¥(T) and P, A*(T) are identical to the bases presented or im-
plied in Section 4 of [9] or in [10]. Moreover, our extension operator can easily be

generalized to the extension operator in Section 8 of [10]. In particular, it does not
depend on the enumeration of vertices.
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II1.7. Linear Dependencies

The two major families of finite element differential forms over simplices can
be related in a curious manner. Arnold, Falk and Winther’s study of bases and
spanning sets in [9] utilizes isomorphisms

PAMT) = P AR, Pryn i AN(T) = P AVH(T).

Even though these isomorphisms play a central role in [9], not much research has
been invested so far. We will elaborate several aspects of these mappings and show
how they expose linear independencies in the canonical spanning sets of the finite
element spaces. Throughout this section we let 7" be an n-dimensional simplex.
Moreover, in this and the next section we write

A\ = )\U(l)"'AU(k)7 UEE(lk,Oﬂ), kEZ,
AP = )\p(O)"')‘p(k)a pEE(O:k,O:n), keZ.

First, we consider a relation between P,A*(T) and P, ,A¥(T). Note that a part of
the following statement is implied already by Proposition 3.7 of [57].

Lemma III.7.1.
Let k,r € Z. Let wy, € Rfor 0 € (1 : k,0:n) and o € A(r,n). Then

D waoAdA, =0 = Y 0,0 wa e A N g =0, (TIL42)

acA(r,n) acA(rn)
o€X(1:k,0:n) o€X(1:k,0:n)

which is the case if and only if the condition

Was = Y €(p,0 = P)Wao—pro =0 (111.43)

p€[o]

holds for o € A(r,n) and o € (1 : k,0: n) with 0 ¢ [o].

Proof. In the special case kK = 0, the statement is trivial. We prove the statement
for the case 1 <k <mn. Let 0 € ¥(1: k,0:n) with 0 € [o].

For g € [0°], it is an elementary fact that €(q,0—0) = —€(q, o). By combinatorial
arguments and the partition of zero of the barycentric differentials, we first find

dAe =dA AdA,_g=— > dA\AdA, g

q€(o”]
=— Z €(q,0 — 0)dAgo1q = Z €(q, 0)dAs_o4q-
q€(o°] q€lo”]
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We calculate that

Spi= ) waeAd,
acA(rn)
c€X(1:k,0:n)

= ) waerdAat ) waeAd),
acA(r,n) acA(r,n)
o€ (1:k,0:n) c€3(1:k,0:n)
0¢[o] 0€o]

= Y waeA Aot D waeA® Y e(q,0)dA—04q
a€A(r,n) a€A(r,n) q€[oe]
c€X(1:k,0:n) c€X(1:k,0:n)
0¢[o] 0€[o]

— Z Wao + Z €(p, 0 — p+ 0)waopro | A%\,

a€A(r,n) pElo]
o€ (1:k,0:n)
0¢[o]

— Z Woo — Z €(p, 0 — P)Wao—pro | A%dA,.
a€A(r,n) pElo]
o€ (1:k,0:n)
0¢[o]
This is an expression in terms of the basis ByP,A*(T) of P.A*(T).
Next, using Lemma I11.3.5 we find

X oo = AN, = X770 Y " €(q, 0) X oe_gro-

q€(o”]

We then calculate
Z €(0,0)Wa.o A N Poe,

a€A(r,n)
o€X(1:k,0:n)
0€[o]

- Z Z e(o,0%)e(q, 0" — Q)wa,a)‘a)‘g_0+q¢06—q+0a

acA(rn) q€(o’]
c€X(1:k,0:n)
0€[o]

so that
Sg = Z €(0, 0°)Wa o A A Pge

acA(r,n)
o€X(1:k,0:n)

= Z €(0, 0°)Wa,o AN Ppe + Z €(0, 0 )wWa.o A N Pge
a€A(r,n) acA(r,n)

c€X(1:k,0:n) c€X(1:k,0:n)
0¢[o] 0€[o]

= Z (o, 0%u, + Z €lc—p+0,04+p—0)e(p, 0 — 0)ug_pso | A“A7 Pge

a€cA(r,n) pElo]
c€X(1:k,0:n)
0¢[o]
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holds. This is an expression in terms of the basis 8703;+kA"3(T) of 7.3;+kAk(T).
The proof is finished if we prove S, = Sg. The combinatorial observation

—e(0,0%e(p, o — p) = (—=1)*e(0,0%e(o — p, p)
= —¢€(0,0°)e(c — p,p)e(o — p.,0)
= —€(0,0%¢€(0 — p,p)e(0,0° — 0)e(o — p,0)
=e(c—p+0,0°+p—0)e(p,o°—0)

for o0 € ¥(1:k,0:n) with 0 ¢ [0] and p € [o] accomplishes that. O

With very similar methods we prove a relation between the finite element spaces
Prin_ri1A¥(T) and P[HA”_’“(T). This statement is an expectable but new analogue
of Proposition 3.7 in [57].

Lemma III1.7.2.
Let k,r € Z. Let wy, € Rfor 0 € ¥(1: k,0:n) and o € A(r,n). Then

Y WA NN, =0 = Y (0,0 Wa oA G =0, (IIL44)

acA(r,n) acA(r,n)
c€X(1:k,0:n) c€X(1:k,0:n)

which is the case if and only if the condition

Wao — Z €([0°],0 = @)e(q,0 — Q)wWar|oc)—go+|oc|—q = 0 (II1.45)

q€le]nlo]

holds for « € A(r,n) and o € £(1: k,0: n) with |a] > |o°].

Proof. In the special case k = 0, the statement is trivial. So let us assume k > 0.
Using Lemma II1.3.5 again, the computation

Z €(0, 0°)Wa,o A Pge = Z €(0, 0 ) wa A A g
a€cA(r,n) acA(r,n)
o€X(1:k,0:n) o€X(1:k,0:n)
la)<[o*] la)<[o*]

- Z Z 6(07 UC)E(Q7 o — Q)Wa,o)‘a_taj—i_ngac-&-mj—q
a€A(r,n) q€[o°]
o€X(1:k,0:n) g#| o]
la]<[o®]
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ITI. Finite Element Spaces over Simplices

is easily verified. From this we conclude on the one hand that

Sy = Z €(0, 0°)Wa,o A" Poe

acA(r,n)
o€X(1:k,0:n)
= Z €(0, 0)Wa,o A" Pge + Z €(0,0°)wWa,o A% Pge
a€A(rn) a€A(r,n)
c€X(1:k,0:n) o€X(1:k,0:n)
la]=[o] la)<[o*]
= Z €(0,0%)Wa,o A% Pge
a€A(r,n)
c€X(1:k,0:n)

[elLo°)
Y D €0.09e(q0° = Qwa g AT M G e o).

a€A(rn)  q€lo€]
c€X(1:k,0:n) qg#| o]
laJ<[o*]

Foro € ¥(1:k,0:n), « € A(r,n) and ¢ € [0] N [a] with |a] > |o¢]| we find

Z Z e(0,0%)e(q,0° — QWa oA TP 0

acA(r,n)  q€lof]
0€X(1:k,0:n) g#| o]
[a)<[o*]

= Z 6(0 + LUCJ - q, o — LUCJ =+ Q)€(Q7 ¢ — LUCJ )wa+|_acj—q,0+|_crcj—q)\a¢ac-
a€A(rn)
c€X(1:k,0:n)
la]=>[0¢]
q€[o]Nle]

The combinatorial observation

(o + 0] —q,0° = |0°] + q)e(q, 0 = [o°))
= —€(0,0%¢e(0 — ¢, q)e([0°), 0% — [0°))e(0 — ¢, [0°])e(g, 0° — [0°])e(g, 0% — [0°])
= —€(0,0%)¢e(0 — q,q)e(0 — ¢, [0°])

Y

proves that Sy, equals

Z €(0,0°) | Waeo — Z €(0—q,q)e(0 — ¢, |0°])Wart o) —got|oc)—g | A" Doe-
a€cA(r,n) q€[o]ula]
c€X(1:k,0:n)
a]>]0o€]

This an expression in terms of the basis BP-A"*(T) of P-A"*(T).
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7. Linear Dependencies

On the other hand, we find

— ) wa A",
a€A(r,n)
o€X(1:k,0:n)
la)<lo*]
== ) WA N e(la), 0 — |@))dA ) AdAe )

a€A(rn)
o€X(1:k,0:n)
la]<[o®]
= Y Y weh N lla)o— La))ela.0 o)A iorsq
a€A(rn)  q€[o€]
o€X(1:k,0:n) g#| o]
laj<lo®]
= 2 2 @tV p — g)e(a.p — a)d),
BEA(rn) q€lplN[B]
peX(1:k,0:n)
LB1=1p°]
= D D Wbl - N N ell] o — @)eld. p — @)dA,.

BEA(r,n) q€[plN[B]
pEX(1:k,0:n)

1B8]>p¢]
We thus infer

Spi= Y WaoA"ATdA,

acA(r,n)
c€X(1:k,0:n)

- Z Wao — Z €(lo°),0 = q)e(q, 0 — DWart|o¢| g0+ (0¢)—q AN AN,
a€A(r,n) q€lo]N[a]
oc€X(1:k,0:n)
la]z[o°]

This is an expression in terms of a basis of 703r+n_k+1Ak (T"). Thus the desired state-
ment Sy, = Sg follows. O

These results give correspondences between the linear dependencies of the canon-
ical spanning sets of P,A*(T) and O;rkHA”_k(T), and between the linear depen-
dencies of the canonical spanning sets of Py, 1 A¥(T) and P A" *(T). An
immediate application is the well-definedness of the following isomorphisms.

We have a linear isomorphism P,A*(T) to 73[+k+1A”_’“(T) which is defined via

D wao A = Y W e A N e (T11.46)
acA(rn) acA(r,n)
o€X(1:k,0:n) c€X(1:k,0:n)

and a linear isomorphism from 703r+n,k+1Ak(T) to P11 A" *(T) which is defined via

Y wWaoA o Y Wa AU AT dA,. (T11.47)
acA(r,n) acA(r,n)
o€X(1:k,0:n) o€X(1:k,0:n)
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ITI. Finite Element Spaces over Simplices

Lemma III.7.1 and Lemma II1.7.2 imply the well-definedness of those mappings.

These results produce conditions under which a finite element differential form
vanishes, expressed in the canonical spanning set. We finish this section with two
auxiliary results that provide coefficient conditions equivalent to the ones encoun-
tered in the previous two lemmas but which are easier to handle in some situations,
including the next chapter.

Lemma III.7.3.
Let k,r € Z and let w,, € R for a € A(r,n) and 0 € X(1 : k,0 : n). Then the
condition

wOé7U - Z E(pa g — p)wap'—p-l,-o - O (11148)

pelo]
holds for a € A(r,n) and o € X(1: k,0: n) with 0 ¢ [0] if and only the condition
> €(p, 0 — plway—p =0 (111.49)
pelf]

holds for « € A(r,n) and 0 € X(1: k+ 1,0 : n).

Proof. The lemma is trivial if £ = 0, so let us assume that 1 < k& < n. Clearly, the
second claim implies the first, so we assume the first claim holds. Then the second
claim holds for all # with 0 € [f]. If instead 0 ¢ [], then we find

Z (pae p waé’ —-p — Z Z pve p S 9 —pP— 3>Wa,0—p—s+0

pef] pE[6] s€[6—p
= Z Z p7 9 p) (57 9 —pP— S)Wa,97p73+0~
pe[b] se[6—p]
Antisymmetry implies that this sum vanishes. The lemma is proven. ]

We devise an analogous result that extends Lemma II1.7.2

Lemma II1.7.4.
Let k,r € Z and let w,, € R for a € A(r,n) and o € X(1: k,0: n). The condition

oo = Y €([0°),0 = Q)e(d,0 = Q@atioe)-got1o7)—g = 0

q€[o]N[a]

holds for « € A(r,n) and o € (1 : k,0 : n) with || > |o] if and only the condition

Z Z (0 —p,p)wsg—p =0

BEA(r+1,n) pe(f]

holds for 5 € A(r+1,n) and 0 € 3(1: k+1,0: n).
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8. Duality Pairings

Proof. The lemma is trivial if £ = 0, so let us assume that 1 < k& < n. The first
condition has several equivalent formulations:

Cao = Y €([0°),0 = Q)e(d,0 = Qatiot)-got1oe)-g = O

q€[oln[o]
= wao— Y ell0°],0)e([0°),9)e(q,0 = O)war o) gotior g = O
4€lo]nlo]

= o), o)wast Y € 4,0 = @)Wart|o¢|—go+|o°|—g = 0
q€lo]Na]

= ([0, 0)war+ Y €(q,04 [0°] = Q)War|oc)—gotloc)—g = O
g€lolnlal

= > €(¢,0 + [0°) = @)wart|oc)go+loc)—g = 0.

q€lo+lo°]]N[a+|oc]]

It is now obvious that the second condition implies the first condition.

Let us assume in turn that the first condition holds, and derive the second
condition. From the first condition we conclude that the second condition already
holds for 5 € A(r +1,n) and § € (1 : k+ 1,0 : n) for which there exists o € (1 :
k,0:n) and o € A(r,n) such that 6 = o + |0°] and 5 = a+ |o°].

But we that § = o + |0¢] if and only if 0 € [f] and [0¢| = 0. So it remains to
show the second condition for the case 0 ¢ [6] N [F]. For such 6 and g, we find

Z 6(9 - pvp)wﬁ—pﬁ—p
pE(OIN[B]

> > €0 —ppe(s,0 = p+0 — )ws_pro—so—pro—s

pe[(’]ﬂ[ﬁ} s€[01N[BI\{p}

Z Z (‘9 - p7p)€<37 0 — D+ 0— S)Wﬁ*erOfS,@fp«H]fs

pe[0IN(B] se[BIN[BI\{p}
using the first condition. But with the combinatorial observation
€@ —p,pe(s,0 —p+0—5)=€(0+0—p,pe(s,0 —p+0—5s)
= —€(0 +0—p,p)e(s,p)e(s, 0 +0 — s)
we eventually tell that the sum vanishes if and only if

0= Z 6(9 +0 - p,p)E(S,p)e(S, 0+0— 5)w67p+075,97p+073-

s,p€[0]N[B]
p#s

This holds because the terms in the sum cancel. The statement is proven. O

II1.8. Duality Pairings

Our next goal is to refine the results of the preceding section. Corresponding to
the isomorphisms

PoAN(T) = P AT, P A" H(T) = Prpin AM(T),
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ITI. Finite Element Spaces over Simplices

there exist two non-degenerate bilinear pairings: the first between P,.A*(T) and
Pt AH(T), and the second between Py, 1 A¥(T) and P A" *(T). Similar
to the isomorphisms, those bilinear pairings have already been used in the seminal
publication of Arnold, Falk, and Winther [9], but not much further study has been
applied. The first pairing is provided by our Theorem TII.8.2, which is a refinement
of Proposition 3.1 in [57].

We continue to assume that 7" is an n-dimensional simplex. We begin with a
technical auxiliary result.

Lemma TIII.8.1.
Let k,r € Z and o,p € (1 : k,0: n). Then the following holds true.

e If [0] N [p¢] has cardinality greater than one, then
Ay A dpe = 0. (IT1.50a)

o If [o] N [p] =0, then

Ao A gpe = (—=1)e(0,0) > Aor. (ITL.50b)
]

q€fo°

e If [0] N [p°] contains exactly one element, then

dA\, A dpe = (—=1)"e(p, p9)e(p, o — p)e(q, 0 — )\, (IT1.50c¢)
where ¢ € [0°] and p € [o] are the unique solutions of p =0 — p +¢.

Proof. Let o,p € ¥(1 : k,0 : n), so p¢ € ¥(0 : n—k,0 : n). The three cases of
(II1.50) are disjoint and their disjunction is true. Also, if [o] N [p¢] = {p} for some
p € [o], then p = 0 — p+ ¢ for some ¢ € [0°], and p® = 0 — ¢ + p. In particular,
[0l N [p] = {q}. We see that the right-hand side of (I11.50¢) is well-defined.

Firstly, if [o] N [p°] has more than one element, then it is easy to verify that

dAy A Gpe = 0. (ITL.51)

This can be seen by expanding the Whitney form ¢, according to (II1.7) and then
using the definition of the alternating product.

Secondly, if o = p, or equivalently, [o] N [p¢] = 0, then we see, using (IT1.7),
(II1.9) and Lemma II1.3.4, that

Ao A e = dAg A DY Ne(q. 0 — q)dAge_

q€lo’]
= Z N€(q, 0 — q)e(0,0° — @)dAgipe—g
q€lo”]
= > Melg, 0° = q)e(o,0° — q)e(q, 0 + 0° — q)br-.
q€[o°]

From the combinatorial observation that

e(q,0° = q)e(0,0° = q)e(q, 0 + 0° = q) = (=1)"¢(0, o),
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8. Duality Pairings

we conclude the desired expression for d\, A ¢ge.

Eventually, we consider the case that [o] N [p¢] has exactly one element. Then
there exist unique p,q € [0 : n| such that [o] N [p°] = {p} and [¢°]| N [p] = {¢} and
p¢ = 0¢—q+ p. We find, similar as above, that

d)\(f /\ ¢pc - d)\a— /\ ¢Uch+p
= €(p,0° — @) A\pdA; AdAse_y
=€(p,0° — q)e(0,0° — @) ApdAgipe_yg
= E(pv O-C - Q)E(Uu Uc - q)€<Q7 o+ UC - Q)Ap¢T
= (=1)*e(p,0° = q)e(0,0%)e(q,0° = @) Apir.

With the combinatorial observation
(0 —p+4q,0°—q+p) =eo,0%(c —p,ple(q,0° — q)(—=1e(o — p,q)e(p, 0 — q),

we derive

(—1)*e(p, 0° — q)e(0, 0%)e(q,0° — q)
= (=1)"e(c —p+q,0°— q+p)e(p, o — p)elq,o — p).
From this, the identity

(—1)*e(c —p+q,0°— g+ p)e(p, o — p)e(q, 0 — P)A\or
= (=1)*"e(p, p°)e(p, 0 — p)elq, 0 — p) Ao

dAg A €(p, p°)Ppe

follows. The proof is complete. O

This auxiliary lemma has the following implications, which we utilize in the
proofs of this section’s main results. For k € Z and o € (1 : k,0 : n) we find

Ao A €(0,0°)X doe = (1) A7 D Agor. (I11.52)

q€[o°]
If furthermore p = 0 — p+ ¢ for p € [0] and ¢ € [0°], then
dAs A €(p, )N G = (=1)"e(p, 0 — p)e(q, o — P)N Apr (IT1.53)
on the one hand, while

Ay A €(0,0°)X poe = (=1)Fe(g, p — q)e(p. p — A" Agor

(I11.54)
= (=1)**'e(p,0 — pe(g, 0 = PN Apor
on the other hand; the symmetry result
dAs A €(p, PN Ppe = dA, A €(0, 0°)N Pye (I11.55)

follows thence.
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ITI. Finite Element Spaces over Simplices

Analogously, for 0 € £(1: k,0: n) we have

XAy A €(0,0%) o = (—1)FA7 > Aoy (I11.56)

S
IfoeX(1:k0:n)and p=0—p+ qwith p € [o] and ¢ € [0¢], then
A AN, A €(p, p9)ppe = (1) e(p, o — p)e(q, 0 — p)AT N\or. (I11.57)
If o,p € ¥(1:k,0:n) with [o] U [p°] having cardinality greater than one, then
AdA, A €(p, p)dpe = 0. (I11.58)
We have an analogous symmetry result
AN A, A €(p, p9)bpe = N dA, A €(0,0) e (111.59)

for o,p € X(1:k,0:n).

We have the technical preparation ready to prove the first main result of this
section.

Theorem III.8.2.
Let k,r € Z and let w,, € R for a € A(r,n) and o € (1 : k,0: n). Then

> > /WMA dg A €(p, p°)ws , NN e

a,B€A(r,n) o,peX(1:k,0:n)
SR VR B DU IR
0eX(1:k+1,0:n) a€cA(r,n) peld]

In particular, this term is zero if and only one of the equivalent conditions of
Lemma III.7.1 and Lemma II1.7.3 is satisfied.

Proof. Let us write

S0, a,w) = Z €(p,0 —p)wag—p, 0€X(1:k+1,0:n), acA(rn).

pE(f]

We moreover write

Sw)= Y > /wwvdA Nelp, p)wp p A NG e,

a,B€A(r,n) o,p0e€X(1:k,0:n)

Sa(w) =" > / Aot WaowWp oA Ay A €(0,0°) e,
o,BEA(T,n) oeX( lk’On)
So(w) 1= Z / \otp Wa,owWs pdAs A €(p, pIN P e
o,BEA(T,N) opGE(l k,0:n)
o#p
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So S(w) = Sa(w) + Sa(w) splits into a diagonal part Sq(w) and an off-diagonal part
So(w). We apply our previous observations and find that S(w) equals

Z / k)\a+ﬂ/\0+qw Wg,o — Z 6(]9, o — p)5<Qa 0= p)wﬁ,a—p-i-q or.

o,BEA(r,n) p€lo]
c€X(1:k,0:n)
¢€lo”]

With the combinatorial observation

e(p,o —ple(q,0 —p) = e(p, 0+ q — p)e(p, 9)e(q, 0)e(q, p)
= —¢(p, o +q—p)e(o,q),

we simplify the sum further to

> (= / NN oe(q,0) | D €0 =P+ QWsorgp | Or
T

a,B€A(r,n) pElo+q]
o€X(1:k,0:n)
q€[o*]
= > [ (— 1A oe(g, 7) (0 + ¢, B,w) 1
a,BEA(r,n) UEZlkOn)
q€[o]
Y / Ao+ N3 g (0,0 = p)S(0, B,0)bn
ao,BEA(r,n) 0eX(1: k+1 0:n)  pelf]
=0y / NN AS(0, 0,w)S(6, B,w)ér
0eX(1:k+1,0:n) a,B€A(r,n)

=(-DF > /A9 Z)\QSQaw .

0eX(1:k+1,0:n) a€A(rn)

The integrand is non-negative. Hence the integral vanishes if and only if

Z NS0, a,w), 8e€X(l:k+1,0:n).

a€A(rmn)

Since the A* are linearly independent for o € A(r,n), this holds if and only if one
of the equivalent conditions of Lemma III.7.1 and Lemma II1.7.3 is satisfied. O

We apply Theorem II1.8.2 in the following manner. Consider the bilinear form

(W)= > > / Wa e A2dAg A €(p, P21 ) NN b e

o,BEA(r,n) o,peX(1:k,0:n)

defined for w,n € RAT*E(1:k0:n) - \We have shown in this section that this bilinear
form is symmetric and semidefinite. Its degeneracy space is exactly the linear space
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of coefficients that satisfy the conditions of Lemma II1.7.1 and Lemma II1.7.3. This
implies in particular that the bilinear form

(w, ) = /Tw Ay w e PAMT), e P AR,

is non-degenerate.

Theorem II1.8.3.
Let k,r € Z and w,, € R for @ € A(r,n) and 0 € 3(1: k,0 : n). Then

> > /wwvv dg A €(p, p°)ws ) A2 e

o,BeA(r,n) o,peX(1:k,0:n)

=D Y /w ) €. 0= PA Nwao—p

0ex(1:k+1,0:n) a€A(r,n) peld]

2

In particular, this term is zero if and only one of the equivalent conditions of
Lemma III.7.2 and Lemma II1.7.4 is satisfied.

Proof. Let us consider

Sw)= Y > /wwxwf dAs A €(p, p9)wp p AP e

o,BEA(r,n) 0,p€X(1:k,0:n)

We can split the sum into two parts. On the one hand, for the diagonal part,

Sa(w) :== Z Z /wa AN AN, A €(0, 09)wp o N P

a,BE€A(r,n) c€X(1:k,0:n)

— Z Z / WaowWg oA TPAT (— Z A&,

a,BEA(rn) 0€X(1:k,0:n) q€lo]

while on the other hand, for the off-diagonal part,

So(w) := Z Z /wa AN AN, A €(p, p2)ws pA e

o, BEA(r,n) o'pGE 1 k ,0:n)

= > X / Waosa—pra N (1) e(p, 0 — p)e(, 0 — p)Apor.

c€X(1:k,0:n) pelo]
a,BEA(r,n) q€[o€]
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Since S(w) = S4(w) + Sy(w), we combine that (—1)¥S(w) equals

Z / >‘a+ﬁwaa o wﬁapAq - Z 6(]77 g — p>€(q7 0= p)wﬂ,a—p+q)‘p ¢T
a 5614(7" n) pe[o']
c€X(1:k,0:n)

q€[o]

= > / AHP wae A €(q.0) | Y €0 = p+ QWsoprohy | 7

a,BE€A(r,n) UEZ(I[ k, ? n) pElo+q]
= Z / )\a—i—ﬁ (p, 0 — p)waﬁ—p)\ec)\p Z E(pa 0 — p)wﬁﬂ—p)\p ¢T

o,BeA(r,n) fex(1: k:-l-l 0:n) pE(6]

pE[GC]
2

DI R (DD STCXER PR oY

0eX(1:k+1,0:n) a€A(r,n) pelf]

2

- Z / - Z Z €(0 = p.p)ws—po—p’ | 1.

0eX(1:k+1,0:n) BEA(r+1,n) pe(f)

The integrand is non-negative. Moreover, we see that it vanishes if and only if the
conditions of Lemma II1.7.2 and Lemma II1.7.4. This completes the proof. L]

Similar as before, we utilize Theorem II1.8.3 for our understanding of bilinear
pairings. We define

@m = > > /waaA“A" dAo A €(p, p)11,, N e

o,B€A(rn) o,peX(1:k,0:n)

for w,n € RAC*E(L:k0m) — Thig hilinear form is symmetric and semidefinite. Its
degeneracy space is exactly the linear space of coefficients that satisfy the conditions
of Lemma II1.7.2 and Lemma ITI.7.4. The non-degeneracy of the bilinear form

(wa 77) = / w A 7, w e 703r+n7k7+1Ak(T)7 n S Pr_—&—lAn_k(T)a
T

is an important consequence.

I11.9. Flux Reconstruction over a Simplex

At the end of this chapter we make up for a promise given earlier: we prove the
statements (I11.19), (II1.20), and (II1.29). We begin with the identities concerning
the spaces without boundary conditions. Specifically, (II1.19a), (III.20a) and (II1.29)
are evident by the following theorem.

Theorem III.9.1.
Let T be an n-simplex and let r, k € Z. Then the following holds:
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o If k> 0 and w € P,A*T) with d*w = 0, then there exists & € P, A*"1(T)
such that d*~1¢ = w.

o If we P AKT) with d*w = 0, then w € P, A*(T).

Proof. Using the partition of unity property of the barycentric coordinates over T
and the partition of zero property of their differentials, it is easily proven that

AP.N¥(T) := {Aad)\

ac€A(l:n), o <,
ceX(l:k1:n)
is a basis of P,A*(T'). We define a linear mapping P* : P,A*(T) — P, A*1(T) by

k
PR (A%dA,) = (r + k)72 (1) A d Ao, A%dA, € APAN(T).

i=1
One can moreover show that
d*t PRy 4 PP R = (r + k)w. (I11.60)

In particular, (r + k)w = d* ! P*w if d*w = 0, and (r + k)w = P*d*w if Pfw = 0.
The first statement of the lemma is an easy consequence.
To prove (II1.60), we fix @« € A(1:n) and 0 € £(1: k,0: n). We observe

d”(A") =) a(i)A*'dA;

€[]
On the one hand,

dE1 PR (A%dA,) = k- A%, + d° (A%) A 6,

and
d*(A") A gy = > a(i)A*'dA Aelp, o) Ad Aoy
€[]
pElo]
= Y a®XdA+ Y ()X e(p, 0)e(i, 0 — p)dAe_pus.
iela]n[o] i€lal\[o]

p€[o]

On the other hand,

PHE (AdA,) = D a(@AdA + D a(i)A TPl 0)e(p, 0 — i)dAgrisyp.
i€[a]\[s] i€[a]\[]
pelo]
For i € [a] \ [¢] and p € [o] we make the combinatorial observation

E(pv U)E(ia g — p) = E(p7 0)€<i7p)€(iv 0) = _E(pv U)E(pa Z)E(Zv 0‘) = _E(iv U>€(p7 o - Z)
This in combination yields (IIL.60).
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For proving the second statement, we need a fact about the space P~ A*(T). For
a€ A(r,n) and p € (0 : k,1:n) we see

n

d¥ (\",) =D a(i) A dN A ¢, + A AdRg,.

=1

We have d*¢, = (k4 1)d), and one can show that P**'d), differs from ¢, only by
constant scaling and by addition of a constant k-form. It is revealed in combination
that

PAYT) = P A¥(T) + PEHYP,_ AFTY(T).

Let us suppose that w € P-A¥(T). Then there exist wy € P,_1A*(T) and w; €
P, A*H(T) such that w = wy + P*lw,. If d*w = 0, then d*wy + d*~1PFw; = 0.
But upon representing wy and w; in terms of the basis families AP, A*(T) it is
obvious that we may assume d*wy = 0 and d*~! P*w, = 0 without loss of generality.
But then (II1.60) implies w; = P*"lw, for some wy € P,_1A*2(T). Consequently,
P*w; = 0 and w = wy, which proves the desired claim. O

Proving (II1.19a), (II1.20a) and (II1.29) relies on the duality pairings discussed
in the preceding section.

Theorem II1.9.2.
Let T be an n-simplex and let r, k € Z. Then the following holds:

o If k> 0 and w € P,A¥(T) with d*w = 0, then there exists £ € 75;+1A""—1(T)
such that d*~1¢ = w.

o If w e P A¥(T) with d*w = 0, then w € P, A¥(T).

Proof. 1t suffices to show that the two differential complexes

P ANT) L P ART) — P ARY(T) (ITL.61a)
P AN (T) 2 P AMT) —2s P AT (IIL61b)

are exact at the middle terms. This is the case if and only if the dual complexes

° dkfl / R dk i .
P AT u P AF(TY M P AT (II1.62a)
o dk—l 4 R dk / i

7;;+1Ak—1(T)/ u PfHAk(T)’ & P AT (II1.62b)

are exact at the middle terms. We show that this is the case if and only if the
differential complexes

P AHYT) S pr ARy < po  AREN(T) (T1163a)
P ATUT) P AT < P AR () (TTL63D)

are exact at the middle terms. Indeed, these two differential complexes are exact at
the middle term, as follows by Theorem III.9.1.
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ITI. Finite Element Spaces over Simplices

To complete the proof, we recall the isomorphisms
P AM(T) ~ 75;+k+1An_k(T)v Pr_HA”_k(T) = 70)7-+n—k'+1Ak(T)>
and the corresponding duality pairings. Reindexing gives us isomorphisms

Pronih ATHT) = PAMT), P, AT ~ PART),
and corresponding duality pairings. With an integration by parts formula derived
from Stokes’ theorem over the simplex (II1.3) it is now easily verified that (II1.62a)
is isomorphic to (II1.63a) and that (II1.62b) is isomorphic to (II1.63b). O

Remark I11.9.3.

There are many different routes that prove the exactness of finite element differential
complexes over simplices. Theorem (I11.9.1) uses a variant of the Poincaré mapping,
which has been discussed in different forms in finite element literature |9, 109]. The
situation is considerably more complicated when boundary conditions are imposed,
and this chapter has provided a new proof. An alternative method of proof can
employ smoothed projections over simplex with boundary conditions and relies on
the exactness of the L? de Rham complex with boundary conditions [11, 58]. On the
other hand, the exactness of the finite element differential complex with boundary
conditions over simplex follows by an induction argument over the dimension that
utilizes long exact sequences on cohomology and finite element de Rham complexes
over the boundary triangulation of a simplex [53, 56].
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In the previous chapters, we have first discussed simplices and then differential
forms over simplices. We proceed with spaces of differential forms over simplicial
complexes. The topic of this chapter is the construction of finite element de Rham
complexes of higher and possibly non-uniform polynomial order. We also provide a
commuting interpolant.

We begin with the most basic example and discuss a finite element de Rham com-
plex of lowest polynomial order in Section IV.1. Of course, this is just the differential
complex of Whitney forms. Whitney forms have been discussed in Whitney’s mono-
graph on geometric measure theory [180], and they have been subject of research in
numerical analysis for decades (see [29, 109]). A fundamental result is the duality
of the differential complex of Whitney forms to the simplicial chain complex of the
underlying triangulation. This determines the cohomology spaces of this differential
complex: the Whitney form cohomology realizes the simplicial Betti numbers of the
triangulation. We consider a general class of boundary conditions and describe the
finite element interpolant onto the Whitney forms.

The construction of finite element differential forms of higher polynomial order is
a topic rich in structure and results which this thesis approaches with the following
intuition: global properties of a finite element de Rham complex are described en-
tirely by its lowest-order contributions, whereas the higher-order contributions are
only local. The dissertation of Sabine Zaglmayr [183] systematically applies that
idea: to build the higher order finite element differential complex, she starts with a
lowest-order finite element differential complex and associates exact finite element
differential complexes of higher polynomial order to each simplex with support in the
local patch of the respective simplex. This method allows for a simple construction
of finite element de Rham complexes of non-uniform polynomial order.

We put that intuition to work a different manner. As a preparation for the con-
struction of higher order finite element de Rham complexes, we introduce the notion
of admissible sequence type in Section IV.2. We recall that the P,-type and P, -type
spaces of finite element differential forms can be composed in different manners to
finite element de Rham complexes (see Section 3 of |9]) over single simplices, trian-
gulations, or R", and one may or may not impose boundary conditions. The notion
of admissible sequence type abstracts the choice of P,- and P -type spaces from the
specific geometric ambient.

This notion also allows us to associate particular choices of finite element de Rham
complexes to single simplices, which commences the construction of higher order fi-
nite element de Rham complexes in Section IV.3. We generalize a common practice
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in the theory of hp-adaptive finite element methods: an H'-conforming finite ele-
ment space of non-uniform polynomial order is defined by associating a polynomial
order to each simplex. Similarly, we define a finite element de Rham complex of
non-uniform polynomial order by associating a admissible sequence type to each
simplex such that a compatibility condition holds.

We finish this chapter with the commuting interpolant from piecewise smooth
de Rham complexes onto the finite element de Rham complexes in Section IV.4.
In the case of uniform finite element spaces, such an interpolant has been given by
Arnold, Falk, and Winther [9]. We use different techniques in this thesis. Specifi-
cally, our construction follows the ideas of Demkowicz et. al. [69], whose key idea is
a Hodge decomposition of the degrees of freedom. This construction principle was
recast in the calculus of differential forms within the framework of element systems
(see e.g. [56, Proposition 5.44|), where we the resulting interpolant was called har-
monic interpolant.

Research efforts in finite element exterior calculus have focused on spaces of
uniform polynomial order [9, 10] but have given considerably less attention to spaces
with spatially varying polynomial order (but see [56, 108]). Finite element spaces
of the latter kind, however, are constitutive for p-adaptive and hp-adaptive finite
element methods (p-FEM and hp-FEM, (68, 152, 165]). We recall that h-adaptive
methods refine the mesh locally but keep the polynomial order fixed, that p-adaptive
methods keep the mesh fixed but locally increase the polynomial order, and that
hp-adaptive methods combine local mesh refinement and variation of the polynomial
order. The latter form of adaptivity allows for efficient approximation of functions
with spatially varying smoothness or isolated singularities, for example by Lagrange
elements with non-uniform polynomial order. The theory of hp-adaptive mixed
finite element methods in numerical electromagnetism utilizes differential complexes
of spaces of non-uniform polynomial order, which include generalizations of Nédélec
elements and Raviart-Thomas elements [1, 67, 143, 161]. For the most part, these
research efforts have been formalized in terms of classical vector calculus.

Our construction of finite element de Rham complexes of non-uniform polynomial
order may serve as a preparation towards the study of Ap-adaptive methods in finite
element exterior calculus, but this is not a part of this thesis. Instead, we regard
the aforementioned principle of constructing higher order finite element de Rham
complexes by local augmentation of a global differential complex to be of general
interest in the theory of finite element methods. Support for this assessment will
be provided in Chapter X of this thesis with an application in a posteriori error
estimation. Considering finite element spaces of non-uniform polynomial order is
then only small addition once the basic idea has been established.

IV.1. The Complex of Whitney Forms

In this section we introduce the complex of Whitney forms as the principle ex-
ample of a finite element de Rham complex. In particular, we discuss its relation to
the simplicial chain complex and develop a commuting interpolant. Throughout this
section, we let 7 be a simplicial complex and let &/ C T be a simplicial subcomplex.
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1. The Complex of Whitney Forms

Before we discuss Whitney forms, we first consider piecewise smooth differential
forms. For k € Z we define

CAM(T) = { (wr)reT € @COOAk(T) VI eT :VF e A(T): trf}’F Wr = W } .

TeT

We can identify this with the space of differential k-forms that are piecewise smooth
with respect to 7 and that have single-valued traces along simplex boundaries.
Henceforth, we may also write trf.w := wy for w € C°A¥(T) and T € T.

Since the exterior derivatives on simplices commute with the trace operators, we
have a well-defined exterior derivative

d* : C¥AN(T) = C¥ANT),  (wr)rer = (dfwr) ey - (IV.1)
Since d**1d*w = 0 for every w € C*A*(T), we may compose a differential complex

C A oAR(T) — oAkt L (IV.2)

In order to formalize boundary conditions, we furthermore define
C®N (T, U) = { w e C™A*(T) ‘ VE el :wp=0 } (IV.3)

It is easily verified that
d” (COOAk(T,Z/{)) C C¥A*(T,U). (IV.4)
In particular, we may compose the differential complex

L oA T U) s oA (T ) (IV.5)
Remark IV.1.1.
Constructions similar to our definition of C*°A*(T") have appeared in mathematics
before. Our definition is a special case of a finite element system in the terminology
of [56]. Another variant of the idea is exemplified by Sullivan forms in global analysis
[79], which are piecewise flat differential forms in the sense of geometric measure
theory with single-valued traces along simplex boundaries.

Example IV.1.2.

We motivate these definitions by a practical illustration. Suppose that 2 C R"
is a bounded polyhedral domain triangulated by a simplicial complex 7. Then
the members of C®A*(T) correspond to the differential k-forms over Q2 that are
piecewise smooth with respect to 7 and have single-valued traces on subsimplices.
Moreover, suppose we have a subset of the boundary I' C 9f) such that a simplicial
subcomplex U C T triangulates I'. Then C®A*(T,U) is the subspace of C*°A¥(T)
whose members have vanishing traces along I'. In that way, {f may be used to model
homogeneous boundary conditions.
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IV. Finite Element de Rham Complexes

We next discuss an important relation between the simplicial chains and the
piecewise smooth differential forms. Suppose that w € C®A*(T,U) and T € TH\U*.

We then write
/ (WRES / tr? wr
T T

for the integral of w over the oriented simplex 7. By linear extension we obtain a
bilinear pairing

l/I@MUﬂUX@Wﬂ%%R @ﬁ%ﬁ/w. (IV.6)
S
We easily observe that
/ w:/wm,wecmeno,SECHﬂﬁuy
8k+15 S
The linear pairing (IV.6) is degenerate in general.

We will identify a differential subcomplex of (IV.5) restricting to which in the first
variable makes the bilinear pairing (IV.6) non-degenerate. Specifically, we employ a
finite element de Rham complex of lowest polynomial order. To that end, we define
the spaces of Whitney forms over T by

WAR(T) := { w € CA¥(T) ’ VT €T :wp € Py AT } (IV.7)

and the space of Whitney forms over 7T relative to U by
WAR(T, U) := WAR(T) 0 CAF (T, U). (IV.8)
It is an immediate consequence of definitions that we have a well-defined operator
d* : WAR(T U) — WAFTY(T  U),
and consequently the differential complex of Whitney forms

L O WART W) s AR (T U (Iv.9)

The notion of Whitney forms was originally motivated by their duality to the sim-
plicial chains, which we discuss soon.

It is of interest to point out an explicit basis for the spaces WAF(T). We make
recourse to the basis forms which originally have been called Whitney forms. For
every f € T* we define the Whitney k-form associated to qbfT € WA¥*(T) by setting

0 otherwise,

for each T' € T Indeed, when T € T, f € A(T)*, and F € A(T), then either we
have f ¢ A(F), in which case tr}, p ¢7 = 0, or instead we have f € A(F), in which
case tr§ p ¢F = ¢f. Hence ¢7 € WAK(T).
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Lemma IV.1.3.
Let f,g € T*. Then trf ¢7 # 0 if and only if f # g.

Proof. This follows immediately from Equation (IIL.8). ]

Lemma TV.1.4.
The Whitney forms ¢7, f € T*, are a basis of WA*(T).

Proof. The linear independence of the qﬁfT, f € T*, is an immediate consequence
of Lemma IV.1.3. To complete the proof, let ¢ € WAK(T) be arbitrary but fixed.
There exist unique ¢; € R for each T € T and f € A(T) such that trf.¢ =
D FeA(T) c;¢;. For T e T and g € A(T)* we have fg try, trh ¢ = ¢f fg P9 =
cl'/(k!), and so we conclude that ¢! = cI' for T,T" € T with g € A(T) N A(T").
This means that there exist ¢y € R for f € A(T) such that for all 7" € T we have
trk ¢ = ZfeA(T)k chb?. But then ¢ = ZfeTk cto¢. The proof is complete. O]
Lemma IV.1.5.

Let ¢ € WAK(T) and T € T. Then tr% ¢ = 0 if and only if for all f € A(T) we
have tr’} ¢ =0.

Proof. There exist c; € R for each f € T* such that ¢ = ZfeTk crpy. Consequently
we have trf. ¢ = >° .y Cr@f. Since the k-forms ¢F for f € A(T)* are linearly
independent, we verify c¢; = 0 for f € A(T). The proof is complete. O

Lemma IV.1.6.
The Whitney forms ¢}', f € TF\U*, are a basis for WA*(T ., U).

Proof. This is a combination of Lemma IV.1.4 and Lemma IV.1.5. [

Lemma IV.1.7.
The bilinear pairing

/ WANT U) % Co(T.U) = R, (w,S) > / rk (IV.10)

is non-degenerate.
Proof. This is a combination of Lemma IV.1.6 with Lemma IV.1.3. ]

We determine the dimension of the cohomology spaces of the complex of Whit-
ney forms. WA*(T,U) is linearly isomorphic to the dual space of Cn(T,U) by
Lemma IV.1.7. The exterior derivative d* : WA*(T,U) — WA YT U) transforms
into the dual of the simplicial boundary operator dyy1 : Cor1(T,U) — Ci(T,U)
along that isomorphism. In summary, the complex of Whitney forms over 7T rela-
tive to U is isomorphic to the dual complex of the simplicial chain complex of T
relative to U.

dk—1 gk+1

S WARTL U — S WAR (T )
:l :l (IV.11)
8 , 81,<;+1 , 8I/ﬂ+2
. — CG(TU) —— G (T U) ——
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These two differential complexes are isomorphic and thus their cohomology spaces
are isomorphic. On the other hand, the cohomology spaces of the bottom complex
in (IV.11) have the same dimension as homology spaces of the simplicial chain
complex of T relative to U, and in particular their dimensions realize the simplicial
Betti numbers. In combination,

ker (d"’ CWAK(T U) — WA’““(T,Z/{))

dim

ran <dk—1 WARL(T U) — WA’“(T,U)>
ker (8,’C+1 L CL(T, U) — CkH(T,L{)/)
ran (3,’9 :Coa (T U) — C;.C(T,U)’>

= dim

= b, (T, U).

This determines the dimension of the cohomology spaces of the complex of Whitney
forms: the complex of Whitney forms realizes the simplicial Betti numbers of T
relative to U on cohomology.

Example IV.1.8.

We revisit Example IV.1.2 above, where T triangulates a compact topological mani-
fold M and U triangulates a subset I' C OM of the boundary. As already mentioned
in Chapter II, the topological and simplicial Betti numbers coincide, which means
be(T,U) = b (M,T) for all k € Z. Consequently, the differential complex of Whitney
forms (IV.9) realizes the Betti numbers of M relative to I' on cohomology.

We are now in a position to provide the canonical finite element interpolant from

the space C°A*(T) onto the space WA*(T). We define
Iy : C¥AN(T) — WAK(T) (TV.12)

by requiring

/I’;Vw _ /w, we CCANT), S eCul(T).

s s

With Lemma IV.1.7 we see that this is well-defined. We also observe that
Low=w, we&WAN(T).

So the operator I}, acts as the identity on Whitney forms.
Moreover, I}, is local in the sense that for T € T and w € C*A*(T) we have

wr =0 = trk Lw=0.

This is a consequence of Lemma IV.1.5. Hence, by restricting the interpolant we
obtain a well-defined mapping

I, - C°AR (T, U) — WAR(T, U).
The interpolation operator commutes with the exterior derivative,

d*Ifw = i dR 0, w e OFAF(T).
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2. Polynomial de Rham Complexes over Simplices

This is verified by

/wydkw:/dkw:/ w:/ ]{jvw:/dklfjvw
g s D415 418 S

for S € Cpy1(T) and w € C°A¥(T). So the diagram

A, CoNN(T U) —S C=AY (T U) 2 LN
I{j\,l Iﬁ\jll
d d* dh+1

A WANTLU) WARL(T 1)

commutes. In particular, I}, is a morphism of differential complexes.

IV.2. Polynomial de Rham Complexes over Simplices

The goal of this chapter is to develop finite element de Rham complexes of higher
polynomial order over triangulations. The previous section has served our under-
standing of the lowest-order case. Before we develop the higher order case, we gather
some results concerning higher order finite element de Rham complexes on single
simplices. First we make the informal observation that differential complexes of
similar type appear throughout finite element exterior calculus in different variants.
For example, a differential complex of trimmed polynomial differential forms of fixed
order r appears as differential complex over a single simplex, over a triangulation,
or with boundary conditions. It is of interest to turn the idea of sequences having
a type into a rigorous mathematical notion. A particular motivation are differential
complexes in the theory of hp-adaptive methods, composed of finite element spaces
of non-uniform polynomial order. In that application we wish to assign types of
polynomial de Rham complexes to each simplex to describe the local order of ap-
proximation.

We first introduce a set of formal symbols
={ .. PP PPy, }- (IV.13)

The set . is endowed with a total order < that is defined by P~ < P, and P, < P,
for each r € Z.
An admissible sequence type is a mapping P : Z — .¥ that satisfies the condition

e{P.P} = Pk+1)e{P ,P_i}. (IV.14)

for all k£ € Z. We let o/ denote the set of admissible sequence types. The total order
on .¥ induces a partial order < on &7, where for all P,S € & we have P < S if
and only if for all £ € Z we have P(k) < S(k).

If P € o/ is an admissible sequence type and T is an n-simplex, then we define
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for each k € Z the spaces

PAN(T) = { ;D_/AXZEQ iizgg ;7;_ (IV.15)
PAK(T) ;:{ ;D _ﬁigi gzgg ;772_ (IV.16)
v - {EAD 0T
(5T

The terminology already suggests that the symbols .7 describe finite element spaces,
whereas the admissible sequence types & describe finite element differential com-
plexes. To make this idea rigorous, we begin with an easy observation that follows
from (IV.14). For each admissible sequence type P € o7, k € Z, and m-dimensional
simplex 7' C R" we have

dk(mk(T)) C PAM(T), dk<75Ak(T)) C PAF(T),
d’f(zA’f(T)) C PARY(T), dk@Ak(T)) C PARY(T).

In the light of this, each admissible sequence type describes the composition of a
differential complex. Suppose that T is a simplex and that P € &/ is an admissible
sequence type. Then we have a polynomial de Rham complex over 7',

05 R —— PAYT) —2 . 20 pAr(T) 0, (IV.19)

and a polynomial de Rham complex over T with boundary conditions,

0= PAT) -2 . &L panr) L RS0 (IV.20)
We will also consider the reduced differential complexes

2 pAT) 0, (Iv.21)

s PAY(T) — 0. (Iv.22)

0 — PAY(T)
0 — PAY(T)

d® d”

We establish the exactness of these differential complexes.

Lemma TV.2.1.
Let 7" be a simplex and let P € &/ be an admissible sequence type. If 17 € PAY(T),
then (IV.19) is well-defined and exact. If voly € PA™(T), then (IV.20) is exact.

Proof. With regards to the first sequence, it is obvious that kerd® N PA(T) is
spanned by 17. Let k € {1,...,n} and w € PA¥(T) with d*w = 0. Then there
exists r € Z with w € P,A¥(T). By (111.29a), there exists £ € P, A*1(T) with
d*~1¢ = w. Since P, AF"HT) C PA*Y(T), the exactness of the first sequence
follows.
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With regards to the second sequence, it is obvious that kerd® N PA°(T) is the
trivial vector space. Now let k € {1,...,n} and w € PA¥T) with d*w = 0.
If £ = n, the we assume additionally fTw = 0. There exists r € Z such that

w € P,AF(T). By (I11.29b), we obtain 7 € 703,;1/\’“_1(7’) with d*~1n = w. But we
also have P, A*=1(T") C PA*"}(T). This completes the proof. O

Lemma IV.2.2.
Let T be a simplex and let P be an admissible sequence type. Then (IV.21) and
(IV.22) are exact sequences. [

Proof. 1f 17 € PAY(T), then PA%(T) = span {17} © PA°(T), and if volr € PA™(T),
then PA™(T) = span{voly} & PA™(T). The claim now follows immediately from
the preceding result. O]

Example IV.2.3.
The admissible sequence types describe the finite element de Rham complexes of
finite element exterior calculus. Over a triangle T' C R?, these take one of the forms

PAN(T) —— P-AT) —— P._1A%(T),
PTAO(T) B PrflAl(T) B Pr72A2<T)a

and over a tetrahedron T' C R3, these take one of the forms

PAN(T) —— P ANT) —— P A(T) —— P, AT,
PAN(T) —— P ANT) —— P, A(T) —— P,_,AT),
PA(T) —— P, ANT) —— P AX(T) —— P, _,A3(T),
PAN(T) —— P, A(T) —— P, A(T) —— P,_\(T).

In general, when the polynomial order of the space of O-forms is fixed, then there
are 2"~ ! different differential complexes in the framework of finite element exterior
calculus over an n-dimensional simplex.

Now we move our attention towards dual spaces and their representations. This
prepares the discussion of the degrees of freedom of finite element de Rham com-
plexes in the next section. Let T be a simplex and let ¢ be a smooth Rieman-
nian metric over 7. This induces a positive definite bilinear form (cf. Agricola and
Friedrich [92] or the discussion in the previous chapter)

B, : C®AY(T) x C*°A¥(T) = R, (w,n)+ /T(w,n)g.

The restriction of this bilinear form to any finite-dimensional subspace of C*°A*(T)
gives a Hilbert space structure on that subspace. We apply this idea to the spaces
éAk(T), since this is the special case needed in the sequel. The following lemma,
however, generalizes to the spaces of the form PA¥(T), PA*(T) and PA*(T) with
minimal changes.
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Lemma IV.2.4.
Let P € o, let k € Z, and let T C R" be a simplex. For every linear functional
U : PA¥(T) — R there exist p € PA*Y(T) and 8 € PA*(T) such that

U(w) = L(w,dk_1p>g+/T<dkw,dkﬁ>g, w € PAR(T).

Proof. Let W : PA¥(T) — R be linear and let w € PA¥(T) be arbitrary. Since By
induces a Hilbert space structure on a finite-dimensional vector space, the Riesz rep-
resentation theorem ensures the existence of n € PA¥(T') such that ¥(w) = By(w,n).
We write Ag = PAF(T) Nker d* and let 4; denote the orthogonal complement of Ay
in éAk(T) with respect to the scalar product B,. We have an orthogonal decompo-
sition éAk(T) = Ay ® Ay, and unique decompositions w = wg + w; and n =1y + 1y
with wg, 9 € Ag and wy,n; € A;. Thus

V@) = [ @l = [ oo+ [ onmy

By the exactness of (IV.22) there exists p € PA*(T) such that n, = d*'p.
Since the bilinear form B, (dk~,dk~) is a scalar product over A; equivalent to B,,

we may use the Riesz representation theorem again to obtain § € éAk(T ) with
B, (dkwl, d’“ﬁ) = By (w1,m). The proof is complete. ]
IV.3. Higher Order Finite Element Complexes

We are in a position now to discuss the finite element de Rham complexes of
higher and possibly non-uniform polynomial order over a simplicial complex.

Let T be a simplicial complex and let U be a (possibly empty) subcomplex of
T. Welet P : T — & be a mapping that associates to each simplex T € T an
admissible sequence type Pr : Z — .. We then define

PAT) :={we C®ANT) VT € T : wr € PrA¥(T) }. (IV.23)
By construction, the exterior derivative preserves this class of differential forms,
d*PAR(T) C PAMH(T), (IV.24)
and in particular, we have a differential complex
L pAR(T) s par ) (1V.25)
We furthermore define the subspaces
PAMT. U) == PA(T) N C=A*(T),
which constitute the differential complex

dk+1

o AR U s pAR T U (IV.26)

82



3. Higher Order Finite Element Complexes

Having associated an admissible sequence type Pr to each T' € T, we say that the
hierarchy condition holds if

We call P hierarchical if the hierarchy condition holds. We assume the hierarchy
condition throughout this section; if P : 7 — 7 is not hierarchical, then one can
find P : T — o satisfying the hierarchy condition and yielding the same finite
element spaces. In order to simplify the notation, we will write PA*(T) := PrA*(T)
from here on.

Example IV.3.1.

The admissible sequence types associated to each simplex describe the order of
approximation associated to each simplex. If we choose the same admissible sequence
for every simplex, then the resulting spaces PA®(T) are finite element spaces of
uniform polynomial order of the kind considered originally in finite element exterior
calculus. The most simple example is obtained by choosing for each T € T the
admissible sequence type P € & with P(k) = P; for all k € Z. In the sequel we
will see that this choice leads to differential complexes of lowest order.

Remark IV.3.2.

The general idea of the hierarchy condition is that the polynomial order associated to
a simplex is at least the polynomial order associated to any subsimplex. Imposing
such a condition is common in the literature on hp finite element methods [68].
Indeed, if (Pr)rer violates the hierarchy condition, then there exists a family of
sequence types (Sr)re7 that satisfies the hierarchy condition and yields the same
space PA(T). This is analogous to what is called minimum rule in the literature
(see [69]). We refer also to [56] for the corresponding concept in the theory of element
systems.

The geometric decomposition of finite element spaces is a concept of paramount
importance. To establish geometric decompositions for the spaces PA*(T,U), we
recur to an idea of Chapter IIT and discuss extension operators. Specifically, we
assume to have linear local extension operators

exth. .t PAF(F) — PAR(T) (IV.28)
for every F' € A(T) with T € T such that the following properties hold:
(i) for all ' € T we have

exth rw=w, we PAR(F), (IV.29a)

(ii) for all T € T with F € A(T) and f € A(F) we have

(iii) for all T € T and F,G € A(T) with F ¢ A(G) we have

trl}g exty = 0. (IV.29c¢)
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For each F' € T we then define the associated global extension operator,

Extf : PAFF) = CANT), o P exth, . (IV.30)

TeT
FeA(T)

It follows from (IV.29b) that this mapping indeed takes values in C*°A*(T). More-
over, definitions imply

Exth, (éA’“(F)) C PAK(T). (IV.31)

We note that Ext¥ w for w € PA*(F) vanishes on all simplices of 7 that do not
contain F' as a subsimplex.

Example IV.3.3.
We recall the extension operators introduced for geometric decompositions of the
spaces P,A*(T) and P A*(T), which were introduced in Chapter ITI. These were

extiy  PANEF) — PAKT),  extiy : PrANE) — Py AR(T).

These extension operators satisfy the required properties. They are a possible choice
for the local extension operators in this section, in accordance to whether Pr(k) = P,

or Pp(k) =P, .

We can describe the geometric decomposition of PA*(T,U) in terms of the exten-
sion operators. The hierarchy condition is critical for that. For every w € PA*(T)
we define w”V € PA*(T) by

W= Z vol(F)~* (/ tr'} w> Ex‘c’lf7 volp . (IV.32)
F

FeTk
We then define recursively for every m € {k,... , n}
~1
wp = trh (w —WV =) wl> . FeTm, (IV.33)
=
W=y Exthop. (IV.34)
FeTm

The following theorem shows that these definitions are well-defined and give a de-
composition of w.

Theorem 1IV.3.4. )
Let w € PA*(T). Then we have wp € PA*(F) for every F € T and

w=uw"+ Z w™. (IV.35)
m=k
Proof. By construction of w"’, we have

/tr’};wwz/tr’}w, FeT"
F F
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3. Higher Order Finite Element Complexes

By definition, trf, (w — w") € PAF(F) for every F € T*. With w* as defined above,
we see

trh (w—w” —w*) =0, FeT"

Let us now suppose that for some m € {k,...,n — 1} we have shown

tr’} <w—ww—2wl> =0, feTm

=k

By definition we have PA*(F) = PAF(F) for F € 7™ and &p € PA¥(F) for
F € Tt We conclude that w™t! is well-defined and that

m~+1
trk, (w —wW - Zwl> =0, FeTm
I=k

An induction argument then provides (IV.35). The proof is complete. ]

Lemma IV.3.5.
Let w € PA*(T) and F € T. Then we have wp = 0 if and only if tr} w"Y = 0 for all
f€A(F) and wp =0 for all f € A(F)*.

Proof. For any w € PA*(T) and F € T™ we observe

wp = trhwV + Z Z trh Ext]; Wy
k<m<n feTm™

= Z vol(F)~* (/tr’}w) extfe’FvolF%— Z ext’}’Fchf.
f

JEA(F)k fEA(F)

If k = m, then wp = trk W 4+ Wp, and the claims follows by this being a direct sum.
If & < m, let us assume that the claim holds for all f € 7 with £ < dim f < m.
Then wrp = wp, which again proves the claim. The lemma now follows from an
induction argument. O]

Lemma IV.3.6.
For w € PA*(T) we have w € PA*(T,U) if and only if wr = 0 for all F' € U and
wy =0 for all F € U*.

Proof. This is a simple consequence of Lemma 1V.3.5. O]

Lemma IV.3.7.
For w € PA*(T) we have w = 0 if and only if &r = 0 for all F € T and w@’ = 0 for
all FeTr.

Proof. This follows from Lemma IV.3.6 applied to the case U = T. ]

Theorem IV.3.8.
We have

PANT.U) =WAKT U) & @ Exth PANF).

FeT\U

85



IV. Finite Element de Rham Complexes

Proof. The claim is implied by Theorem IV.3.4 and Lemma IV.3.7. [
A modification of the geometric decomposition will be helpful in the sequel.

Lemma IV.3.9. )
Let w € PA*(T). Then there exist unique wr € PA*(F) for F' € T such that

w=Iw+ Y > Exthop. (IV.36)
m=k FeTm™

Proof. Let w € PAF(T). The trace of I}yw — w over any simplex F' € T* has
vanishing integral. The claim follows from applying Theorem IV.3.4 to I}, —w. O

IV.4. Commuting Interpolants

We finish this chapter with the finite element interpolant and study some of its
properties. The basic ideas have already been used in prior literature [56, 69|, but
we apply some modifications and extensions. Our construction explicitly calculates
the geometric decomposition of the interpolating differential form. First we define

Ty C¥ANT) = PAMT), w— Y vol(F)™ ( / o.;) Exthvolp.  (IV.37)
F

FeTk
Subsequently for m € {k,...,n} we make the recursive definition
JE L C®ANN(T) — PART), we Z Exth, JEw, (IV.38)
FeTm

where for each F € T™ we define
JE C®ANF(T) — PAR(F) (IV.39)

by requiring JEw for w € C°A*(T) to be the unique solution of

m—1
Ry R CA R SE R R R S
F F k=l g

(IV.40a)
/F<ko;”w, d*g), = /F <dk trh, <w — JEw— mzl J{%) ,d’“ﬁ> . BePA(F).
- ’ (IV.40b)
From Lemma IV.2.4 we find that JFw is well-defined. We then set
I CN(T) = PAM(T), we Jw+ Jfw+ -+ Jhw. (TV.41)

We show that the operator I% acts as the identity on PA*(T), and its constituents
J¥ reproduce the geometric decomposition.
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Lemma IV .4.1.
For each w € PA*(T) we have 5w = w. Moreover, Jhw = w" and Jiw = p for
each F € T.

Proof. Let w € PA*(T). We have J&w = w" by definition. For F € T* we find
trh (w —w”) € PAR(F), and Jhw = @ follows easily. Next, let m € {k,...,n—1}
and suppose that JEw = Op for F € T with dim F < m. Let F € 7™, From
definitions we conclude that

=k

m—1
trk, (w — W - le) e PAF(F).

It follows that JEw = Wr and hence J¥w = w™. An induction argument completes
the proof. O

Lemma 1V .4.2.
Let w € PAX(T). If

/ trhw=0, FeT" (IV.42a)

F

/ (tryw, dk_1p>g =0, pePA"YF), FeT, (TV.42b)
F

/ (d" trh w, d’“6>g =0, BePAYF) FeT, (IV.42c)
F

then w = 0.

Proof. If w € PA*(T) such that (IV.42), then J&w = 0 and Jfw = 0. Rearranging
the terms in (IV.39), an induction argument yields that J*w = 0 for all m €
{k,...,n}. The claim is now a consequence of Lemma IV.4.1. O

An auxiliary result yields an alternative characterization of I%.
Lemma IV.4.3.
Let w € C®A*(T) and w’ € PA*(T). We have o’ = Ijw if and only if
/Ftr'} W' = /Ftrll‘j;w, FeTh (IV.43a)
/ (trpw,dp) = / (trpw,dp) . pe PAFYF), FeT, (IV.43b)
F F
/ (d" trf o, d"“6>g = / (d* tr’}w,dk5>g, BePAF) FeT. (IV.43c)
F F

Proof. Let w € C°AF(T). We verify that I5w satisfies (IV.43) by rearranging the
terms in (IV.39) and the assumptions on the extension operators. If ' € PA*(T)
is another solution to (IV.43), then we obtain w’ = I%w by applying Lemma IV.4.2
to w — Ikw. O

Lemma IV.4.4.
Let w € C*°A*(T) and F € T. If wp = 0 then tr}, (Ifw) = 0.
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Proof. Unfolding definitions we find

n
trh. (Iéw) = trh Jhw + Z Z trh Ext;‘; J]]fw
m=k feTm™

— Z vol(F) ™! (/tr’}w) ext’;Fvolp%— Z ext]}’,F J}“w.
f

fea(r)* feA(F)

If dim F' = k, then the claim follows from the direct decomposition (II1.27) / (II1.28).
If dim F' > k, suppose that the claim has been proven for f € A(F). Since wrp =0
we have wy = 0 for f € A(F). Hence trfy (Ifw) = JFw, from which tr}, (Ifjw) = 0
follows. An induction argument completes the proof. O

Lemma IV.4.5.
If w e C®A*(T,U), then I5w € PA*(T,U).

Proof. This is an immediate consequence of Lemma IV.4.4 above. O]

It remains to show that the interpolant commutes with the exterior derivative,
so we have a commuting diagram

dk+1

dkfl dk
. —— C®A¥(T,U) —— C®A*Y T U) ——

k k+1
1% l bfaa l

PANT,U) —2 PAMY(T 1)

dk+1

This the subject of the following lemma.

Lemma IV.4.6.
We have d*Ifw = I5d w for w € C°AR(T).

Proof. Let w € C°A*(T,U). For F € T* we observe

/ trh dF Ihw = / trht dF gk w = / d* el I w
F F

F

= / trh Jhw = / trh w
Ok 11 F O F

= / d* trh. w
F

= / trh dFw = / tritt i dRw = / it It dFw.
F F F
Let F € T™ with k < m < n. For p € PA*(F) we find

/<I7I§+1dkw,dkp>g:/<dkw,dkp>g
F F
_ /F (¢ i dp), = /F (¢ dp).
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4. Commuting Interpolants
For 8 € PA*(F) we find

/}; <dk+1]7'§+1dkw, dk+16>g — /F <dk+1dkw, dk+1ﬁ>g
— /F (d*d" pw,d"18) = 0.

In conjunction with Lemma IV.4.3, the desired result follows. O]

Remark IV.4.7.

The definition of the interpolant and Lemma IV.4.3, implicitly use degrees of free-
dom associated with simplices of the triangulation. These functionals, however, em-
ploy an arbitrary Riemannian metric. When we restrict to finite element de Rham
complexes of spaces of uniform polynomial order, then the degrees of freedom have
canonical representations not involving a Riemannian metric (see Section 5 of [9]).

Remark IV.4.8.

In the sequel, we want to apply the commuting interpolant to differential forms that
have well-defined traces on all subsimplices but do not necessarily have a classical
(non-distributional) exterior derivative. Although some of the degrees of freedom
in the definition of the commuting interpolant involve the exterior derivative of the
differential form to be interpolated, this is of no further concern for our intended
application. For w € C®°A*(T,U), a simplex F' € T of dimension m, and 8 €
PA¥(F) we observe

/<dktr’}w,dkﬁ>g:/dktr]}w/\*gdkﬁ
F F

= (—=1)k+! / trhw Ad™ %, dF B+ Z o(f, F) /tr’}w A tr;’%;k’l *,d" 3.
F feA(F)'m—l f

Hence the presence of the exterior derivative may be traded in for taking traces on
lower-dimensional simplices.
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V. Differential Forms over Domains

The purpose of this chapter is to review fundamental results on the calculus of differ-
ential forms on domains. We pay particular attention to the differential forms with
coefficients in LP spaces and coordinate transformations with Lipschitz regularity.
Finally, we discuss homogeneous boundary conditions in a setting of low regularity.

Our motivation for studying differential forms and coordinate transformations
of low regularity lies in the construction of the smoothed projection later in this
thesis. A component there are bi-Lipschitz coordinate transformations, which leave
only the L? classes of differential forms invariant. The pullback of a Lipschitz 0-form
along a bi-Lipschitz mapping is again a Lipschitz O-form, but this does not generalize
to arbitrary k-forms. The reason is that the pullback of a form of positive degree
involves coefficients of the Jacobian, which generally have no stronger regularity than
being essentially bounded. Hence the pullback along mappings of low regularity is
needed for this thesis.

In this context, the class of flat differential forms (see Example V.3.4) may
be seen as the “smoothest” class of differential forms invariant under bi-Lipschitz
mappings. Another important class of differential forms are the L? differential forms
whose exterior derivative has L? coefficients. These constitute the L? de Rham
complex, which we will pay further attention to in subsequent chapters. We generally
address differential forms with LP coefficients, including but not restricted to the
important special cases p € {1,2, 00}, in order to make these results available in the
literature.

V.1. Elements of Lipschitz Analysis

We begin this chapter by establishing basic notions of Lipschitz analysis. The
reader is referred to Luukkainen and Véisild [134] for a general reference on Lipschitz
analysis, but for specific results we also draw on Federer’s monograph on geometric
measure theory [88]. For the duration of this chapter, let n € N.

Let U CR"and V C R™ and let ® : U — V be a mapping. For a subset A C U,
we let the Lipschitz constant Lip(®, A) € [0, oo] of ® over A be the minimum among
those L € [0, c0] that satisfy

Vo,y € A:||@(z) — ®(y)|| < Lilx —yl|

We say that ® is Lipschitz if Lip(®,U) < co. We may write Lip(®) := Lip(®,U)
if U is understood. More generally, we say that f is locally Lipschitz or LIP if
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V. Differential Forms over Domains

for each = € U there exists a relatively open neighborhood A C U of z such that
P41 A — Y is Lipschitz.

If ® is invertible, then we call ® bi-Lipschitz if both ® and ®~! are Lipschitz,
and we call ® a lipeomorphism if both ® and ®~! are locally Lipschitz. If ® : U — V
is locally Lipschitz and injective such that ® : U — ®(U) is a lipeomorphism, then
we call ® a LIP embedding.

We recall some basic but useful facts. The composition of Lipschitz mappings is
again Lipschitz, and the composition of locally Lipschitz mappings is again locally
Lipschitz. If Lip(®,U) < oo, then the continuous extension of ® to U is Lipschitz
with the same Lipschitz constant Lip(®, U). For another observation we give a short
proof.

Lemma V.1.1 (see |94, Lemma 2.3]).
Let U C R™ be compact and let ® : U — R be locally Lipschitz. Then & is Lipschitz.

Proof. Using that ® is locally Lipschitz and that U is compact, we infer the existence
of a finite covering Uy, ..., Uy of U by relatively open subsets of U such that there
exists L € [0,00) with Lip(®,U;) < L for each 1 < i < N. By Lebesgue’s number
lemma, there exists v > 0 such that for each x € U there exists 1 < ¢ < N with
B,(z)NU C U;. Now let z,y € U. If ||z — y|| <, then [®(z) — ®(y)| < L|jz — y],
since x,y € U; for some 1 < ¢ < N. If instead ||z — y|| > 7, then we see

(I)max(U) _ (I)min(U)
g

using that ® assumes a minimum and a maximum over U. The proof is complete. []

|[@(2) — @(y)| < lz = yll,

We consider a special case of specific interest. Let U,V C R" be open sets
and let be ® : U — V be bi-Lipschitz. It follows from Rademacher’s theorem [88,
Theorem 3.1.6] that the Jacobians

D:U —R™, Do 1:V - R™"

exist almost everywhere and are essentially bounded. One can show that

ID®|@) <Lip@,U), DOy <Lip@L V). (V1)
According to [88, Lemma 3.2.8|, the identities
D @;(130) D@, =1Idy, D®g-1(,-D Q);l = Idy (V.2)

hold for almost all x € U and y € V, respectively. In particular, the Jacobians have
full rank almost everywhere. Moreover, by [88, Corollary 4.1.26] the signs of the
Jacobians are essentially locally constant. In particular, if U and V are connected,
then there exists o(®) € {—1, 1} such that

o(®) = sgndet D O, (V.3)

almost everywhere over U. One can show (see |88, Theorem 3.2.3|) that

/ u(®(z))|det D P, | do = / u(y) dy (V.4)
U

1%
for every measurable v : V' — R if at least one of the integrals exists.
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V.2. Differential Forms

The monographs by Lang [126], Lee [127]|, and by Agricola and Friedrich [92]
introduce the calculus of differential forms with smooth coefficients. Differential
forms with coefficients in L” spaces have been subject of research for a long time
(see, e.g., [100, 101, 112, 166]).

Let U C R" be an open set. We let M(U) denote the space of measurable
functions over U. For k € Z we let MAF(U) be the vector space of measurable
differential k-forms over U. Note that M(U) = MA°(U). A specific subspace is the
Banach space CA*(U) of bounded continuous differential k-forms over U, equipped
with the maximum norm. We let C*°A¥(U) be the space of smooth differential forms
over U, and we let C*°A¥(U) denote the space of those smooth differential forms
over U that are restrictions of members of C®A*(R™). Lastly, we let C°A*(U) be
the space of smooth differential forms with compact support in U.

For u € MA¥(U) and v € MAY(U) we let u Av € MA*(U) denote the exterior
product of u and v, which satisfies u A v = (—=1)*v A u.

We let eq, ..., e, be the canonical orthonormal basis of R"™. The constant 1-forms
dr',...,d2" € MAY(U) are uniquely defined by dz’(e;) = &;j, where §;; € {0,1}
denotes the Kronecker delta. More generally, the basic k-alternators are the exterior
products

dz? = dz"W A Ade®® e MAMU), oeX(1:k,1:n),
and dz” := 1 in the case k = 0. The volume form over U is
volf, :=dz' A -+ Ada”.
Every u € MA*(U) can be written uniquely as
u = Z u,dz?, (V.5)
oEN(1:k,1:m)

where u, = u(€sq1), - - -, o)) € M(U). In particular, every n-form v € MA™(U) can
be written as u = uyo vol; for some unique wuy, € M(U). Using this observation,
we define the integral of an n-form u € MA™(U) over U as

/Uu::/quol dx (V.6)

whenever u,, € M(U) is integrable over U. Note that this definition presumes that
R"™ carries the canonical orientation.

The pointwise ¢? product pairs up two measurable differential k-forms to get a
measurable function,

(u,v) == Z Ugvy € M(U), u,v € MA*U). (V.7)

oeX(1:k,1:n)

Accordingly, we define the pointwise 2 norm |u| € M (U) as

lu| == \/{u,u), ue MA*U). (V.8)
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One can show that there exists a mapping
*: MAR(U) — MA™™U)
called the Hodge star operator, which is uniquely defined by the identity
uA*v = {u,v)volts, u,ve& MAFU). (V.9)
One can show that
*ku = (=1)*Ry w e MA¥U).

Furthermore, |u| = | *u| for all u € MA*(U).

We let LP(U) denote the Lebesgue space with exponent p € [1,00], and let
LPA¥(U) denote the Banach space of differential k-forms with coefficients (as in
(V.5)) in LP(U). A compatible norm on LPA*(U) is given by

Il oasor = || /T

In the special case p = 2, this a Hilbert space with scalar product

(s V) p2pn oy :z/(u,u}dx, u,v € L*A*(U).
U

. u € LPAR(U).
Lr(U)

Remark V.2.1.

Our definition of pointwise £ product (V.7) and the Hodge star (V.2) assume the
choice of a canonical Riemannian metric over U. More generally, these structures
can be defined for any choice of Riemannian metric over U. We do not explore this
idea further in this chapter.

We conclude this section with the study of pullbacks of differential forms along
bi-Lipschitz mappings. For the remainder of this section, we let U,V C R™ be open
sets, and let ® : U — V' be a bi-Lipschitz mapping.

The pullback ®*u € MA*(U) of u € MA*(V) under @ is defined as

O uy (v, .. ) == Ua@) (D Py -1y, ..., DPy-1y), vy, €RY, el
By the discussion at the beginning of Section 2 of [100], the algebraic identity
" (uAv) = D'u N Pv
holds for u € MA*(V) and v € MAY V). In particular, one can show that
(®*volj,) = det (D ®) - vol;, x= € U. (V.10)

Next we show how the integral of n-forms transforms under pullback by bi-Lipschitz
mappings.

Lemma V.2.2.
If ®:U — V is a bi-Lipschitz mapping between connected open subsets of R”, then

/ O* (uvoly,) = O(CID)/ uvoly,, wue M(V), (V.11)
U 1%

if any of the integrals exists.
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Proof. Using (V.3), (V.4), and (V.10), we find

/ Q" (uvoly,) =
U

(uo @) -det (D P)vol},

(uo @) -det(D®)dx

S~

uo®-sgndetD® - |detD | dx
:0(<I>)/uo<I)-]detD@]dxzo(@)/udmzo(@)/uvol’{/.
U v 1%

This shows the desired identity. O]

It can be shown that the pullback under bi-Lipschitz mappings preserves the L”
classes of differential forms over U (see Theorem 2.2. of [100]). For the purpose of
this thesis, we prove that the pullback is an isomorphism of Banach spaces and we
determine the operator norm of that isomorphism. Here and in the sequel, n/oc = 0
for n € N.

Lemma V.2.3.
Let ® : U — V be a bi-Lipschitz mapping between open sets U,V C R"™. For every
p € [1,00] and u € LPA*(V') we have

1
H(I)*UHLPM(U) < HD(I)HEOO(U) HdetD@*lll}ioo(v) ||“||LpAk(V) (V.12)

<D @l g D 27| Fo el sy

Proof. Let ® : U — V and p € [1,00] be as in the statement of the theorem, and
let u € LPA*(U). For almost every x € U we observe

®ul, <D Bullyy [ Do (oioe)” = 1D Bl [0

c€eX(1:k,1:n)
From this we easily get
Hq)*uHLPAk(U) < H D (I)HIZ‘X’(U)’“/U’ © q)HLPAk(U)

The desired statement follows trivially if p = oo, and (V.4) gives

/U]u\fq)(m) dr < ||detDc1>1HLOO(V)/Uyu\f@(x)|deth>x|dx

< [[det D&, /@(U) luf? dz

if p € [1,00). This shows the first estimate of (V.12). The second estimate in (V.12)
follows by Hadamard’s inequality, which estimates the determinant of a matrix by
the product of the norms of its columns. O
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V.3. The Exterior Derivative

We now address the exterior derivative in a setting of low regularity. To begin
with, we define the exterior derivative in a weak sense over differential forms with
locally integrable coefficients. We then turn our attention to the WP»¢ spaces of dif-
ferential forms (see |97, 98, 121]). Eventually we consider a notion of homogeneous
boundary condition.

The exterior derivative d* : C*A*(U) — C®A*1(U) over smooth differential
k-forms is defined by

dfu = Z Z(@iug)dxi Adx?,  u e CPAFU). (V.13)

o€ (1:k,1im) i=1
One can show that d* is a linear mapping satisfying the differential property
d*ttdfy =0, w e C°A*U),
and that it relates to the exterior product by
d*unv) =dunv+ (=) undv, weC®AU), veCOAU). (V.14)

Moreover, d¥u € C®°A*1(U) when u € C®A*(U).

We are interested in defining the exterior derivative in a weak sense over dif-
ferential forms of low regularity. If u € MA*(U) and w € MA*(U) are locally
integrable such that

/ wAv= (—1)'““/ uNd" "y, v e CRATTRHU), (V.15)
U U

then w is the only member of MA*(U) satisfying (V.15), up to equivalence almost
everywhere, and we call d*u := w the weak exterior derivative of u. Note that w is

unique up to equivalence almost everywhere in U, and that d*u has vanishing weak
exterior derivative, since

/ du Ad" Ty = (—1)* / uNd"FE Yy =0, v e CRARHU). (V.16)
U U
The weak exterior derivative of u € C®AF(U) agrees with the (strong) exterior
derivative almost everywhere, and hence we call weak exterior derivatives simply
exterior derivatives in the sequel. The product formula (V.14) generalizes in the
obvious manner to the weak exterior derivative, provided all required weak exterior
derivatives exist.

The Hodge star enters the definition of the codifferential, which is a differential
operator given (in the strong sense) by

oF  CCAR(U) = CAL(U), uws (1O gk oy, (V.17)

A weak codifferential can be defined analogously to the weak exterior derivative.

96



3. The Exterior Derivative

Next we introduce a notion of Sobolev differential forms. For p,q € [1, 00|, we let
WPIAR(U) be the space of those differential k-forms in LPA*(U) that have a weak
exterior derivative in LIA*T1(U). The space WP9A*(U) is a Banach space with the
norm

||U||vaqu(U) = ||UHLPA’€(U) + HdkuHLq/\kJrl(U) . (V.18)

It is obvious that WP9A¥(U) is a Banach space. Since the exterior derivative of an
exterior derivative is zero, even in the weak sense, we observe

d*WPINR(U) C WETAMH(U),  p,g,r € [1,00].
Hence one may study de Rham complexes of the form

.8, WPIAR(U) N Waer AR LI (V.19)

Remark V.3.1.

The choice of the Lebesgue exponents determines analytical and algebraic properties
of the de Rham complexes of the form (V.19). This is not subject of research in this
thesis, but we refer to [102] for corresponding results over smooth manifolds without
boundary. De Rham complexes of the above form with a Lebesgue exponent p fixed,

N WP Ak(U) _d WP ARHL()) . (V.20)
are known as LP de Rham complexes (see [139]).

Example V.3.2.

The space WIA*(U) contains all integrable differential k-forms over U with inte-
grable weak exterior derivative. If U is bounded, then W11A¥(U) contains all the
other spaces WPAk(U) as embedded subspaces.

Example V.3.3.

The space HA*(U) := W2*2A*(U), consisting of those L? differential k-forms that
have a weak exterior derivative with L? integrable coefficients, is a Hilbert space
with the scalar product

(U, V) gak )y = (U, V) L2k () + <dku,de>L2Ak+1(U), u,v € HA*(U).

We write ||-|| gax ) for the corresponding norm. Note that |||y 2245y and ||| grar(o
are equivalent but not identical norms on HA*(U). These spaces constitute the L?
de Rham complex

dk+1

de ! k d* k+1
- —— HAY(U) —— HAYU) —
which has received considerable attention in global and numerical analysis.

Example V.3.4.

The space W>®A*(U) of flat differential forms is spanned by those differential
forms with essentially bounded coefficients that have a weak exterior derivative with
essentially bounded coefficients. These spaces constitute the flat de Rham complex

. dr! y Woo,ooAk(U) d* Woo,ooAk+1(U) dkt1
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V. Differential Forms over Domains

Flat differential forms have been studied extensively in geometric integration theory
[88, 180]; see in particular Theorem 1.5 of [100]. Furthermore, if U is bounded, then
W AR(U) is a subspace of WPIAF(U) for all p,q € [1,00].

Differential forms with smooth coefficients are dense in WPIA¥(U) for p,q €
[1,00). This has been proven in [100, Lemma 1.3] using de Rham regularizers. We
give a different proof, which uses standard techniques in functional analysis (see
[86]). In Chapter VII, a generalization of this result will accommodate boundary
conditions.

Lemma V.3.5.
Let U C R™ be open and let p,q € [1,00). Then C®A*(U) N WPIA*(U) is dense in
WPIAKR(U).

Proof. Letu € WPIA*(U) and write w := d*u. Then (u,w) € LPA*(U)x LIN*L(U).
We let @ € LPAF(R") and w € LIA*(R") denote the extension by zero of u and
w, respectively, onto R™. For ¢ > 0 we let @, := pe * @ and w, := p. » w denote
the respective convolutions with the scaled mollifier. The differential forms %, and
W, have smooth coeflicients (see [27, Corollary 3.9.5]). The scaled mollifiers y. have
unit integral, and via Young’s inequality (see [27, Theorem 3.9.4]) we thus find

||a6||LPAk(U) < ||UHLPA’€(U)a ”@DeHLquH(U) < HwHLQAkH(U)-

Furthermore, we recall that @y converges to u in LPA*(U) and that Wy converges
to w in LIAN*L(U), as follows from well known results on the convolution with the
standard mollifier (see |27, Theorem 4.2.4]). Let us assume that u has compact
support in U. Then u, and w, have compact support in U for € small enough. We
then get d*u, = ..

To treat the case of general u, we fix a countable locally finite covering (U;), oy of
U by bounded open subsets and a countable smooth partition of unity (x;)ien over
U such that supp x; is compactly contained in U; for each ¢ € N.

Now y;u has compact support in U; for each ¢ € N, and hence it can be approx-
imated by a smooth differential k-form compactly supported in U;. Consequently,
for every € > 0 we can fix u; € C*°A*(U;) for every i € N such that

€ .
Ixite = il oy + 1 Grin) = 0| s ) < 5 1EN, >0

Let us write u, = Y,y u; and w, = >, d¥u;. Since the covering (U;),oy is locally
finite, we conclude that u, € C*A*(U) and w, € C®°A*(U). Additionally, the
triangle inequality gives

[ = wil [ oar @y + lw = Wil Lanrrr ) < Z 5 ¢

i=1
This completes the proof. n

We now study the behavior of the weak exterior derivative under bi-Lipschitz
coordinate changes. Suppose that U,V C R™ are open sets, and let & : U — V
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3. The Exterior Derivative

be a bi-Lipschitz mapping. If follows from Theorem 2.2 of [100] that whenever
u € WPIA*(V) with p, q € [1,00], then we also have ®*u € WPIA*(U) and

d*®*y = d*d*u. (V.21)

In particular, the pullback along bi-Lipschitz mappings preserves the WP classes
of differential forms.

In this thesis we are particularly interested in spaces of differential forms that
satisfy homogeneous boundary conditions along a subset I' of the boundary 0U. We
call these partial boundary conditions. We define homogeneous boundary conditions
in the manner of Definition 3.3 of [99], which does not explicitly require assumptions
on the regularity of OU. Thus we avoid the technicalities of generalized boundary
traces.

Assume that I' C OU is a relatively open subset of JU. We define the space
WPIAR(U,T) as the subspace of WP9A*(U) whose members adhere to the following
condition: we have u € WPIAR(U,T) if and only if for all x € T there exists r > 0
such that

/ w A d Ry = (—1)kH / diuAv, v e CFATTR (ET@)) .
UNBy(z) UNBy(z)
(V.22)

The definition implies that WPIA*(U,T) is a closed subspace of WPYA*(U), and
hence a Banach space of its own. We also say that u € WPIA*(U, T") satisfies partial
boundary conditions along I'.

Remark V.3.6.

The identity (V.22) resembles the integration by parts identity in the definition of
the weak exterior derivative. Our definition of homogeneous boundary conditions is
based on the idea that the trivial extension of any u € WPIA¥(U,T') outside of U
should have a weak exterior derivative locally along I'. For example, WP4A*(U, 9U )
is the subspace of WP4A*(U) whose member’s extension to R” by zero gives a mem-
ber of WP4A*(R™). If the domain has a boundary of sufficient regularity, then an
equivalent notion of homogeneous boundary conditions uses generalized trace oper-
ators [139, 177|. This thesis does not address inhomogeneous boundary conditions.

Another property of the WP classes of differential forms with homogeneous
boundary conditions is that they are closed under taking the exterior derivative.
Unfolding definitions we find

d*WPINR(U,T) C WO ARTH U T, p,q,r € [1,00]. (V.23)

In other words, differential forms satisfying homogeneous boundary conditions along
I' have exterior derivatives satisfying homogeneous boundary conditions along I'.
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VI. Weakly Lipschitz Domains

The theoretical and numerical analysis of partial differential equations is affected
by the properties of the geometric ambient. The aim of this chapter is to prepare
this geometric ambient. We discuss the class of weakly Lipschitz domains and the
geometry of boundary partitions.

A domain is weakly Lipschitz if its boundary can be flattened locally by a bi-
Lipschitz coordinate transformation. The class of weakly Lipschitz domains can
thus be regarded as a Lipschitz analogue to the class of smoothly bounded domains,
whose boundaries can be flattened locally by a diffeomorphism. The terminology
suggests that weakly Lipschitz domains are compared to the more common notion of
Lipschitz domains, which are then also called strongly Lipschitz domains. A domain
is (strongly) Lipschitz if its boundary is locally the graph of a Lipschitz function in
an orthogonal coordinate system.

The notion of Lipschitz domain is standard in numerical analysis, but it is easy
to see why weakly Lipschitz domains are worth being studied in the context of finite
element methods. Every strongly Lipschitz domain is a weakly Lipschitz domain,
but the converse is not true, and counterexamples include polyhedral domains in
R3. For instance, the “crossed bricks domain” is not Lipschitz but weakly Lipschitz.
We will prove that every polyhedral domain in R? is weakly Lipschitz.

Even though the class of weakly Lipschitz domains is larger than the class of
strongly Lipschitz domains, research has established that many analytical results
known for more regular domains still remain true when considered on weakly Lip-
schitz domains [15, 38, 99, 106, 110, 151|. For example, one can show that the
differential complex

HY(Q) 2% H(cwl, Q) — H(div,Q) —2 12(Q) (VL.1)

over a bounded three-dimensional weakly Lipschitz domain 2 satisfies Poincaré-
Friedrichs inequalities and realizes the Betti numbers of the domain on cohomology.
Furthermore, a vector field version of a Rellich-type compact embedding theorem
is valid, and the scalar and vector Laplacians over ) have a discrete spectrum.
Recasting this in the calculus of differential forms, one establishes the analogous
properties for the L? de Rham complex

HAYQ) — BAYQ) 4 . N gAn(Q) (VI.2)

over a bounded weakly Lipschitz domain 2 C R".
Another concept of numerical analysis over strongly Lipschitz domains are collar
neighborhoods. A collar neighborhood of a domain €2 is a neighborhood of its
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boundary 02 that is homeomorphic to the topological space 02 x (—1, 1) such that
002 x (—1,0) corresponds to the collar neighborhood’s part inside the domain and
082 x (0,1) corresponds to the collar neighborhood’s part outside the domain. For
a strongly Lipschitz domain, such a collar neighborhood can be constructed using
a transversal vector field along the 02, and the corresponding homeomorphism
can be chosen as bi-Lipschitz (see [56, 105, 160| for details). But this approach
does not transfer to the case of weakly Lipschitz domains, the reason being that
such a transversal vector field does not necessarily exist. Instead, we rely on the
notion of Lipschitz collar from Lipschitz topology. We prove that the boundary
of weakly Lipschitz domains allows for a bi-Lipschitz collar neighborhood. This
collar neighborhood will be used later in the construction of an extension operator
in Chapter VII.

Moreover, for the purpose of addressing partial differential equations with mixed
boundary conditions later in this thesis, we discuss the geometric prerequisites of
admissible boundary partitions and admissible boundary patches for weakly Lip-
schitz domains (based on [99]).

This chapter is structured in the following manner. In Section VI.1 we introduce
weakly and strongly Lipschitz domains, and Lipschitz collars. In Section VI.2 we
discuss admissible boundary partitions, and in Section V1.3 we prove that polyhedral
domains in R? are weakly Lipschitz.

VI.1. Classes of Domains

We commence this chapter with the classical notion of Lipschitz domain, which
we also call strongly Lipschitz domain in this thesis. An open set QQ C R"™ is a strongly
Lipschitz domain if for each z € 0€) there exists a closed neighborhood U, C R" of
x, positive numbers € > 0 and h > 0, an isometry ¢ : U, — [—¢,€]""! x [—h, h] with
((z) = 0, and a Lipschitz-continuous function = : [—¢, ]"~! — (—h, h) such that

CONU) ={ W yn) |V €[—€,€]"", yn € [=h, A, y) b, (VI3a)
COUNU) ={ ' um) |V €= " yn € [-h. D], yn=7(/) },  (VL3b)
CONU)={ (W yn) |V €[—€,e]"", yn € [=h, A, y) b (VL3c)

More generally, we call 0 a weakly Lipschitz domain if for all x € OS2 there exist a
closed neighborhood U, of z in R™ and a bi-Lipschitz mapping ¢, : U, — [—1,1]"
such that ¢,(z) = 0 and such that

0. (QNU,) = [-1,1]""! x [-1,0), (VI.4a)
0 (0N U,) = [-1,1]" x {0}, (VL.4b)
0 NU,) =[—1,1]"" x (0,1]. (VL4c)

In other words, a strongly Lipschitz domain is an open subset ) of R” whose bound-
ary 02 can be written locally as the graph of a Lipschitz function in some orthogonal
coordinate system. A weakly Lipschitz domain is a domain whose boundary can be
flattened locally by a bi-Lipschitz coordinate transformation. As the name already
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1. Classes of Domains

suggests, every strongly Lipschitz domain is also a weakly Lipschitz domain. The
converse is generally false.

Lemma VI.1.1.
Let €2 C R"™ be a strongly Lipschitz domain. Then €2 is a weakly Lipschitz domain.

Proof. Let x € 0). There exist U,, €, h, ¢, and v as in the definition of strongly
Lipschitz domains. For y € (—h,h) we let g, : [—h,h] — [—h, h] be the unique
piecewise affine mapping with

s(—h)=—h, ¢,(0)=y, ¢, (h)=nh.

We then have a bi-Lipschitz mapping ¢, : [—€,€]" ! x [=h,h] — [—1,1]" defined
by oy (Y, yn) = (V' /€ Sy (yn)/h). Hence ¢, := ¢,(, is a bi-Lipschitz mapping
from U, to [—1,1]" that satisfies the conditions (VI.4) in the definition of weakly
Lipschitz domain. The proof is complete. O

Example VI.1.2.
The converse statement to Lemma VI.1.1 is generally false, and a counterexample
is easily found. The crossed bricks domain Qcp (see Figure VI.1) is given by

Qep = (—1,1) x (0,1) x (0,—-1)U(0,1) x (0,—1) x (—=1,1) VL5

U (0,1) x {0} x (0,—1). (VL)
The domain (2¢p is not a Lipschitz domain because at the origin it is not possible
to write 0€)cp as the graph of a Lipschitz function in any orthogonal coordinate
system. If such a coordinate system existed, then the epigraph of the function
describing the boundary would contain line segments in two opposite directions,
which is not possible.

But Q¢p is a weakly Lipschitz domain. This follows from Theorem VI.3.2 later
in this chapter, but it is easy to verify in the particular example of Qcp. We first
observe that near every non-zero = € 0§2cp we can write 0€)¢p as a Lipschitz graph,
from which we can easily construct a suitable Lipschitz coordinate chart around x as
we have done in the proof of Lemma VI.1.1. But this approach does not work at the
origin. As a possible remedy, we deform )cp into a strongly Lipschitz domain by a
bi-Lipschitz mapping. Now it is easy to construct the desired bi-Lipschitz coordinate
chart around the origin in which 0Q¢p is flattened.

A variant of the crossed bricks domain is displayed in the monograph of Monk
[145, Figure 3.1, p.39], and another variant is discussed in [38|. For a generalization
of this example, we refer to Example 2.2 in [12].

Remark VI.1.3.

A motivation for considering the class of weakly Lipschitz domains in finite element
theory is the following observation: every bounded domain Q@ C R® with a finite
triangulation is a weakly Lipschitz domain. We prove that statement at the end of
this chapter, using the results of Chapter II.

Remark VI.1.4.
A different access towards the idea originates from differential topology: a weakly
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Figure VI.1: Left: polyhedral domain in 3D that is not the graph of a Lipschitz
function at the marked point. Right: bi-Lipschitz transformation of that domain
into a strongly Lipschitz domain.

Lipschitz domain is an n-dimensional locally flat Lipschitz submanifold of R™ in the
sense of [134]. This idea has inspired the notion of weakly Lipschitz domains inside
abstract Lipschitz manifolds [99).

At this point we gather several observations about weakly Lipschitz domains.

Lemma VI.1.5. -
Let © C R”™ be open. Then € is a weakly Lipschitz domain if and only if Q° is a
weakly Lipschitz domain.

Proof. This can easily be seen from the definition of weakly Lipschitz domains. [

Lemma VI.1.6.

Let Q2 C R™ be a bounded weakly Lipschitz domain. Then there exists a finite
family of closed sets Uy, ..., U, C § that cover , and a finite family ¢, ..., ¢, of
bi-Lipschitz mappings ¢; : U; — [—1,1]". Moreover, we can assume that the relative
interiors of the U; in § constitute a finite covering of €.

Proof. The claim follows easily from definitions and compactness of Q. O

Lemma VI.1.7.

Let 2 C R™ be a weakly Lipschitz domain. Then for each x € 9f) there exists a
closed set V, C 9 and a bi-Lipschitz mapping 0, : V, — [—1,1]""! with 6,(x) =0
such that the relative interiors of V,, in 02 constitute a covering of 0f2.

Proof. From definitions we find that for each x € 0 there exists a closed set
U, C Q and a bi-Lipschitz mapping ¢, : U, — [~1,1]" such that o,(2) = 0 and
(VL4) holds. Then (U, N 082), 4, is the desired covering of 02 by closed sets whose
relative interiors are again a covering. Furthermore, each ¢, ,naq is a bi-Lipschitz
mapping from U, N 9N onto [—1,1]""1. O

The above lemmas have been simple observations, but they prepare a much
stronger result, namely the discussion of Lipschitz collars along the boundaries of
weakly Lipschitz domains. A Lipschitz collar of a domain €2 is a LIP embedding

U000 x[-1,1] - R"

104
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such that ¥(z,0) = z for all z € 99, and such that ¥ maps 092 x [—1,0) into
and 09 x (0,1] into Q°. We show that every weakly Lipschitz domain allows for a
Lipschitz collar.

Theorem VI.1.8.
Let € C R"™ be a bounded weakly Lipschitz domain. Then there exists a LIP
embedding ¥ : 02 x [—1,1] — R" such that ¥(z,0) = x for x € 09, and

T (00 x [-1,0) CQ, ¥ (02 x(0,1]) C Q. (VL.6)

Moreover, we may assume that for every ¢ € (0,1) the sets Q2 \ ¥ (9, [~¢,0)) and
QU W (092, (0,t)) are weakly Lipschitz domains.

Proof. We first prove a one-sided version of the result. By Lemma VI.1.7 and the
compactness of 9 we obtain the existence of a collection {V;};cn of relatively open
subsets of 0} that constitute a covering of 92, and a collection {¥;};en of LIP
embeddings ; : V; x [0,1) — Q such that for each i € N we have 1;(z,0) = =
for each z € 9. Tt follows that {(V;,1;)}ien is a local LIP collar in the sense of
Definition 7.2 in [134]. By Theorem 7.4 in [134], and a successive reparametrization,
there exists a LIP embedding U~ (z,t) : 992 x [0,1] — Q such that ¥~ (x,0) = = for
all z € Q.

We recall Lemma VI.1.5 to see that Q is a weakly Lipschitz domain. By the
same arguments, there exists a LIP embedding ¥ (z,t) : 92 x [0, 1] — Q° such that
Ut(x,0) =z for all x € 9Q. We combine these two LIP embeddings. Let

U (x,—t) if (x,t) € 002 x [—1,0),
U:00x[-1,1] = R, (z,t)— x if (z,t) € 09 x {0},
UH(x,t) if (z,t) € 09 x (0,1].

Then ¥ is well-defined, bijective, and (VI.6) holds. Moreover, there exists C' > 1
such that for all zy, 2, € 99, for all t;,t; € [—1,0], and for all ¢],t € [0,1] we
have
1 _ _ _
C (H$1 — o + }t2 —t ‘) < H‘I;(Ilﬂtl ) — W(xg, 1y )H
<C (o — w2 + |t — t1]),

(VL7)

1
8] (ly = ol + |3 —]) < || W (21, ) — U(aa, 15|

< C (|l — 2| + |t§r - t1+|)

(VI.8)

It remains to prove that W is a LIP embedding, for which it suffices to show that

1
o Uz =22l 4t = ta]) < [W(21, 1) = (22, 1)

< C(llzr — @l + [t2 — )

(VI.9)

for all z1,2o € 00 and ty,ty € [—1,1]. If t; and ¢y are both non-negative or both
non-positive, then (VL.7) or (VL.8) apply. To treat the case t; < 0 < ty, we first
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observe that
[V (@1, 81) — U(22, t2) ||

S (e, t1) — @l + [|on = w2l + [lz2 — U(w2, )]

= Wz, t1) = U(2r, )| + [lzr — zal + W (22, 0) — ¥ (2, £2) ]

< Clta] + Clta| + [lzg — z2|

< Clty —to| + ||x1 — 22|
On the other hand, we fix z € 002 on the straight line segment from W(z,t;) to
U(x9,ty) and find

[, 1) = W, )] = [0 1) = 2 + )2 = Wz, 1)

= W1, 1) = Uz, 0)]| + (=, 0) — W, 1)

1
2 & (] + ltof + lloy = 2l + [z = 22]))

=C ([ty = to| + [[z1 — 22]]) -

Thus (VI.9) follows. Restricting and reparameterizing W completes the proof. [

Remark VI.1.9.

Our Theorem VI.1.8 realizes the following idea from differential topology in a Lip-
schitz setting: if a surface is locally collared, then it is also globally collared. Such
a result is well-known in the topological or smooth sense, but it seems to be only
folklore in the Lipschitz sense. Notably, the result is mentioned in the unpublished
preprint [94]. We have provided a proof for formal completeness.

VI.2. Admissible Boundary Partitions

One major topic of this thesis are mixed boundary conditions. To set up the
geometric background, we discuss classes of boundary partitions in the context of
weakly Lipschitz domains. Our main source is a publication by Gol’dshtein, Mitrea,
and Mitrea [99].

Let Q C R"™ be a weakly Lipschitz domain. An open set I'y C 0 is called an
admissible boundary patch if I'r is a topological submanifold of 02 of dimension
n — 1 with boundary such that the following additional condition is satisfied: for
each x € OI'r there exists a closed neighborhood V, of x in 0 and a bi-Lipschitz
mapping 0, : V, — [—1,1]""! such that

0.(x) =0, (VI.10a)

0,0y NV,) =[-1,1]""% x [-1,0), (VI.10b)
0,00+ NV,) = [—1,1]"2 x {0}, (VI.10c)
0.((0Q\Tr)NV,) = [-1,1]""2 x (0,1]. (VI.10d)

If T's is an admissible boundary patch, then I'y := 9\ T'r is also an admissible
boundary patch, called complementary to I'r. We can rewrite (VI.10d) as

0,(Tn NVa) = [—=1,1]"72 x (0, 1].
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2. Admissible Boundary Partitions

The admissible boundary patch I'r and its complementary boundary patch are topo-
logical manifolds with the same boundary I'; within 0€2. Note that ['; is a topological
submanifold of 02 of dimension n —2 without boundary. We have I'j = 0I'y = 0I'y.
We call (I'r,I';,T'y) an admissible boundary partition.

'—"'---.

I
®

Figure VI.2: Schematic depiction of a domain 2 (shaded area), an admissible bound-
ary patch I'r (thick line), its complementary boundary patch I'y (dashed line), and
the interface I'; (dots) between the patches.

We provide an equivalent characterization of admissible boundary partitions.
Assume that 'y, I';, and 'y are subsets of 02, such that the following condition
is satisfied: for any z € I';, we can pick a closed neighborhood U, C R" of z
and a bi-Lipschitz function ¢, : U, — [—1,1]™ such that (VI.4) is satisfied and we
additionally have

0Ty NU,) = [-1,1]"72 x [-1,0) x {0}, (VI.11a)
0. (TrNU,) = [-1,1]""% x {0} x {0}, (VL.11b)
0Ty NU,) =[-1,1]"72 x (0,1] x {0}. (VI.11c)

Then I'r and I'y are mutually complementary admissible boundary patches with
common boundary I';, and the tuple (I'y, '/, T'y) is an admissible boundary parti-
tion.

Remark VI.2.1.

A weakly Lipschitz domain is a locally flat n-dimensional Lipschitz submanifold
of R™ with boundary. In particular, 00 is a locally flat Lipschitz submanifold of
dimension n — 1 without boundary. The tuple (I'r,I';,I'y) being an admissible
boundary partition means that 'y and I'y are locally flat Lipschitz submanifolds of
dimension n — 1 of 92 with common boundary I'; := 0I'r = 9I'y. In turn, I'; is a
Lipschitz submanifold of dimension n — 2 without boundary of 9€2. Our definition
is in accordance with Definition 3.7 of [99], when Remark 3.2 in that reference is
taken into account. It also complies to the definition of Lipschitz manifolds in [134].

Weakly Lipschitz domains and admissible boundary partitions provide the ge-
ometric background to discuss the L? de Rham complex over a weakly Lipschitz
domain. Even in our geometric setting of low regularity, this de Rham complex
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satisfies a Poincaré-Friedrichs inequality, a compact embedding result, and the har-
monic spaces are isomorphic to the homology spaces of the domain (see Chapter VIII
for details). Tt will be of interest, however, the discuss domains with additional reg-
ularity as a special case. This leads us back the class of strongly Lipschitz domains,
for which a specialized class of boundary partitions is known.

Assume that 2 is a strongly Lipschitz domain and that (I'r,I';,T'y) is an ad-
missible partition of 0. We call the tuple (Q,I'r,I';,T'y) a creased domain if
the following assumptions are satisfied: for every x € I'; there exists a closed
neighborhood U, C R" of x, positive numbers ¢ > 0 and A > 0, an isometry
¢ : U, = [—€,¢" ! x [=h,h] with ((z) = 0, and a Lipschitz-continuous function
v : [—¢€,€"t — [—h, h] such that the conditions (VI.3) hold and additionally there

exists a Lipschitz-continuous function y : [—¢, €]"2 — R with x(0) = 0 and
/" n—2
Prn ) =4 (g g0y | ¥ ELEd™ o €lmed, } Vi1%a

C(CrnU,) {(yy 1,0) yn1<x(y”) ( )
/! _

C(@Q N Ux) = { (y//aynfho) ve [ 676} ’ yn 1 G } VI 12b

Yn— 1'—’X
/!
_ " y" € [—e €™ yn L €
C(FNﬂUx)—{(y +Yn—1,0) " 1>>< } (VI.12¢)

and furthermore there exists a positive number x > 0 such that

)" (=€ X(Y") + Ona1C (YY)

X (X(W"),€) : On—1C(y", Yn-1)

v(y//a yn—l) € (_67 €

>
V(Y yn-1) € (—€,€ <

)n72

where the derivative is taken almost everywhere.

Remark VI.2.2.

The notion of creased domain was introduced by Brown [41] in studying the well-
posedness of the Poisson problem with mixed boundary conditions in spaces of higher
regularity. It has been applied in context of differential forms for Jakab, Mitrea and
Mitrea [113]. A creased domain is obviously not smoothly bounded.

VI.3. Polyhedral Domains

We close this chapter with a discussion of polyhedral domains and show that (in
R3) they are weakly Lipschitz domains. The content of this section is not central to
the remainder of this thesis but contributes additional motivation and context.

A polyhedral domain is an open set Q C R” such that Q is a n-dimensional
topological manifold with boundary such that €2 is the interior of that manifold,
and such that there exists a simplicial complex T that triangulates €.

Remark VI.3.1.
The above definition rules out several pathological cases. For example, the slit
domain Qg := (—1,1)%\ [0,1) x {0} is not a polyhedral domain in our definition,
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3. Polyhedral Domains

because € is not the interior of Q. On the other hand, our definition of polyhedral
domain captures many other domains of practical interest, such as the crossed bricks
domain ¢ in Example VI.1.2.

Every polyhedral domain in R? is a strongly Lipschitz domain, but this is no
longer true in higher dimensions. Instead, a weaker statement holds: every polyhe-
dral domain in R? is a weakly Lipschitz domain.

Theorem VI.3.2.
Let Q C R3 be a bounded polyhedral domain. Then €2 is a weakly Lipschitz domain.

Proof. To prove the statement, we need to find for each x € 02 a compact neigh-
borhood U, C R? of x and a bi-Lipschitz mapping ¢, : U, — [—1,1]® such that
¢.(z) = 0 and the conditions (VI.4) in the definition of weakly Lipschitz domains
are satisfied. Since €2 is bounded and polyhedral, there exists a finite simplicial
complex 7 that triangulates Q.

Consider first the case that x is not a vertex of 7. Then z is either contained in
the interior of a triangular boundary face of 7, or in the interior of an edge between
two adjacent boundary triangles of 7. In both cases, we may choose U, := B,(x)
for r > 0 small enough, and ¢, : U, — [—1,1]? is easily constructed.

It remains to consider the case that = is a vertex. Let r > 0 be so small that
B,(z) intersects T € T2 if and only if x € T. We observe that 0B, (z) NN is
a simple closed curve in 0B, (z) composed of finitely many spherical arcs. Indeed,
0B, (x) NQ has only one connected component and every point in 9B, (xz) N is in
the intersection of at most two triangular faces of 7. Hence 0B, (x) N 0N is locally
flat in the sense of [134, p.100]

By the Schoenflies theorem in the Lipschitz category (see Theorem 7.8 of [134]),
there exists a bi-Lipschitz mapping

00 OB, (z) — 0B, (0) C R?

which maps 9B, (x) N dQ onto dB;(0) N {z € R® | z3 = 0}. By radial continuation,
we extend this to a bi-Lipschitz mapping

¢! B.(r) = By(0) CR?

which maps B, (z)NQ onto By (0)N{z € R® | z3 < 0} and which satisfies ¢ (z) = 0.
Moreover, there exists a bi-Lipschitz mapping

o' B (0) — [-1,1]

which maps B;(0)N{x € R | 23 < 0} onto [—1, 1]> x [—1,0) and satisfies ©'7(0) = 0.
Specifically, we may set ©1(0) = 0 and

" (y) =yl Nylle=y, v € Bi(0)\ {0}.

Since all norms on R? are equivalent, ¢!/ is a bi-Lipschitz mapping from the unit
ball in the Euclidean norm to the unit ball in the £*° norm. Eventually, we may pick

Uy i= Bo(z), @z := ¢l
The proof is complete. O
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VI. Weakly Lipschitz Domains

Remark VI.3.3.

One may conjecture that Theorem VI.3.2 can be generalized to higher-dimensional
polyhedral domains, but we make no attempt at a proof here. The preceding proof
critically relied on the generalized Schoenflies theorem in the Lipschitz category,
which has been considered first in the topological category (see [40, 61, 182]). Gen-
eralizing this technique requires the discussion of spherical triangulations, which are
beyond the scope of this thesis.
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VII. Smoothed Projections

In previous chapters we have explored spaces of finite element differential forms over
triangulations and Sobolev spaces of differential forms over domains. In this chapter
we begin connecting these different fields of theory and develop a concept central to
finite element exterior calculus: smoothed projections. These are projections from
Sobolev de Rham complexes onto finite element de Rham complexes that commute
with the exterior derivative and that satisfy bounds uniform in the discretization
parameters.

The precise role of the smoothed projections in instantiating the abstract Galerkin
theory of Hilbert complexes will be described in the next chapter; our main task
in this chapter is their construction alone. We draw inspiration from earlier pub-
lications on smoothed projections ([9, 58|) but we also put considerable effort into
extending the scope of applications.

One innovation of this thesis is that we address the Hodge Laplace equation over
weakly Lipschitz domains. As a motivation, let us fix a bounded weakly Lipschitz
domain Q@ C R". When f € L*), then the weak formulation of the Poisson
problem with right-hand side f is to find v € H*(€2) such that

/gradu-gradvd:vz/fvdx, ve HY(Q).
Q Q

The well-posedness of this problem, up to constant functions, is easily proven with
the Poincaré inequality, and the Rellich-Kondrachov theorem follows with a partition
of unity and locally flattening the boundary. As for the numerical analysis, there is
no difficulty in showing the well-posedness of the primal finite element method for
the Poisson equation. But proving the well-posedness of the mixed finite element
method for the Poisson equation using a commuting projection (as in finite element
exterior calculus) is not as trivial: after all, commuting projections have only been
studied over strongly Lipschitz domains in the literature.

In order to generalize the existent literature on finite element exterior calculus
we therefore need a smoothed projection over weakly Lipschitz domains. This is not
entirely trivial because the original construction in [9] (see also [160]) for strongly
Lipschitz domains utilized a transversal unit vector field along the boundary. Such a
construction is not available for weakly Lipschitz domains, and hence different tools
from Lipschitz topology are used in this chapter.

Another innovation of thesis is that we address the numerical analysis of the

Hodge Laplace equation when mized boundary conditions are imposed. Here, we
speak of mixed boundary conditions when essential boundary conditions are imposed
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VII. Smoothed Projections

on one part of the boundary, while natural boundary conditions are imposed on
the complementary boundary part. Special cases are the Poisson equation with
mixed Dirichlet and Neumann boundary conditions [148] and the vector Laplace
equation with mixed tangential and normal boundary conditions [89]. It is known
in the theory of partial differential equations that the Hodge Laplace equation with
mixed boundary conditions arises from Sobolev de Rham complexes with partial
boundary conditions [99, 113]. These are composed of spaces of Sobolev differential
forms in which boundary conditions are imposed only on a part of the boundary
(corresponding to the essential boundary conditions).

Mixed boundary conditions for partial differential equations in vector analysis
are a non-trivial topic, and even more so in numerical analysis. For an overview,
we start with the Poisson problem with mixed boundary conditions. Suppose for
simplicity that €2 is a bounded strongly Lipschitz domain with outward normal field
n along 0f). We assume that I'p C 02 is an admissible boundary patch and that
I'y is its complementary boundary patch. Given a function f, the Poisson problem
with mixed boundary conditions is finding the solution u of

—Au=f, wur,=0, Vuypr,- -n=0. (VIL.1)

Here, we impose a homogeneous Dirichlel boundary condition along I'p and a ho-
mogeneous Neumann boundary condition along T'y. If f € L?(Q), then a weak
formulation characterizes the solution as the unique minimizer of the energy

J(u) = %/Q|g1radu|2 dz — /Q fu dx (VIL.2)

over H'(2,T'p), the subspace of H*(£2) whose members satisfy the (essential) Dirich-
let boundary condition along I'p. The well-posedness of this variational problem
follows by a Friedrichs inequality with partial boundary conditions [148]. More-
over, the compactness of the embedding H*(2,T'p) — L?(Q) is crucial in proving
the compactness of the solution operator. A typical finite element method seeks a
discrete approximation of u by minimizing J over a space of Lagrange elements in
H'(Q,Tp). This Galerkin method is standard in the literature [32]. But still we can-
not approach the Poisson problem with mixed boundary conditions by the current
means of finite element exterior calculus due to the lack of a smoothed projection.

The natural generalization to vector-valued problems in three dimensions is given
by the vector Laplace equation with mixed boundary conditions. This equation
appears in electromagnetism or fluid dynamics. The analysis of this vector-valued
partial differential equation, however, is considerably more complex. Given the
vector field f, we seek a vector field u that solves

curl curlu — grad divu = f (VIL.3)

over the domain €2. Moreover, we assume that I'r and I'y are mutually complemen-
tary admissible boundary patches of €2. The boundary conditions on u are

Ur, X n= O, (Curl u)|FT = 0, Ury - n= O, (le ll)‘FN =0. (VII4)
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Here we impose homogeneous tangential boundary conditions on u along a boundary
part I'r, and homogeneous normal boundary conditions on u along the complemen-
tary boundary part I'y. When f € L*(Q2,R?), then a variational formulation seeks
the solution by minimizing the energy functional

1
T() = 5/Q|divu]2—i—|curlu|2dx—/gf~udx (VIL5)

over the space H(div,Q,T'y) N H(curl, Q, 7). Here H(div,Q,T'y) is the subspace
of H(div, Q) satisfying normal boundary conditions along I'y, and H(curl, 2, I'r) is
the subspace of H(curl, Q) satisfying tangential boundary conditions along I'r.

The additional complexity in comparison to the scalar-valued case begins with
the correct definition of tangential and normal boundary conditions in a setting of
low regularity [43, 44, 99, 176, 177]. When non-mixed boundary conditions are im-
posed, i.e. when either I'r = () or I'y = 99, then Rellich-type compact embeddings
H(div,Q,Ty) N H(curl, Q,T'7) — L*(Q) and vector-valued Poincaré-Friedrichs in-
equalities have been known for a long time [64, 151, 175, 181]. Mixed boundary
conditions in vector analysis, however, have only recently been addressed systemat-
ically [6, 15, 114, 115, 125].

Additional difficulties arise in numerical analysis. Minimizing (VIL.5) over a
finite element subspace of H(div, 2, I'y) N H(curl,Q,T'7) generally does not lead
to a consistent finite element method [11, 62|. But mixed finite element methods,
which introduce either divu or curlu as auxiliary variables, have been studied with
great success [30, 68, 109, 145]. Mixed boundary conditions for the vector Laplace
equation, however, have not yet received much attention in numerical analysis (but
see [105, 159]). In a mixed finite element method for the vector Laplace equation
with mixed boundary conditions we may only incorporate the essential boundary
conditions along I'r into the finite element space.

In Chapter VIII we attend particularly to a phenomenon that significantly affects
the theoretical and numerical analysis of the vector Laplace equation but remains
absent in the scalar-valued theory: the presence of non-trivial harmonic vector fields
in H(div, Q,'y) N H(curl, ,T'7). For a motivational example, let H(Q, I'r,I'y) be
the subspace of H(div, Q,T'y) N H(curl, 2, T'7) whose members have vanishing curl
and vanishing divergence. This space has physical relevance; in fluid dynamics,
for example, those vector fields describe the incompressible irrotational flows that
satisfy given boundary conditions. In the case of non-mixed boundary conditions,
their dimension corresponds to topological properties of the domain [138], and in
particular that dimension is zero on contractible domains. But in the case of mixed
boundary conditions, this dimension depends on the topology of both the domain
Q2 and the boundary part I'r. Thus H(Q,'r,T'y) may have positive dimension if
I'r has a sufficiently complicated topology even if Q itself is contractible [99, 124].
This dimension can be calculated exactly from a given triangulation of €2 and I'7.
In a finite element method, the subspace H (2, I'r,I'y) must be approximated by
discrete harmonic fields, i.e. the kernel of the finite element vector Laplacian.

It is instructive to study these partial differential equations in a unified manner
using the calculus of differential forms. Both the Poisson problem and the vector
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Laplace equation with mixed boundary conditions are special cases of the Hodge
Laplace equation with mixed boundary conditions. The Hodge Laplace equation
has been studied extensively over Sobolev spaces of differential forms [12, 42, 125,
139, 140, 141, 166, 176, 177]. The case of mixed boundary conditions has been
a recent subject of research in the field of analysis on manifolds [99, 113]. As a
theoretical basis, one studies de Rham complexes with partial boundary conditions,

S HARQ,T) s AR (Q D) (VIL.6)
The choices I'r = () and I'r = 99 correspond to the widely studied special cases
of either imposing no boundary conditions at all or boundary conditions along the
entire boundary, respectively.

Moving towards the numerical analysis of mixed finite element methods for the
Hodge Laplace equation with mixed boundary conditions, we adopt the framework
of finite element exterior calculus. The calculus of differential forms has attracted
interest as a unifying framework for mixed finite element methods [8, 9, 11, 72, 87,
109]. The numerical analysis of mixed finite element methods for the Hodge Laplace
equation can be formulated in terms of finite element de Rham complexes, which
mimic the differential complex (VIL.6) on a discrete level. For an outline of the idea,
we let 7 be a triangulation of € that also contains a triangulation & of I'y. The
construction in Chapter IV provides a finite element de Rham complex

L PARTIU) s PAMY(T U) S (VILT)
that features these essential boundary conditions along I'y. Indeed we have

PAF(T, U) = PA*(T) N HA®(Q,Tr).

Smoothed projections from Sobolev de Rham complexes onto finite element
de Rham complexes play a central role in the a priori error analysis within finite
element exterior calculus. They are the main requirement to enable the abstract
Galerkin theory of Hilbert complexes [11], which produces the stability and con-
vergence of mixed finite element methods. Previous contributions [9, 58| provided
the corresponding smoothed projections in the special cases of either fully essential,
'y = 09, or fully natural boundary conditions, I'r = 02, in finite element exterior
calculus, but the general case of mixed boundary conditions has remained open. In
order to overcome this limitation we need a smoothed projection that preserves par-
tial boundary conditions. Already in the two special cases I'r = 02 and 'y = 0f)
one could observe that the smoothed projection depends on the boundary condi-
tions, and hence we expect the same to be true in the treatment of general mixed
boundary conditions.

What we specifically need is a projection 7% : HA*(Q,T'p) — PA*(T,U) onto
the finite element space that satisfies uniform L? bounds and that commutes with
the differential operator. In particular, the following diagram commutes:

L HARQ, D)~ mAM Q)

Wki le (VILS)

dkfl dk+1

PAMT,U) —2s PAM(T,U)
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Given such a projection, we obtain a priori convergence results for mixed finite el-
ement methods [11]. Smoothed projections have been developed in finite element
exterior calculus [9, 58, 130] for non-mixed boundary conditions.

The agenda of this chapter is to construct such a smoothed projection. In par-
ticular, we prove the following main result.

Theorem.

Let Q2 C R™ be a bounded weakly Lipschitz domain, and let I'r C 02 be an ad-
missible boundary patch. Let 7 be a simplicial triangulation of 2 that contains a
simplicial triangulation U of I'r, and let (VIL.7) be a differential complex of finite ele-
ment spaces of differential forms as in Chapter IV with essential boundary conditions
along I'7. Then there exist bounded linear projections 7% : L2A*(Q) — PAR (T, U)
such that the following diagram commutes:

d? dm

HAYQ,Tr) —2 HAY(Q,Tr) L HAM(Q,T7)

wl Hl wl (VIL9)

PAT.U) 2 PANT . U) —2 .. 7 pAY(T,U).

Moreover, mfu = u for u € PA*(T,U). The L?* operator norm of 7* is bounded
uniformly in terms of the maximum polynomial order of (VIL.7), the shape measure
of the triangulation, and geometric properties of 2 and I'r. n

The smoothed projection enables the abstract Galerkin theory of Hilbert com-
plexes for the numerical analysis of the Hodge Laplace equation with mixed bound-
ary conditions over weakly Lipschitz domains. This applies to a large class of mixed
finite element methods. As an immediate consequence, to be elaborated in the
subsequent chapter, the a priori error estimates of finite element exterior calculus
provide quasi-optimal convergence for mixed finite element methods for a large class
of Hodge Laplace problems.

Constructing and analyzing such a smoothed projection requires significant tech-
nical effort. Even though we largely follow ideas in published literature [9, 58| we in-
troduce significant technical modifications. The smoothed projection is constructed
in several stages, which we give an outline of here. Suppose that u € L2A*(Q) is a
square-integrable differential k-form over €.

First, an operator E¥ : L2A*(Q) — L?A*(Q¢) extends u over a neighborhood Q¢
of Q0. The basic idea is extending the differential form by reflection across the bound-
ary. For strongly Lipschitz domains, such a parametrization can be constructed us-
ing the flow along a smooth vector field transversal to the boundary [9, 58|, but for
weakly Lipschitz domains such a transversal vector field does not necessarily exist.
Instead we obtain the desired parametrized tubular neighborhood via a variant of
the collaring theorem in Lipschitz topology [134]. Furthermore, in order to accom-
modate partial boundary conditions along 'z, we extend u by zero over a “bulge”
attached to the domain along I'y. This is inspired by work of Gopalakrishnan and
Qiu [105], who used a similar idea for strongly Lipschitz domains and boundary
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partitions with a piecewise C'-interface. The resulting operator E¥ commutes with
the exterior derivative on HA*(Q,T'z).

Next, we construct a distortion ©, : 2 — Q° which moves a neighborhood of
the bulge into the latter but which is the identity outside of a small neighborhood
of the bulge. We locally control the amount of distortion via a function o. The
pullback @ZE’“U of E*u along ®, vanishes in a neighborhood of 'y and commutes
with the exterior derivative.

Subsequently, a mollification operator R¥ : L2AF(Q°) — C*°A*(Q) smooths the
differential form QZEku to a smooth differential form over () that vanishes in a
neighborhood of I'y. This is based on the idea of taking the convolution with a
smooth bump function. In order to guarantee uniform bounds for shape-regular
families of meshes, the mollification radius is locally controlled by a function p.
This is similar to [58], but we elaborate the details of the construction and make a
minor correction; see also Remark VII.8.12. We find that the mollified differential
form has well-defined degrees of freedom.

The regularized differential form has well-defined degrees of freedom, and thus
the interpolant I% : C°A*(Q) — PA*(T) can be applied. Since the regularized
differential form vanishes near 'y, the interpolation gives an element of PA*(T,U).
In combination, this yields a smoothed interpolant QF : L2A*(Q2) — PA*(T,U) that
commutes with the exterior derivative on HA*(Q2,I';). In making the mollifica-
tion radius depending on the local mesh size we can prove uniform bounds for the
smoothed interpolant. But Q* is generally not idempotent. We can, however, con-
trol the interpolation error over the finite element space. To enforce idempotence,
we prove a bound on the interpolation error over the finite element space and apply
the "Schoberl trick” [159]. If the smoothed interpolant is sufficiently close to the
identity over the finite element space, then a commuting and uniformly bounded
discrete inverse exists. The composition of this discrete inverse with the smoothed
interpolant gives the desired smoothed projection.

In order to derive the aforementioned interpolation error estimate over the finite
element space, we call on geometric measure theory |88, 180|. The principle moti-
vation in utilizing geometric measure theory is the low regularity of the boundary,
which requires new techniques in finite element theory. A key observation, which
seems to be of independent interest, is the identification of the degrees of freedom
as flat chains in the sense of geometric measure theory. The desired estimate of the
interpolation error over the finite element space is proven eventually with distortion
estimates on flat chains. To the author’s best understanding, our results close a gap
in some proofs in the literature; see also Remark VII.8.9.

Most of the literature on commuting projections focuses on the L? theory (but
see also [56] or [82]). We consider differential forms with coefficients in general L?
spaces, following [100], which includes the WP classes of differential forms in par-
ticular.

Commuting projections are a standard tool in finite element analysis, and the
calculus of differential forms has been promoted as a unifying language for finite ele-
ment methods for problems in vector analysis [109]. A bounded projection operator
that commutes with the exterior derivative up to a controllable error was derived in
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[52]. A bounded commuting projection operator for the de Rham complex without
boundary conditions has been derived in [9] in the case of quasi-uniform triangu-
lations, which was subsequently generalized in [58] to shape-uniform triangulations
and de Rham complexes with full boundary conditions. The existence of a smoothed
projection that respects partial boundary conditions has been an unproven assump-
tion in [28]. Commuting projections have been derived in [56] and [82] with different
methods. We mention the local bounded interpolant in [160|, given in the language
of classical vector analysis, as one of the first contributions to research on commuting
interpolants and projections. This interpolant was only later generalized to differ-
ential forms in [72], and a variant of that preserves partial boundary condition was
given in [105]. A commuting projection for spaces with weighted norms that arise
in the numerical analysis of axisymmetric Maxwell’s equation was given in [104]. A
local commuting projection was given in [87].

In addition to this research in numerical analysis, we address a topic that is of
purely analytical interest. Specifically, we prove that smooth differential forms over
a weakly Lipschitz domain €2 which vanish near an admissible boundary patch I'7 are
dense in WPIA*(Q,T'r) for p,q € [1,00). When € is a (strongly) Lipschitz domain
and I'p C 99 is a suitable boundary patch, then the density of C>(Q) N H'(Q,Tp)
in H'(Q,Tp) (see [76, 77]) and analogous density result for differential forms with
partial boundary conditions over strongly Lipschitz domains (see [113]) have been
available in the literature before. In this chapter we generalize these results to
Sobolev spaces of differential forms over weakly Lipschitz domains. Specifically, we
prove the following theorem.

Theorem.

Let €2 be a bounded weakly Lipschitz domain and let I'7 be an admissible bound-
ary patch. Then the smooth differential k-forms in C*°A¥(Q)) that vanish near I'z
constitute a dense subset of WP9A*(Q, ') for all p,q € [1, c0).

VII.1. Extension Operators

For the duration of this entire chapter, we let 2 C R™ be a bounded weakly
Lipschitz domain and n > 2. Additionally, we assume that I'y C 0 is a fixed
admissible boundary patch. The reader may assume I'y = () in a simplified read-
ing. We let I'y := 9Q \ I'r denote the complementary boundary patch and we let
I'; = T+ N Ty be the interface between 'y and T'y. In other words, (I'z, T, Ty) is
assumed to be an admissible boundary partition.

In this section we make use of Lipschitz collars in the construction of extension
operators. The basic idea is to reflect a differential form over (2 along the boundary
onto the exterior of ). But to accommodate partial boundary conditions, we first
extend the differential form by zero onto a “bulge” attached at I'y. The original idea
of reflection is then applied to the domain with the bulge attached. The resulting
extension operator commutes with the exterior derivative.
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By an application of Theorem VI.1.8, the bounded weakly Lipschitz domain €2
admits a Lipschitz collar Wy. We recall that this is a LIP embedding

Uy : 00 x [-1,1] = R"
such that Wy(z,0) = x for x € 09 and such that
Ty (0Q x [-1,0)) € Q, Ty (092 x (0,1]) € Q.
Based on this, we define the auxiliary domains
T =, (I'r x (0,12), Q:=QuUlrUT. (VIL.10)

We think of T as a bulge attached to the domain €2 along I'r, which results in the
combined domain Q°. The following lemma, is easily verified.

Lemma VII.1.1.
The domains Y and Q° as defined above are bounded weakly Lipschitz domains.

Proof. The proof is not very difficult but we give the technical details. We want to
construct the coordinate charts that flatten the boundaries of T and Q° as in the
definition of weakly Lipschitz domains.

Consider 2 € T'y. By Lemma VI.1.7 there exists a neighborhood V; of x in 99
and a bi-Lipschitz mapping 0, : V, — [—1,1]"7! with 6,(x) = 0. If z € T'7, then
we assume without loss of generality that V, is contained in I'y. If instead = € T'y,
then we assume additionally that V,, and 6, satisfy the properties (VI.10) stated in
the definition of admissible boundary patches.

For ¢ty € (—1,1) and € > 0 small enough we let

Uiy = Bo(Va X lto — .10 +¢])
and define a bi-Lipschitz mapping ¢, : Uz, — [—1, 1]" by setting

Pzt (‘I)o(@x(Z),t)) = (z, (t —to) /E)

If x € 'y, then this easily produces the required flattenings of the boundary for
t=12andt =0. If z € I'; and ¢t € (—3,1), then the required coordinate chart
is found similarly. In the special case that 2 € I'; and t € {—3, 3} we obtain the
desired coordinate chart with another bi-Lipschitz transformation ¢ applied after
¥z, Where ¢ depends only on ¢ and whether we consider T or Q°. This completes

the construction. O
We define the extension operator

u over (),

0 over Y. (VIL11)

EY: MAF(Q) — MA*(QY) uw— {
The properties of E¥ are stated in the following lemma.

118



1. Extension Operators

Figure VIL.1: Domain Q (gray) with a bulge T (shaded) attached. The thick line
is the boundary part I'y of the original domain, and the contact line between (2
and T is the boundary part I'7. The thinner lines inside and outside of the domain
indicate the inner and outer boundaries, respectively, of a Lipschitz collar.

Theorem VII.1.2.
We have a bounded linear operator

EF: LPAR(Q) — LPAR(QY), pel,00].

Moreover, for p, g € [1, 00] we have
u€ WPIN*(Q Tr) = Efuc WPIARQD)

and

d*Efu = EF Py,  w e WPIAR(Q, Tr).
Proof. Tt is clear that E} is bounded. That Ef maps WPIA*(Q, T'r) into WP4A*(Q0)
and commutes with the exterior derivative is easily seen from the definition of
WPIAR(Q, Tr). O
Remark VII.1.3.

It is evident that Efu is generally not a member of WPIAK(QP) for arbitrary u €
WPIAR(Q) unless T'p = 0.

We return to the original idea of extending a differential form by reflection along
the boundary. Since Q is a bounded weakly Lipschitz domain, we may apply The-
orem VI.1.8 again to obtain a LIP embedding

Uy 0 00 x [-1,1] — R"
such that Uy(z,0) = z for z € QP and such that

U, (09" x [-1,0)) € Q°, T, (99" x (0,1]) € R™\ Q.
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The Lipschitz collar of ° allows us to reflect points across the boundary. We write

CQ =T, (09" x (—1,1)), (VIL.12)
C Q" =0, (09" x (—=1,0)), CTQ":=T, (90" x (0,1)), (VIL13)
Q°=QruCtt. (VIL.14)

The domain C€ is an open neighborhood of 9. The domains C~Q° and C*tQ°
represent the interior and exterior parts of the collar neighborhood C§)°, respectively.
Finally, Q¢ is an extension of the domain °. In particular, € is compactly contained
in 2°. Furthermore, in accordance with Theorem VI.1.8 we can assume without loss
of generality that ¢ is a weakly Lipschitz domain.

For every x € CQP there exist unique ro € 90 and t € [—1,1] such that z =
Uy (xg,t). Hence we may define a bi-Lipschitz mapping

R:CTQ —C Qb Wy(x,t) — Uy, —t). (VIL.15)

This formalizes the idea of reflecting a point across the boundary. Using the pullback
along R, we introduce the extension operator

u  over QP

R*u over CTQb. (VIL16)

EF: MAF(QY) — MAF(Q9), uws {
We gather some properties of the extension operator E¥. For future use, we define
Cy == max { Lip (R,CTQ") ,Lip (R, ¢~ Q") }

It is easily seen that C, > 1. We first show that Eff satisfies local estimates:

Lemma VII.1.4.
Let p € [1,00]. We have a bounded linear operator

EF IPAR(QP) — LPAR(QS), w s EFu.
Moreover, for 0 < s <t <1 and A C 90 closed we have
k4
I EFull Loarwyaxisay < Cy " lulloarw,(axioe—sp, w € LPAR(Q). (VIL17)

Proof. Let p € [1,00], let A C 09° be closed, let 0 < s < ¢t < 1, and let u €
LPAR(QP). We apply Lemma V.2.3 to find

HEfUHLpAk\IJ,,(Ax[s,t]) = | R*ull o arw, (ax[s.1)
< DRI weran | DR e 1l ot i s
Hence (VIL.17) holds. Setting A x [s,t] = 9Q° x [0, 1], we find
| EFul| oar ey < lullmoarsy + | ERul| poarc+an
<l poarry + C:+% 2]l Lok (- am)
< (1 + C:Jr%) [[wll o ax @v)-

Hence E* is bounded from LPA*(Q°) to LPA*(Q°). O
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1. Extension Operators

We show that E* commutes with the exterior derivative.

Lemma VII.1.5.
Let p,q € [1,00] and let u € WP4A*(QP). Then EFu € WPIAF(Q) with EFfldiy =
d* Eku.
Proof. Because 2 is bounded, it suffices to consider the case p = ¢ = 1. Let us
assume that u € WLIAR(QP). We have EFu € LIA*(Q¢) and EFfldbu € LYAR(QF)
by Lemma VIL.1.4. To prove that EFu € WHAF(Qf) with EFfldby = d*EFu, it
suffices to show that there exists a covering (U;);en of Q¢ by open subsets U; C Q¢
such that EFuy, € WHAR(U;) and EFt'dbu = d*EFu over U

From the definition of weakly Lipschitz domains we easily see that there exists
a family (6;)seny of LIP embeddings 6; : (—1,1)""* — 99 whose images cover 9€°.
We define

wi:(=1L,1)" — P, (y,t) — Wy (6;(y),t) .

These are a family of LIP embeddings whose images U; := ¢; ((—1,1)") cover CQ°.
Together with Q° we thus have a finite covering of Q°.

We recall that EFuge € WHAF(QP) with EF'd*u = d*EFu over Q°. It remains
to show that EFuiy, € WHARU;) and EFt'd*u = d*EFu over U; for i € N. We
define

ui =@} (Bfup,) . w; = ¢} (B dAu,) -
It suffices to show u; € WHA*((—1,1)") and d*u; = w; over (—1,1)". We let
X (—1,1)"" x(0,1) = (=1,1)""" x (=1,0)
be the reflection by the n-th coordinate. It is evident that

Uj|(=1,1)n=1x(0,1) = %*Ui\(—m)n%x(—m)
Wij(— 1,171 x(0,1) = LB Wi (—1 1)1 (—1,0) = L A Usy 1,101 (<1,0)-

By Lemma V.3.5 there exists a sequence (u});ey of smooth differential k-forms over
(=1,1)"! x (=1,0) that converge to u; over (—1,1)"! x (—1,0) in the WhIAF
norm for j — oco. We let zuzf be the extension of u! from (—1,1)""! x (—1,0) to
(—1,1)™ by pullback along #Z. Then {‘Lf is a locally integrable differential k-form over
(—1,1)™ with locally integrable weak exterior derivative. It is easy to observe that zHLf
converges to u; in L'A* ((—1,1)") and d*4 converges to w; in L'A*1((—1,1)") for
j — oo. Hence u; € WHAR ((—1,1)") with d*u; = w;. The proof is complete. [

We can now verify that the extension operator E* has the following properties.

Theorem VII.1.6.
We have bounded linear operators

EF : IPAR(QP) — LPAR(QS), pe[l,00].
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VII. Smoothed Projections

For p,q € [1, 0] we have
EF (WPIAR(QP)) € WPIAR(QF),
with

d*Efu = EFt'dRu,  w € WPIAR(QP).

Proof. This is a combination of Lemma VII.1.4 and Lemma VIIL.1.5.

Combining these two operators, we introduce
E* . MAF(Q) — MA*(Q°), ww— EFE}u.
The following theorem summarizes the above observations.

Theorem VII.1.7.
We have a bounded operator

E* : IPA*(Q) — LPAR(Q°), p€[l,00)].
Moreover, for u € LPA*(Q) with p € [1, 00] we have
supp EFunY = 0.
For p,q € [1, 0] we have a bounded operator
E* - WPIANR(Q,T'p) — WPIAR(Q®),  p,q € [l,00],
such that

d*Efu = EMdRu,  w e WPIAR(Q, Typ).

Proof. This is a combination of Theorem VII.1.2 and Theorem VII.1.6.

(VIL18)

]

In the sequel, we will require several local bounds of these extension operators.

This is accomplished with the following lemma.

Lemma VII.1.8.

There exists Ly > 1, depending only on ¥,, such that for all p € [1,00], for all

§ > 0, and all closed sets A C Q we have

k+2
| E*u| o ak By 4)n0e) < (1 +C, ) lull Losv (35, () @ € LPAR(QP). (VIL19)

Proof. Let 6 € RY, let p € [1,00], and let A C Q be closed. Then

| E*ull ok (Bsaynne) = || EFEgull oarsa)n0e)

< ‘|E§U‘|LpAk(BS(A)me) + HEnguHLPA’“(BJ(A)ﬁCW’J)

= [lul| Loar(Bs(a)n0) + HEnguHLpAk(B&(A)mcmb)-
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2. A Distortion Theorem

We set Gt := B;(A)NCTQ’ and G~ = R(G"). Using Lemma VII.1.4, we find

k+2 4+
HEfE(I)CUHLPAk(Gﬂ <G, "’ HE(]TUHLPA’C(G*) =C, 7 HUHLPA’“(G*mQy

Let & € Bs(A) NCTQP be fixed but arbitrary. There exist z € A with ||z — x| <6,
and y € 0£2° on the straight line segment between z and z. Since z € CTQP, there
exist 7o € 0Q° and t € [0,1] with x = Uy(xo,t). It is easily seen that

[R(z) — z|| = [[Wy(z, —t) — Up(z,t)[| < 2Lip(Pp) - ¢
and
t] < V/llwo — yl|> + [t]> < Lip(¥, ) [ W(xo,t) — ¥ (y,0)] = Lip(¥; ") |z — -
We then find that

[R(z) = z[| < [R(x) — x| + [z — =]
< 2Lip(y) Lip(¥; )|z — y| + [l — z||
< (1+2-Lip(¥,) Lip(¥; ")) 6.

We choose Lg := (1+ 2Lip(¥;) Lip(¥;")). Hence G~ NQ C By, 5(A) N Q. This
completes the proof. O

Remark VII.1.9.

In the special case that I'y = (), we have T = () and Q0 = Q. The operator Ef does
not enter the construction then. On the other hand, in the special case I'y = 0€2, the
set T wraps around the whole of Q. The construction of E¥ can then be simplified
as follows: We set Q¢ = R" and pick E* as the trivial extension onto R™.

Remark VII.1.10.

Whenever we say in the sequel that a quantity depends only on €2, then the quantity
may depend also on the arbitrary choice of Lipschitz collars at several points. This
use of terminology will simplify the exposition in the sequel.

VII.2. A Distortion Theorem

In this section we discuss a geometric result that enters the construction of the
smoothed projection and is also of independent interest. The basic idea is as follows:
given a domain T C R", we search for a homeomorphism of R" that moves 07 into
T and that is the identity outside of a neighborhood of 0Y. Moreover, we want
to take the metric structure of R™ into account: the homeomorphism should be a
lipeomorphism, and we want to control locally how far the homeomorphism moves
the boundary into the domain. Specifically, we prove the following result.

Theorem VII.2.1.

Let T C R™ be a bounded weakly Lipschitz domain. Then there exist constants
0p > 0 and Lp > 1, depending only on Y, with the following significance. For any
non-negative function o : R — R satisfying

Lip(0,R") < 0p, 0Omax(R") < 0p, (VIL.20)
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VII. Smoothed Projections

there exists a bi-Lipschitz mapping ©, : R" — R" with the following properties.
We have

Lip (9,) < Lp (1 +Lip(o)), Lip (D,") < Lp (1 + Lip(o)). (VIL.21a)
We have
D,(T)C T. (VIL.21b)
For all x € R" we have
|z —D,(x)|| < Lpo(x). (VIL.21c)
For every z € R"™ we have © = ©,(x) if
dist (z,07) > Lpo(x). (VIL.21d)
For all x € 0T we have

D, (Bo(ay/Lp(®)) € T. (VIL21e)

Remark VII.2.2.

We discuss the meaning and application of Theorem VII.2.1 before we give the
proof. The mapping ®, is a distortion of R" which moves T into itself. The
function o controls the amount of distortion near Y. The distortion D, contracts a
neighborhood of T into the domain.

Specifically, we interpret the properties (VII.21) in the following manner. Prop-
erty (VIL.21b) formalizes that the distortion moves OY into Y; in particular, T
is mapped into itself. Property (VII.21d) formalizes that the homeomorphism is
the identity outside of a neighborhood of 9Y. By Property (VII.21c) the amount
of distortion is locally bounded by p, and Property (VIL.21le) formalizes that the
distortion is proportional to ¢ near the boundary.

Remark VII.2.3.

In our application, T will be the bulge attached to the domain €2, as introduced in
the previous section. Moreover we will set ¢ := ep, where p : R® — R} will be a
non-negative Lipschitz continuous function that indicates the local mesh size of a
triangulation of €2, and where ¢ > 0 is a parameter to be chosen so small that the
conditions of Theorem VII.2.1 are satisfied. If a differential form vanishes over T,
then the pullback along ®, will vanish in a neighborhood of T.

Proof of Theorem VIIL.2.1. Since T C R" is a bounded weakly Lipschitz domain, we
may apply Theorem VI.1.8 to deduce the existence of a LIP embedding

E:07 x [-1,1] - R"

such that Z(z,0) = z for x € 9T and such that Z(9Y,[0,1]) € Y. In particular,
there exist constants cz, Cz > 0 such that

12(21,t1) — E(@a, ta)|| < Ca/|l1 — 2o + [t — 22,
Vi — a2+ [t — ta]® < c= [|E(1, 1) — E(a, ta) |
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2. A Distortion Theorem

for z1, 9 € OY and tq,t € [—1,1]. We note in particular that
cz' Lip(o) < Lip (0Z) < C= Lip(o).

For a € [0, /5] we consider the parametrized mappings

t
2
Coz : [_17 1] — [_17 1]7 L / 1+ X[—2a,0] — gX[a,?yoz] dA — 1a
-1
s 2
C;l : [_17 1] — [_17 1]7 t— / 1- §X[72a,o¢] + 2X[3a,4oz] dA — 1a
-1

where x; denotes the indicator function of the interval I C [—1,1]. As the notation
already suggests, these two mappings are mutually inverse for « fixed. We easily see
that they are strictly monotonically increasing, and that their Lipschitz constants
are uniformly bounded for @ € [0,1/5]. In particular ¢, and ;' are bi-Lipschitz.
Moreover, for a € [0,1/5] we observe that

L) =¢ M) =t té¢[—2a,4a], (VIL.22)
Ca ([, a]) = o, 3a). (VIL.23)

We now write ((t;a) = (o(t) and (7' (t;a) = () for (t,a) € [—1,1] x [0,1/5].

Assume from now on that i
Omax (R™) < 1/5,  Lip(o,R") < min {1, Lip(Z)""}. (VIL.24)
The latter implies that Lip(p=) < 1. We define homeomorphisms
D, R" = R", @;1 :R" — R",

in the following manner. Assume that x € R™. If there exist o € 0T and t € [—1, 1]
such that z = Z(zo,t), then we set

D,(z) === (xo,t'), t:=( (t; Q(go)) : (VIL.25)
@gl(x) =2 (xo, "), t':=("" (t; Q(go)) . (VII.26)

Otherwise, we set ®,(z) := z. It follows from the construction that ©, and ©,"
are bi-Lipschitz and mutually inverse. In particular, (VII.21a) is implied by

Lip (®,) <1+ Cj—; (1 + Lip (¢) Lip(0))

Lip (9,') <1+ f—; (14 Lip (¢7") Lip(o)) -

From the construction we immediately see that (VIL.21b) holds, since ©, maps
=Z(97,[0,1]) into itself. Moreover, ®, and ©," act like the identity outside of
=07, [-1,1)).
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VII. Smoothed Projections

Let us assume for the remainder of this proof that x = Z(xg,t) for o € 9T and
€ [—1,1]. Using (VIL.22) and (VIL.25), we see that ©,(x) # x implies || < o(x¢)/2.
Thus

Lip(0=)o(xo) < )
2 -2

This shows that o(zg) < 2o(z). By the definition of { and ©, we then see

|o(zo) — o(z)| = |o(E(z0,0)) — 0(E(x0, 1))| <

[ = Do(x)]| < Lip(=)

- (5 45Y) | < SLip(E)oten) < § Lin(Eta).

proving (VIL.21c). Furthermore, using (VIL.22) we note that z # ©,(z) implies

. - Lip(= e
dist (2,07) < [}z — ao]) < Lip@] < "2 p(ay) < Lin(E) ).

Conversely, this means that x = ©,(x) is implied by
dist(x,0Y) > Lip(Z)e(x),

which proves (VIL.21d).
It remains to prove (VII.21le). Let xy € 0T and define A C 9T x [—1,1] by

A = (Butylan) 00T) x (= 0la), rotan)).

If y € 0T with |zg — y| < 0(z0)/8, then |o(zo) — 0(y)| < 0(x0)/8 since we assume
Lip(o) < 1. In particular, o(y) > To(x)/8 follows. Via (VI1.22) we thus find
D,(=2(A)) € Y. Furthermore, we observe that A contains a ball around z, of

radius 7o(x)/64 in 0T x [—1,1]. Hence =(A) contains a ball around z of radius
Tcz'o(wo)/64. This shows (VIL.21e), and completes the proof. O

VII.3. Smoothing Operators

In this section we construct a smoothing operator for differential forms on weakly
Lipschitz domains. We define the smoothed differential form at each point by aver-
aging the original differential form in a small neighborhood of that point. A technical
difference to the classical mollification operator is that we let the mollification radius
vary across the domain.

We let o : Q¢ — RT be a non-negative smooth function that assumes a positive
minimum over {2. We introduce the mapping

®,:Qx B(0) = R", (z,y)— z+ o(x)y. (VIL.27)

When we regard the second variable as a parameter, then we have a family of
mappings

D,y Q= R", = ,(z,7).
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3. Smoothing Operators

Here and in the sequel, we let B,(A) for any A C Q€ be defined as the union of the
balls By(y)(z) for x € A.
We study some properties of ®,,. When y € B;(0) and x4, 25 € 2, then

[Poy(21) = Poy(22)|| < (1+ Lip(0)) |21 — 22| - (VIL.28)
Moreover, for any y € B;1(0) and = € Q we have
[Py () — 2] < ol). (VIL.29)
The latter inequality implies that for o small enough we have
o,, (ﬁ) C 0. (VIL30)

Under the additional condition that Lip(g) < 1/2, we observe for y € B;(0) and
x1, Ty € () that

[Poy(w1) = Pyy(w1)]| = |21 — 22 + (2(21) — 0(22)) Y|
_ 1 (VIL.31)
> ||z — @2|| — Lip(o) [|o1 — 22| | > 3 |21 — 22| -

We conclude that for ¢ and Lip(g) small enough, the mapping
D,y Q—Q°
is a LIP embedding for every y € B;(0).

Remark VII.3.1.

Similarly as in Remark VII.2.3, we have ¢ = ¢p in applications, where p is a fixed
smooth function with positive minimum over € and € > 0 is a parameter to be
chosen small enough.

The smoothing operator in this section uses the standard mollifier x4 as a building
block and can be seen as a generalization of the classical smoothing by convolution.
For every u € L*A*(Q°) we define

ngu|x = / w(y)(®h u)dy, €. (VIIL.32)
We first show that Ry maps into C°A* (Q) and satisfies a local bound. In particular,

it is a bounded mapping into C'A*¥(Q) with respect to the maximum norm.

Lemma VII.3.2. _
Suppose that we have LIP embeddings ®,, : 2 — Q¢ for all y € B;(0). The operator

k . k(e oAk (D
Ry : LPAT(Q°) — C*A(Q), pe|[l,o00],

is well-defined and linear. Moreover, for every p € [1,00], u € LPA*¥(Q°), and
measurable set A C Q2 we have

HRIZUHCM(A) < vol"(B1(0))

1+ Lip(p k
%HUHLPA’C@Q(A,BQ)- (VII.33)

Qinf(A>
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VII. Smoothed Projections

Proof. Let p € [1,00] and let u € LPA*(Q°). Under the assumptions on ¢ we
have a LIP embedding ®,, : 2 — Q° for every y € B1(0). Hence u(y)(®; u)p. is

measurable in y for every z € Q, and the integral (VIL.32) is well-defined. Using
elementary results, we find for every x € () that

k
}nguhx < /R (W) [[Da Poylly o1, ey, @)
< Lip(@0,, D [ n(0)lulo,

< (1+Lip(9))k/ wy)luls, @)

n

A substitution of variables and Holder’s inequality give

/n N(y)|u|x+9(w)y dy = /]Rn %W (z + y)|dy < WHUHLP(BQ(I)(I))'

These estimates in combination yield (VII.33). In order to prove the smoothness of
R'gu over (), we first change the form of the integral. By a substitution of variables
we find for x € Q° that

Ruo= Y [ wlwuo (o + ololy) (@,d57)dy

c€X(1:k,0:n)

= Z / Ho() ) ua(y) (‘I’Z,w)fl(y—x)dwa) dy.

|z

We know that u, € L*(Q2), that o and ®, are smooth, and that © is compact. The
desired smoothness of R'gu over €) is now a simple consequence of the dominated

convergence theorem. Furthermore, R’;u € C*A*(Q), as can easily be seen when
picking z in a sufficiently small open neighborhood of Q. O

Lemma VIL.3.3.
Suppose that ®,, : Q2 — Q° is a LIP embedding for all y € B;(0). We then have

d*Rbu = REF MU, we WPIAR(QS), p,q €[l o).

Proof. Let v € CA"*71(Q). By Fubini’s theorem we have

/ R’;u AdP Ry = / / p(y)®y u dy A d" 1y
Q n
/ / y)®; u A d" 1y dy

—/ ()/CI)* uAd"F oy dy,
and similarly

/ R’;dku ANv = / / u(y)q)zvydku dy Ao = / w(y) / @ijdku A v dy.
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Since ®,,, : @ — Q° is a LIP embedding for every y € B;(0), we obtain

* n—k—1_ ., k+1 k F* _ k+1 * k
/Q%Md v=(=1) /Qd o uAv=(-1) /Q@Md uAv.

By definition, d*Rbu = RE+'d*u. The proof is complete. O

VII.4. Commuting Approximation

We are now in the position to combine the extension operator of Section VII.1,
the distortion operator of Section VII.2, and smoothing operator of the preceding
section. We let o € C*°(€Q¢) be a smooth function whose exact properties we will
stipulate soon and let 6 > 0 be a small parameter to be determined below. We then
define

My - IPAF(Q) — CPA*(Q),  uw— R{D5E", pe[l,o00]. (VIL34)
The properties of M é’f are summarized as follows.

Theorem VII.4.1.
Assume that o satisfies the conditions of Lemma VII.3.2 and Theorem VII.2.1 ap-
plied to Y, and that ©, maps Q° into itself. Assume also that § € (0,1) with

0~ > 2Lp. Then Mé’f is well-defined. Moreover, there exist C’,]xfk,p > 0 and Ly > 0,

not depending on p, such that for all measurable A C Q) we have

1+ Lip(0))*"
”MguHCA’“(A) < %,p< ( )2
Qinf(A>p

Additionally, if p,q € [1,00] and u € WPIA*(Q, ') then

=3

HUH LpAk(BLM(1+Lip(9))@sup(A) (A)NQ)- (V1135)

k+1gk, _ dk sk
My d*u = d*Mu, (VIL.36)
and Mgu vanishes in a neighborhood of I'z.

Proof. We combine Theorem VII.1.7, Theorem VII.2.1 together with (V.21), and
Theorem VII.3.2. We then have a linear mapping

RS,DLER : IPAF(Q) — C*AF(Q), pe (1,00

By the same token we immediately deduce (VII.36).
Next we prove (VIL.35). Assume that u € LPA*(Q) and that A C Q is measur-
able. Via Theorem VII.3.2 we find

(1+ Lip(0))"

RE * E*ul| carcay < vol™(By (0 — 1D ERu|,, ,
H S0~ o HCA (A) ( 1( )) <5Qinf(A)); H 0 HL Ak(q>5g(A7B1))

By Theorem VII.2.1 and Lemma V.2.3 we have

* k+ . k+2
’lQQEkuHLPAk(<1>5Q(A,Bl)) < Ly " (1 +Lip(0))™" HEku|’LPAk(©Q<I>59(A,Bl))'

=3
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VII. Smoothed Projections

For x € A and y € Bsyz)(x) we find

lo(y) — e(x)| < Lip(o)lly — =[] < é Lip(e)e().
By (VII.21c) we then observe
19,(y) = yll < Lpely) < Lp (e(x) + d Lip(0)o(x)) .
Consequently,
D,Ps0(A, B1) € Prp(146Lip(e))o(A, B1) NQ° C Br (146 Lip(o))osup(4) (A) N Q°.

Applying Lemma VII.1.8, we thus obtain

k kt3
|E uHLPAk(DQCD(;Q(A,Bl)) < (1 + G, p) HUHLPA’C(BLELD(H(;Lip(9>>gsup(A>(A)ﬂQ)'

This provides the desired local estimate.
We consider the special case A = Bip(p)-1(2)(z) N Q2 for z € I'y. We have

do(y) < do(x) +dLip(o)[ly — x| < 200(x)
for all y € A, and thus
B gaup(4) (A) € Basg(a) (7).
In particular

(14 6 Lip(p))*
(6omi(A))7

1RS, D, E ullcanay < vol"(B1(0)) D5 E ull

Bzag(m)(w))

and

k+2 . n
< Lp "(1+6Lip(0)"*7 | E*ul

95 Bl

Baso(a) (l‘)) LPAk (993259@) (@) )

We now assume 26 < 1/Lp. In combination with Theorem VIL.2.1 we conclude

Do Baso(x) () CT.

Hence Mgu vanishes in an open neighborhood of I'z in Q. The proof is complete. [

Remark VII1.4.2.
The proof of Theorem VII.4.1 shows that L;; < LpLg and that

CM < vol"(By(0)6 5 Ly, (1 + C:+7)> .

In the remainder of this chapter, we instantiate M; with a specific choice of p for
an application in finite element exterior calculus, where p relates to the local mesh
size of a triangulation. But another specific choice of o, namely choosing it constant
near €2, enables a new density result for Sobolev spaces of differential forms over
weakly Lipschitz domains, which is of general interest for functional analysis.
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Theorem VII.4.3.

Let 2 be a bounded weakly Lipschitz domain and let I'7 be an admissible bound-
ary patch. Then the smooth differential k-forms in C*°A¥(Q)) that vanish near I'z
constitute a dense subset of WP9A*(Q, T'z) for all p,q € [1, c0).

Proof. Let p,q € [1,00) and u € WPIA*(Q,T'7). We let x : Q° — R be a non-
negative smooth function with compact support that equals 1 in an open neighbor-
hood of Q in Q¢ For ¢ > 0 small enough, Theorem VII.4.1 provides an operator
M, LPAF(Q) — C=A*(Q). We define

Yo :=QN B, (00), Z.:=Q\Y.
On the one hand,

Hu o MekquLpAk(n) < ||u|’LPAk(5’e) + HMEquHLPA’“(Ye) )

For e small enough, we use Young’s inequality for convolutions (see [27, Theo-
rem 3.9.4] again), Lemma V.2.3, and Lemma VII.1.8 to see
k * k
HMequLpAk(Ye) < ngxE UHLPA’C(YQE)
k+ﬂ k k+ﬂ k+ﬂ
< 2Ly, | E*ul| oy < 200 7 (1 +C, ) [l Pyva——

This is again a bound in terms of an integral over a neighborhood of 0€2. There
exists C' > 0 such that for ¢ small enough

YLE36 N C lIJO (aQ X [—CLE3E, O]) .
The volume of the latter set is bounded by
vol” (11:0 (9 % [~C'Ly3e, o])) < O'Lp Lip(Wo)" vol™ 1 (89) - 3¢

and thus converges to zero as € converges to zero. We conclude

. k _
11—I>% Hu o MéquWP,qu(K) =0.
On the other hand, we have
Hu o MkauHLlﬂAk(Zf) = HU — Hase *uHLPAk‘(Zg) < Hu — Hase *UHLPA’“(Q) :

By basic results on mollifications, the last expression converges to zero as € converges
to zero. Since Q = Y, U Z for all € > 0, and since M} 'd"u = d*MFu, the
combination of both observations provides

lim ||u — M*

parey <l woans) = 0

We observe that MFu € C*A*(Q) with support having a positive distance from I'r
for all € > 0. The proof is complete. O

Remark VII.4.4.

The preceding approximation theorem generalizes Theorem V.3.5 in the case of
weakly Lipschitz domains. The smooth differential k-forms over €2 that are contained
in WP9Ak(Q) and vanish in an open neighborhood of I'y are a dense subset of the
space WPIA¥(Q, T'r). This result apparently has not been available in the literature
before. The idea of proving a commuting mollification operator, however, is inspired
by previous works in global analysis [100].
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VII.5. Elements of Geometric Measure Theory

Before we continue to develop the smoothed projection, we need to prepare
definitions and results in geometric measure theory. This is non-standard material
in the context of numerical analysis. Our exposition in this section is specifically
targeted towards applications later in this chapter.

Whitney’s monograph [180] is our main reference. Our motivation for studying
geometric measure theory lies in proving Theorem VII.8.7 later in this chapter. The
key observation is that finite element differential forms are flat differential forms,
and that the degrees of freedom are flat chains (see Lemma VIL.5.2). This allows us
to estimate Lipschitz deformations of degrees of freedom (Lemma VIIL.5.4), which is
of critical importance in the construction of the smoothed projection.

We begin with basic notions of chains and cochains in geometric measure theory,
which can be found in Sections 1-3 of Chapter V in [180]. Throughout this section,
we fix for each simplex S C R"™ an orientation. We may identify each positively
oriented simplex S with the indicator function xgs : R — R. Let k € Z be arbitrary.
To each finite formal sum ), a;S; of (oriented) k-simplices with real coefficients we
may associate the function >, a;xs,. We call two such finite formal sums ) . @;5;
and ), b;T; equivalent, and write ), a;S; ~ >, b;T;, if the associated functions
> aixs, and > ; bjxt, agree almost everywhere with respect to the k-dimensional
Hausdorff measure.

The boundary 0,S of a positively oriented k-simplex S C R" is defined as

S = > ofFS)F. (VIL.37)

FEA(S)k—1

By linear extension, 0y >, @;S; = Y, a;0;S;, which defines a linear operator on the
finite formal sums of positively oriented k-simplices. Furthermore, it is apparent
that this operation preserves the equivalence relation.

The space C,SOI(]R”) of polyhedral k-chains in R™ is the vector space of finite
real formal sums of positively oriented k-simplices with the equivalence relation
factored out. If S € CP°(R"), then we write S ~ 3, a,S; if the latter formal
sum represents S. We may identify a polyhedral k-chain S ~ ", a;S; in R™ by the
function xs = >, a;xs, whenever convenient. The boundary operator (VIL.37) gives
rise to a linear mapping d, : C2'(R™) — CP° (R™).

The mass |S|x of a polyhedral k-chain S in R” is defined as the L' norm of
the associated function yg with respect to the k-dimensional Hausdorff measure.!
Hence, if S ~ . a;S; with the simplices S; being essentially disjoint with respect
to the k-dimensional Hausdorff measure, then

|S|r = Z |ag| vol® (S;).

It is easy to see that |- | is a norm on the polyhedral chains, called mass norm. We
write C**(R™) for the Banach space that results by taking the completion of the
polyhedral chains with respect to the mass norm.

"'We assume the convention that the k-dimensional Hausdorff volume of a k-simplex S equals
its k-dimensional volume vol®(S).
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The flat norm ||S||, of a polyhedral k-chain S € CP°'(R™) is defined as

151y = inf <\S — OkQlx + |Q\k+l>. (VIL38)
QeCy, (R™)
As the name already suggest, one can show that || - ||z, is a norm on the polyhedral

chains. The Banach space C2(R") is defined as the completion of CP*(R") with
respect to the flat norm. It is apparent from the definition that

1S|lks < |Slk, S € CEUR™).

In particular, C*5(R") is densely embedded in C;(R™).

We show that the boundary operator is bounded with respect to the flat norm.
To see this, let S € CP'(R") let € > 0, and let Q € C};’fl (R™) such that |S— 0k 11Q|x+
|Qlk+1 < ||S]|k» + €. We then observe that

10k k=15 < |06S — Ok(S — Ok1@Q)|k—1 + |S — Ok1Qk
< 1S = 0p1Qli
< ||Slkp + €

By taking € to zero in the limit, we have [|0xS||k—1» < ||S||xp- Using the density of
CPU(R™) in Co(R™), we find

lopalli-1p < llaliy, @ € CL(R).

We remark that the boundary operator is generally not bounded with respect to the
mass norm. This can be seen by shrinking a single simplex: the surface measure
scales differently than the volume.

Remark VII.5.1.
The space C***(R™) is a subspace of the Banach space of functions over R™ integrable
with respect to the k-dimensional Hausdorff measure. The members of CP(R™) play
a similar role as the simple functions in the theory of the Lebesgue measure. The
Banach space C;(R") can be motivated by the following example: for r > 0 small,
consider the two opposing longer sides of the rectangle [0,7] x [0, 1]. The mass norm
of these two edges is 2 regardless of » > 0. But in the flat norm for r small enough,
their norm is r, corresponding to area of the original rectangle. In this sense, the
flat norm takes into account the distance between simplices.

The chains in the space C}?*%(R™) are the most important ones in this chapter.
We discuss the space C.(R™) to utilize some technical tools in geometric measure
theory that are stated for flat chains in the literature.

The Banach space C;(R") of flat chains has a dual space, which is called the
Banach space of flat cochains. The space of flat cochains can be represented by a
class of differential forms: to every cochain we associate a differential form such that
evaluating the cochain on a simplex is equal to integrating the associated differential
form over that simplex. This is another instance of a recurrent idea throughout
differential geometry. Specifically, the space of flat cochains can be represented
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by the space of flat differential forms. Flat forms were studied in Whitney’s book
[180], there mainly as representations of flat cochains, and in functional analysis (see
[100]). For the following facts, we refer to Section 2 of [100] and Chapters IX and
X of Whitney’s book [180].

Flat differential forms have well-defined traces on simplices. More precisely, for
each m-simplex S C R” there exists a bounded linear mapping

trl : WO AR(R™) — WAR(S),

which extends the trace of smooth forms. In particular, for u € W A¥(R") the
trace tr% u depends only on the values of u near S. We write

/u::/trgu
S S

for the integral of u € W°*°A¥(R") over a k-simplex S. This induces a bilinear
pairing between C#5(R™) and W= A*(R™). We have

K

This pairing furthermore extends to flat chains. We have

[

The exterior derivative between spaces of flat forms is dual to the boundary operator
between spaces of flat chains. We have

< [S]pllull sy, S € CPSS(RY),  uwe WORAKRY).  (VIL39)

< lellkpllwllwoeso prmny, @ € CI(R"), u € W®AFR"). (VII.40)

/ u = /dku, a € CR"Y), ue WCAR"), (VIL41)
O« «

as a generalized Stokes’ theorem.

Many results in geometric measure theory are invariant under Lipschitz map-
pings. We recall some basic facts about pushforwards of chains and pullbacks of
differential forms along Lipschitz mappings. Here we refer to Paragraph 7 in Chap-
ter X of Whitney’s book [180].

Let ¢ : R™ — R"™ be a Lipschitz mapping. Then there exists a mapping

0. : Co(R™) — C)(R"), (VI1.42)
called the pushforward along ¢, which commutes with the boundary operator,
Oepsa = .0, € Co(R™), (VII.43)
and which satisfies the norm estimates

lpeallr, < max {Lip(p, R™)¥, Lip(p, R™)* '} [lallk,, o€ CR™),  (VIL44)
0. S|k < Lip(o, R™)*|S|r, S € C*s(R™). (VIL45)
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The pushforward of chains is dual to the pullback of differential forms. We recall
that this is a mapping

©* WA (R™Y) — WO AR (R™) (VIL.46)
which commutes with the exterior derivative,
d*p*u = p*d*u, u € WP ARR"), (VIL47)
and satisfies the norm estimate
9" ull oo ey < Lip(, R®)*[[ull pooprimy,  u € WCAR(R). (VIL48)
The pushforward and the pullback are related by the identity

/ u = /cp*u, u € W<AR"), o€y (R™). (VIL49)
76 [}

Lastly, if ¢ : R™ — R™ and 1) : R — R™ are Lipschitz mappings, then ¢t : Rt — R”
is a Lipschitz mapping, and we have (pv), = .1, and (p)* = ¥*p* over the spaces
of chains and differential forms, respectively.

Having outlined basic concepts of geometric measure theory, we provide a new
result which makes these notions interesting for finite element theory: the degrees
of freedom in finite element exterior calculus are flat chains.

Lemma VIL.5.2.
Let FF C R"™ be a closed oriented m-simplex and let n € C*°A™ *(F). Then there
exists a flat chain a(F,n) € C;(R") such that for all u € W A*(R") we have

/ trhou A = / u. (VIL.50)
F a(Fm)
Moreover, a(F,n) € C***(R™) and Oy (F,n) € CF(R™).

Proof. We first assume that dim /' = n, and that F' is positively oriented. We use
Theorem 15A of [180, Chapter IX] to deduce the existence of a(F,n) € C;(R"™) such
that

/ trhunn = / u, u € WCAMRY),
F a(Fm)
and such that

la(F, ﬁ)’k = ”UHLlAm—k(F)-

In particular, we even have a(F,n) € C*5(R").

Now assume that dim F' = m < n. There exists a simplex Fy C R™ and an
isometric inclusion ¢ : R™ — R"™ which maps Fj onto F'. Recall that the pullback
of a flat form along a Lipschitz mapping is well-defined. We have

/trl}u/\n:/ tr’}u/\n:/ O trhu A @'
F e« Fo Fo

= / O* trhu = / u
a(Fo,e*n) pxa(Fo.p*n)
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for u € W= AF(R"). Thus we may choose a(F,n) = p.a(Fy, ¢*n) € C*s(R™). It
remains to show that 9y_ja(F,n) € CP*5(R"). For u € W A*1(R"), we have

J

aka(an)

= / d* "ty = / n Atk d
a(Fn) F

= (—1)"“’““/ d" Fp Atehitu (=)™ F Z o(f7F)/ter;k77/\tr§i_lu
F

fEA(F)m71 f
= (—1)Mk+1/ u+ (=1)m* Z o(f, F)/ u.
a(F,dm=kn) feA(F)m-1 a(f,tr;?]k n)
In particular, Jyor € Ci*°(R™). The proof is complete. O

Remark VII.5.3.

The degrees of freedom in finite element exterior calculus can be described in terms
of integrals over simplices weighted against polynomial differential forms (see, e.g.,
Chapter IV). Hence Lemma VII.5.2 can be applied to identify the degrees of freedom
with flat chains.

We finish this section with an estimate on the deformation of flat chains by
Lipschitz mappings. This result is applied later in this chapter and constitutes the
rationale for considering geometric measure theory.

Lemma VIIL.5.4.

Let F C R" be an m-simplex and let n € C°A™*(F). Let a(F,n) € C2(R") be the
associated flat chain in the manner of Lemma VIL.5.2. Let » > 0 be fixed and let
¢ : By, (F) — Bs,(F) be a Lipschitz mapping that maps B, (F') into Ba,.(F'). Then

losar = alles < llp = 1 [l ooe (v (ol + S D4alicr), (VILS)

where £ := sup{Lip(y, Ba.(F')), 1}.

Proof. To prove this result, we gather several additional notions of Whitney’s mono-
graph. For any open set U C R", a polyhedral chain S ~ >~ a;5; € CPNR™) is in
U if all S; are contained in U, and S is of U if there exists an open set V C R"
compactly contained in U such that S is a chain in V' (see [180]).

The support of a flat chain a € C}(R") is the set of all points z € R" such that
for all € > 0 there exists u € C*°A*(R") with support in B.(z) such that [ S # 0.
It follows from Definition (1) in Section I.13 of [180, p.52| and the discussion in
Section V.10 of [180] up to Theorem V.10A that our definition of support agrees
with the definition of support in [180, Section VIL.3]

Having established these additional notions, the claim is now an application
of Theorem 13A in Chapter X in [180] together with Equation VIIL.1.(7) in [180,
p.233]. 0
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6. Review of Triangulations

VII.6. Review of Triangulations

Up to now, we have only addressed topics of purely analytical interest in this
chapter. Towards our goal of smoothed projections onto finite element spaces, we
briefly discuss triangulations. This builds upon the concepts of Chapter II.

Let 7 be a triangulation of the bounded weakly Lipschitz domain 2, and let I/
be a simplicial subcomplex of 7 that triangulates I'r. We equip the simplices of
T with fixed but arbitrary orientations, except for n-simplices, which we assume to
be equipped with the Euclidean orientation of R™. We have defined the geometric
shape measure of 7 by

B diam(7)"
w(T) = wmax e

Several other relevant quantities can be bounded in terms of 1 (7) and the ambient
dimension, as has been demonstrated in Chapter II. This includes the constant
un(7T), which bounds the numbers of simplices adjacent to a given simplex, and
the constant juq,(7), which measures how the (generalized) diameters of adjacent
simplices compare. We also recall the constant u.(7), but for the purpose of this
chapter, we will use u,(7) only in the definition of another quantity. We define

un(T) = ;ggsup{ €>0| B (T)C[T(T)] }. (VIL.52)

Lemma VIIL.6.1.
There exists a lower bound for py,(7) that depends only on p,(7) and €.

Proof. Since () is a weakly Lipschitz domain, there exists a finite covering Uy, ..., Uy
of Q by closed subsets together with a family ¢, ..., oy of bi-Lipschitz mappings
@i : Uy — [—1,1]". By Lebesgue’s number lemma, there exists v > 0 such that for
all x € Q there exists 1 < i < N such that B, (z) NnQ CU,.

Let z € Q and let y € B, (x) NQ. Let 1 <i < N such that B, (x) NQCU. A
path from z to y is a continuous mapping p : [0, 1] — Q with p(0) = x and p(1) = .
Let T be the set of all finite ordered subsets to, ..., ¢y of [0,1] that contain 0 and 1.
We define the length L(p) of a path p from x to y as

L(p):= sup Y |p(t:) —p(ti)|l -

{to,--tm}ET ;4

It is obvious that ||z — y|| < L(p). Furthermore, there exists a path p from z to
y such that L(p) < Lip(y;) Lip(¢; ')||z — ||, namely the image of the straight line
segment from ¢;(x) to ;(y) under ¢; .
For r > 0 we let B,(z) be the set of all points in 2 such that a path from x to y
of length 7 is contained in . We also see that B,(z) C B,(z). Hence, if 7 < ~, then
B+ (x)CB.(x).

Lip(wi)Lip(cpi_l) -
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Now, let T' € T with x € T. We write
C' = min Lip(gpi)*l Lip(gp{l)*l.

1<i<N

Let € > 0. The definition of p,(7) implies that B, (x) C [T(T)] for € < pu, (7). If
additionally ediam(Q2) < ~, then Beep,. () C [T(T)]. This completes the proof. [

Remark VII.6.2.
The underlying principle of the proof is that the inner path metric is equivalent to
the Euclidean metric over (2.

Additionally, we introduce the constant eg > 0 as the supremum
cq:=sup{e>0|VT €T : Bop, . (T) CQ°}. (VIL.53)

We have defined e such that the hpeg-neighborhood of every T' € T is compactly
contained in Q¢. Since hy < diam(f2), there exists a lower bound for eq that is
independent of the triangulation 7.

Finally, for each n-simplex T" € T of the triangulation, we fix an affine transfor-
mation p7(x) = Mrx+br where by € R™ and My € R™ ™ are such that pr(A,) = T.
Each matrix My is invertible, and

|Mrlloo < earhr,  ||M7t o2 < Carhy! (VIL.54)

for constants cpr, Cyy > 0 that depend only on (7)) and n.

VII.7. Review of Interpolants

We define the finite element spaces on the background of Chapter IV. To every
simplex F' € T of the triangulation we associate an admissible sequence type Pr €
/. Moreover, we assume that the hierarchy condition holds, i.e., we have

VI €T :VFeA(T): Pr<Pr.

This family of admissible sequence types describes a finite element de Rham complex
dk+1

dk—1 dk
. —— PANT U) —— PN (T U) —— ...

In Chapter IV we have also introduced the commuting interpolant I, which maps
from the space C®°A*(T,U) onto the space PA*(T,U). In particular, we have a
commuting diagram

N ooAR (T Uy s Rt T )

If,l 17",'+1l
L PARTLU) s PAM(T W)

We will now combine these ideas with results in geometric measure theory that
we have presented in the preceding section. We begin with the following basic
observation.

dk+1
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Lemma VII.7.1.
We have CAF(T,U) C W A*(T , U).

Proof. Let u € C®A*(T,U). As described in Section TV.1, we may identify u with a

differential form over 2. Since the triangulation is finite and tr% u is the restriction

of a member of C*°A*(R™) for each T € T", we conclude that u € L®°A*(Q) and

d*u € L®A*1(Q)), where the exterior derivative is taken in the sense of Section IV.1.
Next, let v € CA"*71(Q). We calculate

/ uNd"F 1y
Q

= Z /uT/\d"klv
T

TeT™
= (=1)k Z o(F,T)/uF/\tr}_k_lv+(—1)k+1 Z /dkuT/\v
TeT™ F re7n /T
FeA(T)" 1
= (—DF Y /dkuT/\v
TeTn T

:(—1)k+1/dku/\v
0

with integration by parts and using that u has single-valued traces. This shows that
u € WooAR(Q).

Finally, suppose that x € I'z and let > 0 be so small that B,(z) intersects 02
only along I'r. Let v € C°A""F~1(R") with support compactly contained in B,(z).
Then u € W=A*(Q, T';) follows as above via integration by parts, using that u
has single-valued traces on subsimplices and vanishing traces over simplices in U.
The proof is complete. O

We have seen in Chapter IV that the degrees of freedom of the finite element
de Rham complexes, which enter the definition of the finite element interpolant, are
defined in terms of the integrals over simplices of T against polynomial differential
forms over those simplices. By the results of Section VIL.5 these are flat chains of
finite mass. Specifically, to each simplex F' € T we associate a finite-dimensional
vector space PCL of linear functionals over C®°A*(T). After fixing an arbitrary
smooth Riemannian metric g over F, the space PC} can be written as the span of
the following three types of functionals:

e For each simplex F' € T, the space PC{ includes the functional

F

e For each simplex F' € T and p € PA*L(F), the space PCE includes the
functional

u»—)/u/\*gdk_lp.
F
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e For each simplex F' € T and (8 € éAk(F), the space PC}" includes the func-
tional

ur—>/dku/\*gdkﬁ.
F

It follows from Theorem VIL5.2 that PC} is a finite-dimensional space of flat chains

with finite mass whose boundaries have finite mass too. In the case of the third

class of functionals, we take Remark IV.4.8 into account in order to see that.
Correspondingly, we define the spaces of flat chains

PCL(T) == P PCY.

FeT

These observations allow us to extend the finite element interpolant to a contin-
uous mapping over flat differential forms. We have a linear operator

I - W AR Q) — PAR(T)

that is uniquely defined by setting
/[f;u = /u, u € WAKQ), S ePC(T).
S S

For u € W A¥(Q2) and S € PCy(T) we additionally observe that

/];gﬂdku:/dku:/ u:/ ];gu:/dk[;;u. (VIL55)
S S 0,5 0, S S

This implies that
Iy = d¥ hu,  uw e WO AR Q).

Furthermore, we observe that for all F € T we have trf. [ku = 0 if trfu = 0. As a
consequence, the mapping I maps W°»*A*(Q, T'r) into PA*(T,U). In particular,
we have a commuting diagram

L W AR(Q,Ty) — Yy W ARTL(Q ) L

I;gl 17’g+1l
L parT Uy s PAMY(T W)

dk+1

from the differential complex of flat differential forms over 2 with partial boundary
conditions along I'r onto the finite element de Rham complex over 7T relative to U.

In addition to that, I% can be extended to a bounded operator over the space

CAR(Q) of differential k-forms over Q with continuous coefficients. We have a
bounded linear mapping

I3 OAR(Q) — PAR(T)
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uniquely defined
/J;gu :/u, we CAFR), S e PCy(T).
s S

Similar as above, we observe that for all F' € T we have trk Thu = 0 if trhu = 0.
Hence 1% maps members of CA*(Q) whose trace on simplices in U vanish into the

space PAR (T, U).

We finish this section with the discussion of several inverse inequalities. These
follow easily from scaling arguments and the equivalence of norms on finite-dimen-
sional vector spaces. They build upon the fact that the finite element spaces over
each triangle are contained within the pullback of a finite-dimensional vector space
over a reference triangle.

By construction, the pullbacks ¢7.ur lie in a common finite-dimensional vector
space as u € PA¥(T) and T € T" vary. For example, this can be a fixed space of
differential forms with polynomial coefficients of sufficiently high order. Hence for
each p € [1, 00] there exists a constant C} , > 0 such that

||¢}u||wm’WAk(A7z) S Crl,k,pH(p}u”LpAk(An)7 u E ,PAk<T>7 T e Tn’ (VII56)

The constant C';%k,p depends only on p, n, and the maximal polynomial order in the
finite element de Rham complex.

Another inverse inequality applies to the degrees of freedom. By Lemma VII.5.2,
each degree of freedom can be identified with a flat chain of finite mass whose
boundary is again a flat chain of finite mass. In general, the boundary operator is an
unbounded operator as a mapping between spaces of polyhedral chains with respect
to the mass norm. But in the present setting, the pushforward of the degrees of
freedom onto the reference simplex takes values in a finite-dimensional vector space.
We conclude that there exists Cy > 0 such that

lort0kS|io1 < CalpriSl, S€PCE, FeA(T), TeT™ (VIL57)

Again, the constant Cy depends only on n and the maximal polynomial order in the
finite element de Rham complex.

Finally, we have a local bound for the interpolant. We observe that there exists
a constant C7 > 0 such that for 7 € 7" and u € CA*(Q) we have

i bulenan < Cr s fonSl! [ i (VIL58)
FeA(T) orls

;*
Ssepct

Similar as above, C7 depends only on n and the maximal polynomial order in the
finite element de Rham complex. Note that this inequality immediately implies
o Ipull poonr(a,y < Crllohulloara,, u € CAFQ). (VIL.59)

Remark VIIL.7.2.
The existence of constants C’fmp, Cs, and C7 as above follows trivially if the tri-
angulation 7 and the maximal polynomial order of the finite element spaces are
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fixed. But in applications we consider families of triangulations with associated fi-
nite element de Rham complexes. We then demand uniform bounds for the three
constants. Such uniform bounds hold if the triangulations are shape-regular and the
finite element spaces have uniformly bounded polynomial order. This thesis does
not address estimates that are uniform in the polynomial order, as would be relevant
for p- and hp-methods.

VII.8. Construction of the Smoothed Projection

In this section we complete the agenda of this chapter and devise the smoothed
projection from a Sobolev de Rham complex with partial boundary conditions onto
a conforming finite element de Rham complex.

In order to instantiate the smoothing operator of Section VII.4, we need to
specify a function controlling the smoothing radius. For our particular application,
that function should indicate the local mesh size. First we prove the existence of a
mesh size function H with Lipschitz regularity and then the existence of a mesh size
function h that is smooth.

Lemma VII.8.1.
There exists Lo > 0, depending only on ), and a Lipschitz continuous function
H:Q — R{ such that

VE e T : ,ulqu(T)*th < H|F < /quu<T>hF, (VII60)
Lip(H, Q) < pqu(T) La. (VIL.61)

Proof. We define H: Q — R{ as follows. If V € TP, then we set H(V) = hy. We
then extend H to each T € T by affine interpolation between the vertices of T. With
this definition, H is continuous, and (VII.60) follows from definitions. It remains to
prove (VIL61). Obviously, Lip(H,T') < pqu(7T) for T € T

Since (2 is a bounded weakly Lipschitz domain, there exists be a finite family
(U;)1<i<n of open sets U; C Q such that the union of all U; equals €2, and such that
there exist ¢; : U; — (—1,1)" bi-Lipschitz for each 1 <i < N (see Lemma VIL.1.6).
By Lebesgue’s number lemma, and the precompactness of {2, we may pick v > 0 so
small that for each x € Q there exists 1 <4 < N such that B,(z) N Q C U;.

First assume that z,y € Q with 0 < ||z — y|]| < 7. Then there exists 1 <
1 < N with z,y € U;. For M € N, consider a partition of the line segment in
(—1,1)™ from p(z) to ¢(y) into M subsegments of equal length with points ¢;(z) =
20,21, - 2m = 0i(x). Let z, := ©; '(2,,) € U;. For M large enough, the straight
line segment between x,, 1 and z,, is contained in U; for all 1 < m < M. After
a further subpartitioning, not necessarily equidistant, we may assume to have a
sequence r = wy,...,wy = y for some M’ € N such that for all 1 < m < M’ the
points w,,_1 and w,, are connected by a straight line segment in U; and such that
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there exists F,, € T with wy,_1,w,, € F,,,. We observe
M/
|H(y) - H($)| S Z |H(wm) - H(wm—l)l
m=1
M/
< () S it — 01
m=1

M
= t1qu(T) Y [ &m = T |
m=1

M

< paa(T) Lin(; 1) Y N0i(@m) = @i(@m-)|

m=1

< qu(T) Lip(o; 1) - [l0i(y) — @i(@)]]
< tiqu(T) Lip(g; 1) Lip(i) - fly — |-

If we instead assume that z,y € Q with ||z — y|| > 7, then

diam(€2)

H(y) — H(2)| < diam(Q2) < :

ly — x|
Hence Lip(H, Q) < fuqu(7T)Lq with

Lq :=sup {V*Idiam(Q), Lip(¢; ") Lip(¢1), - - -, Lip(¢x') Lip(goN)} )

Thus Lip(H, Q) < juqu(7T)La because any Lipschitz continuous function is Lipschitz
continuous over the closure of its domain with the same Lipschitz constant. O]

Lemma VII.8.2.
There exist a compactly supported smooth function h : Q¢ — RJ and constants
Cr > 0 and Ly, > 0, depending only on Q and fuqu(7), such that

Lip(h, Q°) < Ly, (VIL.62)
and such that for all F' € T and = € F we have
Cy'he < h(z) < Chhp. (VIL63)
Moreover, supph depends only on (2.

Proof Let H: Q — R$ as in the previous lemma. Consider the Lipschitz collar
W 0 9Q x [-1,1] — R™ introduced in Section VIL.1, and write G := ¥,(9€, (0,1)).
For z € QU G we define

N H(z) ifzeq,
H(z) := { H(Uo(ro,—1) if o= U(no,t), (20.8) €00 x (0,1).  (VIL64)

It is easy to see that Lip(H®,Q U G) < (1 + Cp) Lip(H%, Q) for a constant Cy that

depends only on W,. Note that H® is just the extension by reflection of H along the
Lipschitz collar. We extend H® trivially to a function over R".
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VII. Smoothed Projections

Next we let x : ©2° — R be a smooth non-negative function that assumes its

maximum 1 over an open neighborhood of €2 and has support compactly contained
in Q°. Then

(XHe)\Q = Hjo, (XHe)max (Q°) < HmaX(ﬁ)a

Lip(xH, Q2°) < t1qu(7T) Lo + Himax(2) Lip(x)-

For » > 0 yet to be determined, we let h := p, x YH®. Then h is smooth. For » > 0
small enough, supph is compactly contained in ¢ and

Lip(h, ) < Mlqu(T)LQ + Hmax (€2) Lip(x),

which gives the constant in (VII.62). Note that h(z) is contained in the convex hull
of all values of xH® in B,(x). We find for all x € Q that

2@ = [ e Ayt [ @) dy
B, (z)NQ B, (z)\Q

Hence for 7 > 0 small enough there exists C' > 0 such that for all z € Q the value
h(z) lies in the convex combination of the values of H over Bg,.(z). In particular, if
7 < (T ) hmin, Where iy, is the shortest edge length in 7, then (VII.63) holds for
F €T and z € F. The proof is complete. O

Remark VII.8.3.

The existence of Lipschitz-continuous mesh size functions was used before in the
literature [58]. We mention that the existence of a smooth mesh size function is also
used in [56].

We have given close attention to estimating the Lipschitz constant Lip(H). An
interesting observation in the light of Lemma VII1.8.1 is that Lip(H) is the product of
tiqu(T), which depends only on the shape of the simplices, and Lq, which depends
only the geometry. Conceptually, Lo compares the inner path metric of  to the
Euclidean metric over . The equivalence of these two metrics is non-trivial in
general but holds for bounded weakly Lipschitz domains.

We will use the smooth mesh size function h, but we will generally need to rescale
it by a fixed parameter ¢ > 0 in the sequel. Our goal is to choose ¢ > 0 so small
that the conditions of Theorem VII.4.1 are satisfied by o = eh. This enables us to
work with the smoothing operator M, in this section.

Lemma VII.8.4.
There exists €y > 0, depending only on €2 and u(7), such that for all € € (0, ¢y) the
function o = €h satisfies the conditions of Theorem VII.4.1.

Proof. First, we let € > 0 be so small that for each T' € T we have B, /¢, (T') C Q°.
It suffices that €/C} < eq. Under that condition, W, defined as in Section VIL.3,
maps 2 into Q°. If additionally €L, < 1/2, then the conditions of Lemma VII.3.2
are satisfied. Second, we choose € so small that eL; < dp and ehya(R™) < dp. For
the latter it suffices that ediam(€2) < dp. Then the conditions of Theorem VII.2.1
are satisfied. Lastly, we write r := diam(€Q2)Lp and choose € so small that the er-
neighborhood of supph is contained in €2¢, which depends only on 2. It follows via
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8. Construction of the Smoothed Projection

(VII.21c) that ©4, maps Q° bijectively into itself. Under these assumptions g := ¢h
satisfies the required properties, and the proof is complete. O

In the sequel, we call a quantity uniformly bounded if it can be bounded in terms
of the geometry, the mesh regularity, and the maximal polynomial degree of the
finite element space. We remind the reader that bounds uniform in the polynomial
degree are not subject of this thesis.

Towards the definition of the smoothed projection, we first define a smoothed
wnterpolant. Let € > 0 be small enough; we assume in particular € < ¢;. We define

QF . LPAR(Q) — PAR(T,U) C LPA*(Q), wrs IEMEu, pe[l,00. (VIL65)

We show that QF satisfies uniform local bounds and commutes with the exterior
derivative:

Theorem VIIL.8.5.
Let € > 0 be small enough. We have a bounded linear operator

QF - LPAF(Q) — PAM(T,U) C LPAM(Q), pe[l,00].
For each p € [1, oo] there exists uniformly bounded Cg, > 0 such that
HQ]:U”LPM(T) < CQ,p{%HUHLpAk(T(T))a u € LpAk(Q)a TreTm, (VIL66)
and
|QFull Loar(e) < CJ%/CQ,pE_%HUHLpM(Q), ue LPAM(Q). (VIL67)
Moreover, we have
d*QFu = QF'dru, we WPIARQ), p,q€l,00]. (VIL68)
Proof. Let u € LPA*(Q) and T € T". Then
||Q§U||LpAk(T) = ||I7I§M§1U||LPM(T)
< Vol (1) (L1 MEull sy < b IT5 Ml onsrr
Estimate (VIL.59) gives

115 MAul| oo s 7y = o™ I Mbul| oo an ()
< Oyt o Ip MAul | oo pka,)
< CrCyhr"lor MEull e ara,,)
< Crcy Ol MEullnrry.

For ¢ > 0 small enough, we may apply Theorem VII.4.1 with o = ¢h to find

(14 eLip(n)**>

k
HMEhUHCAk(T) S nd"p (Eh i (T))% HUHLPAIC(BGLI\/I(1+€Lip(h))hmax(T)(T)mQ)
min
v O (Lt eLy)™s
S Cn,k,p n_ - Hu“LpAk(BGChLZM(1+eLh)}LT(T)mQ)
erhy

145



VII. Smoothed Projections

Under the condition that e is so small that eCy, Ly (1 + €Ly,) < up(7T) we observe

By Ly (1teyyhe (T) N Q C T(T).

Thus the local bound (VIL.66) follows. The global bound (VIL.67) is obtained via

1QEUIE iy = D M@l priry < Chy D Nl nicrery

TeT™ TeT™

< O ix(T) S Nl ey < O i (Tl pic
TeTn

for p € [1,00), and for p = oo similarly.

Next, if /' € T with FF C I'y, then MEw vanishes near F. By the properties
of I we conclude that Q*u € PA*(T,U). Finally, the commutativity with the
exterior derivative (VIL.68) follows from Theorem VII.4.1 and the commutativity of
the finite element interpolant on flat differential forms. O]

Remark VII.8.6.
For the preceding lemma, it suffices that € > 0 is so small that e LC},(1+€Ly,) < pup(T)

and Lemma VIL.8.4 applies. We may assume Cg, < C}% pC”/”(l + L)t

The smoothed interpolant Q¥ is local and satisfies uniform bounds. Although
QF generally does not reduce to the identity over PA*(T,U), we can show that, for
e > 0 small enough, it is close to the identity and satisfies a local error estimate.

Theorem VII.8.7.
Let € > 0 be small enough. Then for every p € [1,00] there exists a uniformly
bounded constant C,, > 0 such that

Ju — QISUHLPM(T) < €CepllullLoar(rry, u€ PAMT,U), TeT"

Proof. We prove the statement by a series of inequalities. Let u € PA*(T,U) and
let T' € T". Then

lu — QFul| poar(ry < VOln(T)% lu — Qe ull poe sy
< Bl = Qbull ey
< WPl E*u — QFull ey
< Chht "o Ih(Bru - M) || oo b o7

By (VIIL.58) and (VII.49), we have

I3 5B~ RSB0 i) < Cr s gl / w— RE, % E".
Fe
SG’PCF

We need to bound the last expression. Fix F' € A(T) and S € PC}. We see that
| Bru i = [ [ ) (B @, 055 ay.
S S n
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8. Construction of the Smoothed Projection

We want to change the order of integration between those two integrals. As a tech-
nical tool, we use Theorem VI.7TA of [180], which implies that integrable continuous
differential k-forms over R™ are densely embedded in the space of flat chains over
R"™, such that the pairing of the induced flat chain with a flat differential form is the
usual scalar product between k-forms. Consider a sequence of continuous integrable
differential k-forms (S;)en such that S; — S in Cp(R™). We then find with Fubini’s
theorem and theorem of dominated convergence that

/ / Y)Psen y:D:hEku dy

= lim <SZ,/ 1Y) Psen , O B udy> dz
Rn n

1—00

— / () lim / (Si, @y, D EMu) da dy

z—)oo
:/ M(y)/q)zeh,yQZhEku dy
n S

Using these observations and (VII1.49) again, we have

/ 1(y) / Efu — @5, D% Efudy = / 1(y) / erEMu dy.
" S n So;isfw;igeh*q)éeh,y*s

Before we proceed with bounding this term, we gather some auxiliary estimates.
For A > 0 we find that

sup sup Hw — ©r @ehq)deh,y(SOT@)H
#E€B\ (7' F) yEB1(0)

< sup sup Carhy' [lor(2) — DenPseny (7))
2€B (¢p " F) y€B1(0)

< sup  sup Cyhy! [lor(2) — Dal(prd)|
Z€B) (pp " F) y€B1(0)

+ Cvh! | Dan(p72) — Den®Pseny (1) |

< sup sup C’Mh;lLDeh(ngi’) + Cyh7' Lp (1 + €Ly,) deh(prd)
2€B\(pp " F) y€B1(0)

< sup sup Cyhp'Lp (24 eLy) eh(pri).
#€B)\ (pp" F) yEB1(0)

Since & € By(p7' F), we have ¢r(2) € Bheya(F). Assuming cyd < (7)), we
moreover have prz € T(F), and hence h(orz) < fuqu(T)Crhr. For ey < pun(T)
we thus conclude

sup sup H:i: — 07" D Pseny (072) H < CuLp (2+ €Lyp,) €pugu(T)Ch.
2€B\ (pp" F) y€B1(0)

We observe that

sup Lip (7' DeaPsenyor, Br(or F)) < cCuLp (1 + eLy)”.
yEBl(O)
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VII. Smoothed Projections

We introduce the constants
Ri=cyCyLp(1+Ly)*, £:=CyLp (24 Ly) thqu(T)Ch

and henceforth assume that ¢ < 1.
We proceed with the main part of the proof. With (VIIL.40), it follows that

/ i By dsdy
7 S— 07 DensPoenysS

< sup [z, S — i Dens PoenyrS iy - |05 B ullwoe.ce ak(Be. (An))»
y€B1(0)

We need to bound this product.
We begin with the second factor. For € small enough we observe

H@?EkuHW"ovak(Bgé(An)) < (1 + C:+H%> cﬁjl(]]'fjl||go}u||Woo,ooAk(%1T(T)).
To see this, assume that Lrp£e < up(7T). Applying Lemma VIIL.1.8 gives
o7 E ]| oo pk(Boc(an)) < rrlp I E | Lo Ak By (1)
< (14677 ) hi el s sy e
< (14677 dibhllull easrny
< <1 + C§+%> Cﬁwojl\ﬁ/lHQO;“UHLOOA’“WEIT(T))
and, similarly,
15 B d | oo prs1 (B, (an)) < CkﬂhkﬂHEkﬂdkuHLwM“(BsehT(T))
< (1) AR ey oy (000
< (1+C ") ARl s ey
< (1 + C:H+%> C?\/—[HC]]T/I—H||90*TdkuHL°°Ak+1(<p;1T(T))'
The inverse inequality (VIL.56) gives
o7l yyee. % AR (71T (T)) < C kaSO*TU||LpAk(@;17(T))~

Another pullback estimate then provides

. no p_n
HSDTUHLPA’C(L,D;IT(T)) < C?wcﬁh:r ’ ||U||LPAk(T(T))'

On the other hand, we apply Lemma VII.5.4 to bound the remaining factor. Let
A > 0 as above. By applying Lemma VIL.5.4 with » = \/3, we then estimate

sup ‘|¢T*S <ipTlgeh*(I)éeh,y*‘SHk,b
yeBy (0)

= sup ||o7iS — oD ene Poen e peors Sl
y€B1(0)

<e-£-max(L,8)" - (|ortSlk + |0kpreSli-1) -
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8. Construction of the Smoothed Projection

The inverse inequality (VIL.57) gives
|0k 072 S|k-1 < Colora S|k
This completes the proof. O

Remark VII.8.8.
With the notation as in the proof of Theorem VII.8.7, we have

k n n
C,, = CE Oy (1 n Ob+1+”> KRCHRCE |k (14 Cy) € - max(1, R)".

It suffices that LrpLe < up(7T) and € < 1.

Remark VII.8.9.

Our Theorem VIIL.8.7 resembles Lemma 5.5 in 9] and Lemma 4.2 in [58]. We give a
brief motivation why our method of proof differs from theirs. In order to obtain the
interpolation error estimate over simplices T' € T, the authors of the aforementioned
references suppose that finite element differential forms are piecewise Lipschitz near
T. This holds if T is an interior simplex but not if T" touches the boundary of
2. In what appears to be a gap in the proof, it is not clear how their method
applies for such T'. The reason is that their extension operator, like ours, involves
a pullback along a bi-Lipschitz mapping, so the extended finite element differential
form is not necessarily Lipschitz continuous anywhere outside of 2. The extended
differential form, however, is still a flat form, and this motivates our utilization of
geometric measure theory to prove the desired estimate for the interpolation error.
A particular merit of our solution is that no modification to original construction in
[9, 58| is necessary.

We mention that interpolation error estimates (similar to Theorem VII.8.7) were
used earlier in [159], which in turn refers to a technical report for the details of
the proof. This technical report, however, has not been published as of the time
of this writing, and so comparing our proof of the interpolation error estimate,
though desirable, is currently not possible. On the other hand, a uniformly bounded
commuting projection is constructed in [56] with different techniques.

We are now in the position to prove the main result of this chapter. For ¢ > 0
small enough, the mapping Q : PA*(T,U) — PA*(T,U) is close enough to the
identity operator to be invertible. This leads to the smoothed projection.

Theorem VII.8.10.
Let € > 0 be small enough. There exists a bounded linear operator

7 LPAR(Q) — PAR(T,U) C LPAR(Q), p €1, 0],
such that
™u=wu, uePAT,U),
such that

d*rky = 7F by, w e WPIAR(Q,Tr), p,q €1, 00,
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VII. Smoothed Projections

and such that for all p € [1, o0] there exist uniformly bounded C; , > 0 with
HWkUHLpAk(Q) < Ow,pﬁ_%HUHLPAk(Q), ue LPAR(Q).

Proof. 1f € > 0 is small enough and p € [1, 0], then Theorem VII.8.7 implies that
1
HU — quHLpAk(Q) S EHUHLpAk(Q), u € PAk(T,Z/{)

By standard results, the linear mapping Q% : PA*(T,U) — PA*(T,U) is invertible.
Let J¥ : PA*(T,U) — PA*(T,U) be its inverse. J* does not depend on p, since Q*
does not depend on p. The construction of J* via a Neumann series reveals that

[ JFull poary < 2lulloary,  w € PAMT,U).
So J* is bounded. Moreover, J* commutes with the exterior derivative because
d"Jiu = JFP QM AN JFu = TR QE TP = JF P, w e PAN(T,U).
The theorem follows with 7% := JEQF, O

Remark VII.8.11.
Specifically, it suffices for Theorem VII.8.10 that ¢ > 0 is so small that Theo-
rem VIL.8.5 and Theorem VII.8.7 apply and that C,.,e < 2. We may assume

Crp < 2Cqux(T)7.

Remark VII.8.12.
We compare our construction of the smoothed projection with previous constructions
in the literature, with particular focus on the role of the mesh size function.

The smoothed projection constructed in 9] applies to quasi-uniform families of
triangulations. In that case, a classical mollification operator can be used instead
of our RE. That result was expanded in [58] to include shape-uniform families of
triangulations. The Lipschitz continuous mesh size function of Lemma VII.8.1 is
specifically inspired by the construction in [58]. But simple examples show that,
contrarily to the statement in [58, p.821], a regularization operator with that mesh
size function does not yield a continuous differential form. This is due to the differ-
ential of the mesh size function being discontinuous in general. The discontinuity of
the differential thwarts the global continuity of the regularized differential forms in
[58]. This is our motivation to employ a smooth mesh size function as a remedy.

But it is insightful to inspect the situation in more detail. The Lipschitz contin-
uous mesh size function in Lemma VII.8.1 is the limit of the smoothed mesh size
function in Lemma VIIL.8.2 for decreasing smoothing radius. It is natural to ask
how this limit process is reflected in the regularization operator. The gradient of
the original mesh size function features tangential continuity. Using this additional
property, one can show that the regularization operator of |58| does yield differen-
tial forms that are piecewise continuous with respect to the triangulation and that
are single-valued along simplex boundaries. Consequently, the regularized differ-
ential form, though not continuous, still has well-defined degrees of freedom, and
the canonical interpolant can be applied as intended. We emphasize that the main
result of [58] remains unchanged.
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8. Construction of the Smoothed Projection

Remark VII.8.13.

Several estimates in this section depend on a Lebesgue exponent p € [1,00]. We
carefully observe that it suffices to consider only the case p = 1: a sufficiently small
choice of € > 0 enables Theorem VII.8.10 for all p € [1, 00| simultaneously.

Remark VII.8.14.

Throughout this chapter, we have provided explicit formulas for the admissible
ranges of ¢, and we have derived explicit estimates for several constants. In gen-
eral, these quantities are effectively computable. The only exception are construc-
tions that involve Lipschitz collars. It seems a reasonable assumption that explicit
constructions of Lipschitz collars are feasible, at least in principle, for polyhedral
domains. Provided such results, all constants in this chapter become effectively com-
putable. Further research on this topic could reveal dependencies on the geometric
properties of the domain, such as the boundary curvature.
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VIII. A Priori Error Estimates

Commuting projections are of general relevance in the theory of mixed finite ele-
ment methods. Arnold, Falk, and Winther [11] have embedded mixed finite element
methods in the theoretical framework of Hilbert complexes (see Briining and Lesch
[42]), and have developed what can be called a Galerkin theory of Hilbert complezes.
Here, abstract projection operators take a central role: they are assumed to commute
with the differential operators and to satisfy uniform bounds. Given such operators,
one can relate algebraic and analytical properties of discrete subcomplexes to the
original complex, prove the stability of approximate discrete problems, and derive
abstract a priori error estimates for Galerkin approximations.

The major application of this abstract theory is mixed finite element methods for
the Hodge Laplace equation, which requires stably bounded smoothed projections
from the L? de Rham complex over a bounded Lipschitz domain onto finite element
de Rham complexes. This was initially accomplished for L? de Rham complexes
without boundary conditions and finite element spaces over quasi-uniform families
of triangulations [9]. Subsequently this was extended to shape-uniform families of
triangulations and full homogeneous boundary conditions [58|.

In the preceding chapters, we have developed a smoothed projection over the L?
de Rham complex over weakly Lipschitz domains and moreover considered partial
boundary conditions. Furthermore, we have extended the class of finite element
spaces to the case of non-uniform polynomial order. Our smoothed projection en-
ables the abstract Galerkin theory of Hilbert complexes.

The aim of this chapter is to elaborate on this application. In particular, we
identify the mized boundary conditions of the Hodge Laplace equation associated to
the L? de Rham complex with partial boundary conditions. We give special attention
to harmonic forms with mized boundary conditions. The harmonic forms span the
kernel of the Hodge Laplace operator and play a singular role in the convergence
theory of finite element exterior calculus. When we consider the de Rham complex
with either no and full homogeneous boundary conditions, then the dimension of the
space of harmonic forms reflects topological properties of the domain; but when we
consider the de Rham complex with partial boundary conditions, then the situation
is more complicated and new qualitative properties are present: the dimension of
the space of harmonic forms depends not only on the topology of the domain but
also on the topology of the boundary patch along which the boundary conditions
are imposed. Even if the domain itself is topologically simple, the space of harmonic
forms satisfying mixed boundary conditions may have a large dimension. This qual-
itative difference apparently has not been discussed in the literature yet.
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VIII. A Priori Error Estimates

To begin with, we give a brief review of the theory of Hilbert complexes in
Section VIII.1. We then describe the Hodge Laplace equation with mixed bound-
ary conditions in Section VIIL.2, for which we primarily use results of Gol’dshtein,
Mitrea and Mitrea [99]. Finite element de Rham complexes are briefly recapitulated
in Section VIIL.3, where we prove discrete Poincaré-Friedrichs inequalities and show
the stability of discrete Hodge Laplace equations. The a priori error estimates in
Section VIII.4 are an example application of the abstract Galerkin theory.

This chapter addresses a priori error estimates for the mixed formulation of
the Hodge Laplacian equation, which is also known as the source problem. The
abstract Galerkin theory of Hilbert complexes also gives a priori error estimates for
the corresponding eigenvalue problem (see [11]) among other applications, but this
is not addressed here.

VIII.1. Notions of Hilbert Complexes

We review basic notions of Hilbert complexes. A thorough discussion in func-
tional analysis has been provided by Briining and Lesch [42], and a Galerkin theory
of Hilbert complexes has been initiated by Arnold, Falk, and Winther [11].

We first recall some notions of linear operators over Hilbert spaces. For every
Hilbert space W we let (-,-)y be the associated scalar product and || - || be the
associated norm. We may leave out the subscript and simply write (-,-) and || - ||,
respectively, if there is no danger of confusion. If A C W is a linear subspace of
W, then we let AW denote the orthogonal complement of A in W. We also write
At = A+ if the ambient Hilbert space W is known from context.

Suppose that W and W are Hilbert spaces and that d : dom(d) C W — W is an
unbounded linear operator with domain dom(d). We let ker d = ker(d) denote the
kernel of d and let rand = ran(d) denote the range of d. We say that d is a closed
operator if the graph

graph(d) := { (z,dz) € W x W | 2 € dom(d) }

is a closed subset of W x W. We say that d is densely-defined if dom(d) is dense in
W. The mapping d is called bounded if there exists a constant C' > 0 such that

|dz|| < Cllz]|, « € dom(d). (VIIL1)

We say that d has closed range if the range of d is closed; one can show [179,
Lemma IV.5.2] that this is equivalent to the existence of ¢ > 0 such that

Vy € ran(d) : 3z € dom(d) : dz =y and ||z|| < c|y||, (VIIL.2)
or equivalently,

Vo € dom(d) : 3o € ker(d) : ||z — zo|| < cf|dx||.
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The smallest C' satisfying (VIIL.1) is called the norm of d. The smallest ¢ satisfying
(VIIL.2) is called the Poincaré-Friedrichs constant of d. Furthermore, any densely-
defined bounded operator can be extended uniquely to the whole of W, which makes
it a bounded operator in the classical sense.

Whenever d : dom(d) C W — W is a densely-defined closed linear operator,
then we write d* : dom(d*) C W — W for the adjoint operator. The adjoint is a
densely-defined closed linear operator too, and we have d** = d. One can show that
d is bounded if and only if d* is bounded, in which case the norms agree. Similarly,
one can show that d has closed range if and only if d* has closed range, in which
case the Poincaré-Friedrichs constants agree.

We call d self-adjoint if d = d*. Moreover, we make extensive use the concept
of pseudoinverse of a bounded linear operator with closed range. We refer to Beut-
ler [25] and Desoer and Whalen [73] for further information on this subject. The
pseudoinverse of a densely-defined closed linear operator d with closed range is the
unique bounded linear operator d' : W — W that is defined by

d'y := argmin ||z|. (VIIL.3)
z€dom(z)
y=dzx
One can show that d* = d™. We remark that the pseudoinverse is the solution
operator to the (possibly inconsistent) least-squares problem dz = y with unknown
x and data y. The pseudoinverse gives the x € dom(d) with minimal norm among
the minimizers of ||y — dz||. A particularly important property is

Vo € dom(d) : dd'dx = dux.

The norm of d' is precisely the reciprocal of the Poincaré-Friedrichs constant of d.

A Hilbert complex (W, d) consists of a sequence of Hilbert spaces W = (W*),ez
together with a sequence d = (d*)ez of densely-defined closed unbounded operators
d* : dom(d*) C Wk — WHk*HL that satisfy the differential property

ran d® C ker d". (VIIT.4)

A Hilbert complex can be visualized as a diagram:

T gk gk (VIIL5)

We call a Hilbert complex bounded if all differentials (d*)cz are bounded operators.
We call a Hilbert complex closed if all differentials (dk) rez have closed range.

If (W,d) is a Hilbert complex, then the adjoint Hilbert complex (W,d)* is the
Hilbert complex (W, d*) where W = (W"),cz is the same family of Hilbert spaces
and d* = (df)kez is the sequence of adjoint operators. We have the differential
property dj_,d; = 0. We visualize (W, d)* as the diagram

R ST U (VIIL.6)
We note that (W,d)*™ = (W, d). Moreover, (W, d)* is bounded if and only if (W, d)
is bounded, and (W, d)* is closed if and only if (W, d) is closed.
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Remark VIII.1.1.

The adjoint of a Hilbert complex conforms to a different indexing convention than
proper Hilbert complexes. Hence, the adjoint Hilbert complexes are technically a
different category of objects. It is convenient, however, to ignore this technical
matter, since the differences are only an index convention.

Let (W, d) be an arbitrary but fixed Hilbert complex. We assume that (W, d) is
closed. A fundamental concept in the category of Hilbert complexes are Poincaré-
Friedrichs inequalities. There exists a constant Cpp > 0 such that

|zl < Coplld¥z], = e W*n (ker(d*))". (VIILT)

We call (VIIL.7) a Poincaré-Friedrichs inequality and Cpp the Poincaré-Friedrichs
constant of (W, d).

Another fundamental concept in the category of Hilbert complexes are harmonic
spaces. The k-th harmonic space of (W, d) is

H* = kerd* Nkerd;_,. (VIIL8)

This is a closed subspace of W* because the kernel of closed unbounded operators is
closed and the intersection of closed sets is closed again. By basic facts on Hilbert
spaces we have

kerd® = (rand;_,)*, (rand"')* =kerd; ,.
Hence $H* satisfies several identities, such as
H* =kerd* N (rand* ')t = kerd;_, N (rand})" . (VIIL.9)

Recall that the differentials are assumed to have closed ranges. The abstract Hodge
decomposition of W* is the orthogonal decomposition

Wk =rand* ' @ H* @ rand;. (VIIL.10)
Again, there several equivalent ways to write that decomposition, such as
W* = rand* @ §* @ (kerd") ™. (VIIL11)

The principle relevance of the harmonic spaces is that they appear as “defects” in
partial differential equations, as we explore in this thesis.

Remark VIII.1.2.

The homology theory of Hilbert complexes is not a mere specialization of homological
algebra. The reason is that differential complexes in homological algebra are always
constructed from a category of objects; for example, differential complexes of vector
spaces are constructed from the category of vector spaces with linear mappings. But
Hilbert spaces with closed densely-defined unbounded mappings do not constitute
a category. For example, the product of closed unbounded operators is not closed
in general. This forecloses an immediate application of homological algebra. Still
many ideas of homological algebra have analogues for Hilbert complexes.
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We continue to assume that (W, d) is a fixed closed Hilbert complex. We intro-
duce the sets

dom (D*) := dom(d*) N dom(d;,_,),
dom (Ay) == { z € dom (D") | dp_yx € dom(d*™"), d*z € dom(d;) }.
The k-th Dirac operator associated to (W, d) is the unbounded operator
D*:dom (D*) CW* - W W 2w (di_jz,d"z). (VITL.12)

We let D; denote the adjoint of D*. By the Hodge decomposition, it is easy to verify
that D* is densely-defined, closed, and has closed range with the Poincaré-Friedrichs
constant being the one of (W, d).

The k-th Hodge Laplacian or Hodge Laplace operator associated to (W, d) is the
unbounded operator

Ay :dom (Ay) CW =W, x~ did*z+d"'d;_,x. (VIIL.13)
Note that in the sense of unbounded operators
Ay = DiD" = did* + d"d;_,.
The constructions immediately imply that
H* = ker A}, = ker D, (VIIIL.14)

It is easily seen that DF is densely-defined and closed, and that D* has closed range
if (W, d) is closed. The corresponding properties of Ay require more work.

Theorem VIII.1.3.
The Hodge-Laplacian Ay is densely-defined and closed. Moreover, A is self-adjoint
and positive semi-definite. We have ker A, = ker d* Nker dj_,.

ker Ay = kerd* Nkerd; | = (ran A;)". (VIIL.15)

Proof. We show that Ay is densely-defined. The Lax-Milgram theorem (see [86,
p.315]) implies that for every F' € dom(D*)’ there exists zr € dom(D) such that

(xp, yY)wr + <dkxp, dky>Wk+1 +{(d}_xp,di_y)wr = Fly), y€ dom(Dk).
(VIIL16)

Provided that there exists f € W such that F(y) = (f,y)w+ for all y € dom(D¥),
then zr € dom(D*D) follows by definitions. In particular, for every f € W there
exists ¢ € dom(D*D) satisfying (VIIL.16) with F(y) = (f,y)w». Let us suppose
that 2° € dom(D¥) is orthogonal to dom(Ay) in the Hilbert space dom(D¥) with
the graph scalar product. Then for all f € W* we have

<f7 $0> = <$f7 $0>Wk + <dkxf7 dkx0>Wk+1 + <d2—1zfa dZ—lx())Wk—l =0.

We conclude z° = 0. Hence dom(Ay) is dense in dom(D¥), and so it is dense in
WF. In particular, Ay is densely-defined.
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Next we show that Ay is self-adjoint, which also implies that Ay is closed.
First, we observe from definitions that dom(Aj;) € dom(Aj}), where A} denotes
the adjoint of Ay. Let x € dom(A}), so there exists C, > 0 such that (z, Ayz) <
C.llz] - ||| for all z € Ay. We have x € dom(D¥) if there exists C’ > 0 such that
(x, Diy) < Cl||z| - |lyll for all y € dom(Dj). To show this condition, it suffices to
consider y € dom(D;) with y L ker(Dj), which is equivalent to y € ran(D*). But
since the Hilbert complex is assumed to be closed, there exists ¢ > 0 such that for
y € dom(Dj) Nran(D¥) there exists z € dom(D¥) with D*z = y and ||z|| < c||y]|-
But then

(2, Dry) = (x, DyDz) < Cyljz[| - [|z]] < Cofl] - cllyll

Hence z € dom(D¥). Next, we have D¥z € dom(Dj) if (D*z, D*.) is a bounded
linear functional over W*, which is already the case if the functional is bounded
over the dense subset dom(Ay). This last condition, however, is satisfied, since
x € dom(A}). We conclude that Ay = D D" is self-adjoint.

That AF is positive semi-definite is easily verified too. Finally, (VIII.15) follows
from definitions. []

We are particularly interested in the Hodge Laplace equation Ayu = f. Since the
self-adjoint operator Ay generally has a non-trivial kernel, we may use a Lagrange
multiplier. In applications, the kernel is finite-dimensional.

The k-th Hodge Laplace problem associated to the Hilbert complex (W, d) is to
find u € dom(Ay) and p € $H* such that

Ayu+p=f, ul$Hk (VIIL.17)

for given f € W*. We call this the strong formulation of the Hodge Laplace prob-
lem. One can show that there exists a bounded operator AL, the pseudoinverse of
Ay, such that for every f € W the solution of (VIII.17) is given by u = A,Ef and
p = f — Agu. This means that the strong formulation is well-posed.

Similar to the case of the Poisson problem, a weak formulation of the Hodge
Laplace problem is of interest. We equip the space dom(D¥) with the graph scalar
product of D¥, which makes dom(D*) into a Hilbert space. We let dom(D*)" denote
the dual Hilbert space. The weak k-th Hodge Laplace problem associated to (W, d)
is to find u € dom(D*) and p € $H* such that

(d*u, d*v) + (dju, div) + (p,v) = F(v), v € dom(DF), (VIIL.18a)
(u,q) =0, qeo, (VIIL18D)

for given functional F' € dom(DF¥)". The existence and uniqueness of a solution is
now an elementary consequence of the Lax-Milgram theorem together with a small
modification to account for the Lagrange multiplier. Moreover, if F(v) = (f,v),
then (u,p) is a solution of the weak formulation if and only if it is a solution of the
strong formulation.
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It is intuitive that the weak formulation of the Hodge Laplace problem is more
amenable for Galerkin methods. But in practice, the weak formulation is still too
strong. A conforming Galerkin method will approximate the solution in dom(D¥),
which still poses too strong requirements on the approximation space.

Instead, we will focus on a third formulation of the Hodge Laplace problem. In
accordance with the notation in [11], we abbreviate V* = dom(d*) for the domains
of the differentials equipped with the graph scalar product of d. The corresponding
norm on the Hilbert space V* will be written || - ||y« in the sequel, and induced norm
on the dual Hilbert space V' will be written || - ||y». The mixed formulation of the
Hodge Laplace problem is now to find the unknowns

(o,u,p) € VFE x VF x ©F (VIIL.19)

such that for given right-hand side

(G, Fr)ye (VEY x (VF) x oF (VIIL.20)
we have
(0,7) = (u,d" 1) = G(r), TeVk (VIIL21a)
(d* o, v) + (d*u, d"v) + (p,v) = F(v), veVF (VIIL.21b)
(u,q) = (r,q), qe9H* (VIIL21c)

If (u,p) € dom(Ay) x H* is the strong solution of the Hodge Laplace problem with
right-hand side f, then (o,u,p), where o = dju, solves the mixed problem with
G =0and ¢ =0 and F(v) = (f,v). On the other hand, if G = 0 and r = 0 and
F(v) = (f,v), then the solution of the mixed from (o, u,p) satisfies 0 = dju and
(u,p) is the solution of the strong formulation. Proving the stability of the mixed
formulation is more complex than for the mixed formulation. The stability constant
depends on the Poincaré-Friedrichs constant of (W, d). We recall the following result.

Theorem VIII.1.4.

There exists a constant C' > 0, depending only the Poincaré-Friedrichs constant
Cpr, such that for every right-hand side (G, F,q) € (Vk_l)/ X (V"‘), x $* there
exists a unique solution (o,u,p) € V¥ x V¥ x §* of (VIIIL.21) such that

(loflv + llully + lplw) < C UGy + [[Fllve +lIrllw) -

Proof. This follows by Theorem 3.1, Theorem 3.2 and the subsequent discussion in
[11]. The constant C' depends only on the constant 7 in the statement of Theorem 3.2
in [11], which in turn only depends on the Poincaré-Friedrichs constant. ]

VIIL.2. L? de Rham Complex over Domains

The framework of Hilbert complexes is applied in several instances throughout
this thesis. Here we consider the most central application: the L? de Rham complex
over a weakly Lipschitz domain. More precisely, we consider the case of partial
boundary conditions.
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Throughout this chapter we let 2 C R™ be a bounded weakly Lipschitz domain.

In addition, we let (I'y, '/, I'y) be an admissible boundary partition. We focus on
spaces of the form L??A*(Q, ') for k € Z. Following [99], we write

HrAR(Q) := W22AF(Q, T'p), (VIIL.22)

HGAR(Q) =« WA F(Q, Ty), (VIII.23)

and consider the unbounded linear operators
d* : HpA®(Q) C L2A%(Q) — HpARTH(Q), (VIIL.24)
6% HyAR(Q) C LPAR(Q) — HGAH(Q). (VIIL.25)
These linear operators are closed and densely-defined, since HyA*(Q) and HxA*(Q)
are Hilbert spaces, and additionally they are mutually adjoint, which means

/ dfu A wv = / uAx6Fy, u € HpAR(Q), v e HyAFTH(Q). (VIII.26)
Q Q

The identity (VIII.26) is an easy consequence of approximation by smooth differ-
ential forms (see Lemma V.3.5). We may assemble the L? de Rham complex with
tangential boundary conditions along I'r,
T HAARQ) € L2ARQ) s HpARY(Q) C L2AR () 2
(VIIL.27)

and its adjoint L? de Rham complex with normal boundary conditions along Iy,

. & HK{A"?(Q) - LQAk(Q) (619_“ H;,Ak'H(Q) C LQAk+1(Q) ﬂ
(VIII.28)

It is evident that the Hilbert complexes (VIII.27) and (VIIL.28) are mutually adjoint.
That (VIII.24) and (VIIL.25) have closed range follows by [99, Proposition 4.3(i)]. In
particular, the Hilbert complexes (VIIL.27) and (VIII1.28) are closed. One implication
is a Poincaré-Friedrichs inequality. There exists Cpr > 0 such that

Vu € HrAF(Q) : Fug € HpAF(Q) Nnkerd® : |ju — ug|| < Cprpl|d*ul.
The space of k-th harmonic forms with mized boundary conditions is defined as
HM(Q,Tr, Ty) = { p € HrA*(Q) N HRAYQ) [ d"p =0, 6*p=0}.

It can be shown that $*(Q,T'r,['y) has finite dimension [99, Proposition 4.3|.
Putting all this together, we have the L? orthogonal Hodge decomposition

LPAR(Q) = d* THAEH Q) @ 9%(Q, T, Ty) @ SF TP H*AE(Q). (VIII.29)

The dimension of $*(Q,T'r,I'y) depends only on the topology of  and 'y, and is
of independent interest. More specifically, from Theorem 5.3 in [99] we find that
dim $H*(Q, 'z, T'x) equals the k-th topological Betti number by, (Q,T'r) of Q relative
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2. L? de Rham Complex over Domains

to I'z, and equals (n — k)-th topological Betti number b, _(Q,T'y) of Q relative to
I'y. Thus we have

dim $H*(Q, T, Ty) = b(Q,T7) = b, (2, Tw), kE€Z (VIIL.30)

The special cases I'r = () and 't = 9Q have received the most attention in the
literature. In that case, the Betti numbers correspond to the topological properties
of the domain, such as the number of holes of a certain dimension. In the presence
of mixed boundary conditions, the Betti numbers depend also on the topology of
the boundary patch I'p.

Example VIII.2.1.

For every weakly Lipschitz domain, the Betti number by(Q, T'7) is the number of
connected components that do not touch I'y. The space $H°(€2, 'z, ') corresponds
to the span of the indicator functions of those components of €.

We consider an example over a domain with a very simple topology, where the
harmonic forms with mixed boundary conditions may still have a very non-trivial
kernel, depending on the topology of the boundary patch. Consider the example
Q= (—1,1)% and let T'r C 9 be the union of m € N relatively open subsets of 9
that pairwise have positive distance. In that case one can show that

bg(ﬁ, FT) = 0, bl(ﬁ, FT) =m — 1, bg(g, FT) =0.
In particular, dim H'(Q, T'7, T'y) = m — 1.

We are also interested in an analogue of the Rellich embedding for differential
forms. The intersection HyA*(Q)NH¥ A*(Q) is a Hilbert space that can be equipped
with the compatible norm that is uniquely defined by

||u||§{TA’€(Q)OH]*\,Ak(Q) = “uH?{TAk(Q) + ||U||§1;VM(Q)’ u € HTAk(Q) N HJ*\fAk(Q)-
From Proposition 4.4 of [99] we know that the embedding
HrAR(Q) N HYAR(Q) — LPAR(Q), (VIIL31)

known as Rellich embedding, is compact. Stronger conditions on the domain and
the boundary patch imply refined versions of the Rellich embedding. We use this
later in this chapter after having introduced fractional Sobolev spaces.

The L? de Rham complex with tangential boundary conditions along I'; gives
rise to the Hodge Laplace operator, which we have introduced abstractly in the
previous section. Let

k—1 * A k+1
dom(Ay) = { u € HAL(Q) N H*A%(Q) d""u e H*Ay™(Q), }

SFly € HAEH(Q)

The k-th Hodge Laplacian with respect to these boundary conditions is the un-
bounded operator

Ay dom(Ay) C LPAM(Q) — L2ARQ), w67 d¥u 4 d* 16 u.
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As a consequence of Theorem VIII.1.3, the operator A, is densely-defined, closed,
self-adjoint, and has closed range. Furthermore,

H*(Q,I'p, Ty) =ker Ay, rtan A, = H5(Q, T, Ty)™ .
Since Ay has closed range, it has a bounded pseudoinverse. We let
&, : L*AF(Q) — L*A*(Q)
denote the pseudoinverse of the Hodge Laplacian in the sense of [73]. We have
4. f € dom(Ay), %Gf L O (Q,Tr,Ty), f—A%f€n™(Q D, Ty).

for all f € L2A*(Q). One can show that the operator norm of ¥, is bounded by
C%r. Additionally, %, takes values in the intersection HpA*(Q) N HGA*(Q) and is
bounded as an operator from L2A*(Q) to HrA*(2) N HxA®(Q). The compactness
of ¢, follows from the compactness of the Rellich embedding.

The strong formulation of the k-th Hodge Laplace equation with mixed boundary
conditions asks for v € dom (Ay) and p € H*(Q, 'z, T'y) such that

Ayu=f—p, (VIIL.32)
for given data f € L2A*(Q). The solution to this system is given by

u=%f, p=f—A%f

The strong formulation should not be regarded as amenable for a finite element
method. For example, it is difficult to construct shape functions in dom(Ay). The
weak formulation of the Hodge Laplace equation is not of much interest in this
thesis either: even though one can construct piecewise polynomial differential forms
in Hr A*(Q)NH3 A*(Q), such differential forms are generally not dense in HpA*(Q)N
H3 A*(Q), which makes the weak formulation a generally inconsistent method; see
also Remark VIIL.2.3 below.

We consider the mixed formulation of the Hodge Laplace equation. We search
for the unknown

(o,u,p) € HpA* 1 (Q) x HpA*(Q) x H5(Q, T, Ty) (VIIL.33)
which for given right-hand side
(G,F,r) € HpA*"1(Q) x HrA*(Q) x $%(Q, 'y, Ty) (VIIL.34)

solves the problem

(0,7) — (u,d" 1) = G(7), 7€ HpA*"(Q), (VIIL.35a)
(d* 1o, v) + (d*u, d"0) + (p,v) = F(v), v e HpA*(Q), (VIIL35b)
(u,q) = (r,q), q€H"(QTr,Ty). (VIIL35¢)

The well-posedness of this problem is a direct consequence of Theorem VIII.1.4.
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Corollary VIII.2.2.
There exists a constant C' > 0, depending only on the Poincaré-Friedrichs constant
of (VIIL.27), such that for every

(G,F,q) € HrA*1(Q) x HpA*(Q) x $%(Q,Tp,Ty)
there exists a unique solution

(o,u,p) € HpA*1(Q) x HpA*(Q) x H*(Q, 7, Ty)
of the mixed formulation such that

e llv + llullv + llpllw) < C UG+ [[Fllv: + [I7]lw) -

Remark VIII.2.3.

The weak formulation of the Hodge Laplace equation leads to a semi-elliptic varia-
tional formulation over the intersection space HpA*(Q) N HyAF(Q). Tt is not trivial
how to use this as the base of a Galerkin method (but see, e.g., [63| for approaches
in that direction). The reason is that every simplexwise polynomial subspace of
HrAF(Q)N HyA* () is necessarily a space of differential k-forms with coefficients in
the Sobolev space H'(€2). But such a space generally has infinite codimension (see
Costabel [62]). By contrast, a Galerkin method based on the mixed formulation of
the Hodge Laplace equation requires only a conforming discretization of the spaces
HrA*(Q). Indeed, we will develop a convergent and stable mixed finite element
method in this chapter.

As mentioned above, there exist refinements of the Rellich embedding for special
domains and boundary conditions. To enable the discussion of this, it will be helpful
to discuss differential forms with coefficients in Sobolev-Slobodeckij spaces of higher,
possibly non-integer order. We give only a few definitions, and refer to specialized
literature (e.g., [7, 45, 74, 158]) for further information.

We begin with the scalar-valued case. For every s € Ny we let W*(Q2) denote the
Sobolev-Slobodeckij space of order s. This is a Hilbert space with scalar product

(U, vV)ws(0 Z Z “u, 0%0) 12y u, v € WH(R), (VIII.36)

r=0 acA(r,n)

where the partial derivatives are taken in the weak sense. We write || - ||y (q) for the
associated norm. Note that L*(Q) = W°(2). In order to treat fractional Sobolev
spaces, we introduce for every 6 € (0,1) the (possibly infinite) quantities

[, V] oy = // 9.0@) =0 gy we e L2Q). (VIILST)

|n+29

The members of u € L*(Q) with [u, u]ye o) < oo constitute the Hilbert space W?(Q),
the Sobolev-Slobodeckij space of order #. This is a Hilbert space with scalar product

(u, U>W€(Q) = <U7U>L2(Q) + [U>U]W9(Q)- (VIIL.38)
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We write || - ||yoq) for the corresponding norm.

Combining these definitions, we develop for s = r + 6 with » € Ny and 0 €
(0,1) the Sobolev-Slobodeckij space W*(€2). This is a Hilbert space continuously
embedded in L*(Q), and its scalar product is

(u, v)ws() = (u, o) + Z “u, 0%y, v € W),

acA(r,n)

We write || -||ws(q) for the corresponding norm. We avoid further details of fractional
Sobolev spaces at this point. We remark that W*(£2) is continuously embedded in
W= (Q) for t > s as can be verified easily from definitions.

For k € Z and s € R} we let W*A*(Q) denote the subspace of L?A*(€2) that is
spanned by differential k-forms with coefficients in W*(€2). This space is isometric
to a direct sum of several copies of W*(Q)) and satisfies completely analogous proper-
ties as the scalar-valued instances. We let ||-||yy<zx(q) denote the corresponding norm.

We now provide the stronger versions of the Rellich embedding, which in this case
are known as Gaffney inequalities. We say that a Gaffney inequality with exponent
s € R holds if there exists s € Rj and C' > 0 such that

[ullwsar@) < Cllullppar@pnmyase), w € HrA(Q) N HyAMQ). (VILL.39)

Such inequalities have been investigated under different conditions. We mention
that a Gaffney inequality with s = 1 holds if Q2 is a strongly convex Lipschitz do-
main and Iy € {0,0Q} (see [140]). In general, a Gaffney inequality with s = 3
holds for §2 being a weakly Lipschitz domain and 'y being an admissible boundary
patch. Several Gaffney inequalities with s € [%, 1] can be found in the literature
with various conditions on the domains and the boundary conditions, and we refer
to Subsection 7.7 of [9] for further information.

VIII.3. Conforming Discretizations

Having reviewed facts on the L? de Rham complex, we now investigate its relation
to finite element de Rham complexes. Let T be a triangulation of Q and let U C T be
a triangulation of I'y. Furthermore, let P : 7 — & be a hierarchical association of
admissible sequence types to simplices. We may consider the finite element de Rham
complex with partial boundary conditions.

0= PAAT,U) —2 .. 2% PANT.U) = 0 (VIIL40)

By the results of the previous chapter, there exist bounded operators
7 LPAR(Q) — PAM(T, U) € LPAF(Q), ke Z,

that act as the identity on the finite element spaces and for which the diagram

dk+1

dkfl dk
—— HA*¥(Q,T7) —— HAY(Q,Tp) —— ...

Trkl 7rk+1J(

L PART,U)

dk dk+1

A PAR(T,U)
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commutes. Furthermore, the L? operator norms of smoothed projections 7* can be

bounded in terms of properties of €2, the geometric shape constant, and the maximal
polynomial order indicated by P. In the sequel, we largely keep the dependence on
P implicit in the notation.

The finite element de Rham complex is a Hilbert complex with respect to the L?
scalar product. Consequently, the theory of Hilbert complexes can be instantiated
similarly as for the L? de Rham complex with tangential boundary conditions.

Since the finite element spaces are finite-dimensional, the finite element de Rham
complex is bounded and closed. The k-th discrete harmonic space is defined as

9% (T, U) := ker (d’“ c PAR(T U) — PAMY(T, u))
i (VIILA41)
n (d“PAkl(T,u)> |

This corresponds to the identity (VII1.9) satisfied by harmonic spaces of a Hilbert
complex. The identity (VIIL.8) is less helpful to define % (7 ,U) because the adjoint
of the discrete exterior derivative does not have a neat description.

We have the L2-orthogonal decomposition

PAR(T, U) = d*"PA YT, U) @ 55T, U)

o . . (VIIL.42)
@ ker (d* : PAR(T,U) — PASN (T, U)) ™,

known as discrete Hodge decomposition. Moreover, there exists a constant Cppp > 0
such that a discrete Poincaré-Friedrichs inequality holds:

Vu € PAR(T,U) : Fug € PAR(T,U) Nkerd” : |lu — ugl|p2pr < Crrp||dul| p2arsr.

The presence of the smoothed projections is an additional structure which allows
us to relate concepts of (VIIL.40) to concepts of (VIII.24). This pertains to the
Poincaré-Friedrichs inequality. A consequence of Theorem 3.6 of [11], and its proof,
is the estimate

Crrp < |77 - Crp. (VIIL43)

There are different techniques to determine the dimensions of the discrete harmonic
spaces. We do not engage in this topic deeper here; in subsequent chapters we will
determine the dimensions of the harmonic spaces with different methods. We show
that the dimension of $%(7,U) is the Betti number b,(Q, ') of Q relative to I'r.

Finally, the smoothed projection can be used to provide a priori error estimates
in a Galerkin setting. We consider the mixed Hodge Laplace equation for the finite

element de Rham complex with a right-hand side f € L?A*(Q2). We search for

(0, s pr) € PAFTH(TU) x PAF(T,U) x 55(T . U)
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solving the discrete system

(on, ) — (up, d* ') =0, 7, € PA*"HT,U), (VIII.44a)
(d" Loy, on) + (dPup, d* o) + (D, vn) = (f,on), v € PAR(T,U),  (VIIL44b)
(un, qn) = 0, qn € HH(T,U). (VIIL44c)

Analogously to the mixed formulation of the original Hodge Laplace problem, the
problem on the finite element spaces is well-posed. For every f € L2AF(Q) there
exists a unique solution (o, up, py) of (VII1.44), and we have

lunllzar + lonllgas—1 + Pl L2ar @) < Cllfll2ar@),

where C' > 0 depends only on Cppp. This discrete system can serve to compute
approximate solutions of the original system. We note that the variables u; and
oy, are approximations to u and o, respectively, in conforming finite element spaces.
By contrast, the discrete harmonic form pj, is an approximation to p in a generally
non-conforming space of discrete harmonic forms. If the space of discrete harmonic
forms is non-trivial, then a basis should be computed in the first place.

VIII.4. Finite Element Approximation

The smoothed projection allows us to derive a priori error estimates, relating the
respective solutions of (VIIL.21) and (VIIL.44) in a priori error estimates. We define

EWw) = inf v—0 (), v E LARQ),

ORI R s ©

Eq(v) := inf v—0 . ve HAN(Q),

)=t o=l ©)
a:= sup lp — ﬂkaLzAk(Q).

peHF (07, TN
Hp”LQAk(Q):l

Note that the quantity a measures the approximation of the harmonic forms by the
finite element space.

Let (o,u,p) solve the original mixed Hodge Laplace system (VIIL.21) and let
(o, up, pr) solve the discrete Hodge Laplace system (VII1.44), then Theorem 3.9 of
[11] implies

o — onllaar—1@) + v = unllgar@) + [P — Prll2ax@)
< C(Ej;—l(a) + Ef(u) + E*(p) + an;(ud)) :
Here and below, ug is the L2A*(Q)-orthogonal projection of u onto d* HpA*(Q).
This priori error estimate shows the convergence of the method. Improved er-
ror estimates reflect that in typical applications different parts of the error display

different convergence behaviors. We utilize the solution operator ¥ in the case
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of the Hodge Laplace operator of the L? de Rham complex with partial boundary
conditions along I'r. In addition to the quantity a, we introduce the quantities

11— )G fll2an )

b:= sup ,
FEL2AK(Q) [ f1 2ar )
f#0
K 1(1 — 7" 1) d* G, fll oar1 o
C; := sup ;
FEL?A*(Q) Hf“LQAk(Q)
f#0
K 1(1 — 7*1)0*%, fl| L2ar-1(0)
€5 := sup ,
FELZA*(Q) ||f||L2Ak(Q)
Jf#0

= supfeh ¢, &1 1)
The mapping properties of %, imply that these quantities are well-defined and
bounded in terms of Cpp and the L? norm of the smoothed projection. Via Theo-
rem 3.11 of [11] we conclude the existence of C' > 0, depending only on Cpr and the
L? operator norm of the smoothed projection, such that

[d* (o — on) || p2are) < CE"(d" o),
||0 — Uh||L2Ak—1(Q) < C (Ek_l(a) + CEk(dk_le)) s
1p = prllzzar) < C (E*(p) + aE*(d* o)),
[d*(u — up) || p2ar1(q) < C (E¥(d*u) + cE*(d" o) + cE*(p))

E*(u) + cEF Y (dFu) + cE¥ (o)
lu = unllezasey < € ( +(c? +b) (E¥(d"o) + E*(p)) + aB*(ug) )

Remark VIII.4.1.

The relevance of these estimates is that the quantities a, b, and ¢ often display ad-
ditional convergence behavior, which facilitates improved error estimates. In appli-
cations, we have uniformly bounded sequences of finite element de Rham complexes
with uniformly bounded smoothed projections, such that the projections converge
pointwise to the identity. One can then show, via compactness of the Rellich em-
bedding, that the quantities a, b, and ¢ converge to zero. If a Gaffney inequality
such as (VIIL.39) is valid, then their convergence order can often be quantified, e.g.
in terms of the mesh size using the Bramble-Hilbert lemma. We refer to [11] for a
discussion and further details.
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IX. Discrete Distributional Differential Forms

In this and the next chapter we devote ourselves to the interaction of finite element
exterior calculus and topics in a posteriori error estimation. Our main reference is
an important publication by Braess and Schéberl [34], who provide multiple new
ideas in the area of vector-valued finite element methods.

One of their contributions have been distributional finite element sequences in the
language of vector calculus. The agenda of this chapter is to integrate this interest-
ing concept into finite element exterior calculus and generalize it substantially. This
leads to the notion of discrete distributional differential form, from which we assem-
ble discrete distributional de Rham complezes. Apart from exploring the technical
definitions, we study the homology theory and the Poincaré-Friedrichs inequalities
of such de Rham complexes.

Distributional finite element spaces appear throughout numerical analysis, in ar-
eas such as a posteriori error estimation and of discontinuous Galerkin methods. The
research on discrete distributional differential forms, however, produces new results
that return to conforming finite element spaces again: for example, this research has
provided the first computation of the homology spaces and Poincaré-Friedrichs in-
equalities of (conforming) finite element de Rham complexes with partial boundary
conditions.

Braess and Schoberl have introduced distributional finite element sequences as
theoretical background for research on equilibrated a posteriori error estimation in
computational electromagnetism. Their seminal publication studies these sequences
in the language of vector calculus and with lowest polynomial order over local ele-
ment patches.

We have skimmed over several examples of distributional finite element sequences
already in the introduction of this thesis. For further motivation we revisit these
objects, which are derived from the work of Braess and Schoberl. Here we employ
the formalism of vector calculus, close to [34], but the remainder of this chapter
employs the calculus of differential forms. Let © C R? be a bounded polyhedral
domain with a triangulation 7.

Our starting point is the lowest-order finite element complex defined with respect
to this triangulation and satisfying boundary conditions:

PUT) £ NAY(T) Ly RTO(T) —3y po (7). (IX.1)

This differential complex is assembled from the piecewise affine Lagrange elements
PI(T) with Dirichlet boundary conditions, the lowest-order Nédélec space Ndy(7T)
with tangential boundary conditions, the lowest-order Raviart-Thomas space RT{(7T)
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IX. Discrete Distributional Differential Forms

with normal boundary conditions, and the space of piecewise constant functions
The subindex of the last space indicates that no continuity or boundary con-
ditions are imposed. Similarly, we let RT",(7) denote the space of piecewise
lowest-order Raviart-Thomas vector fields, without imposing normal continuity or
boundary conditions. The divergence of such a vector field exists in the sense of
distributions: if u € RT? (7) with support over a tetrahedron 7' € T2, then

/u gradgbdx—/(dlvu ¢ dx — Z /gbu iirp) ds, ¢ € C®(Q),
FeA(T)?

(IX.2)

gives an explicit formula for the distributional divergence. Here 7ip p denotes the
outward unit normal of 7" along F'. The face integrals of ¢ are taken against constant
functions; we let RT? (7?) denote the space of distributions over C*°(Q2) spanned
by integral functionals over faces of 7. We then write P°,(7?) := P°(T) and
define the space of distributions P%,(7) := P°,(T%) @ RT?,(T?) as a direct sum.
This leads to another differential complex

grad

Pe(T) 2% NdY(T) — RTO () —2 POL(T). (1X.3)

We repeat this construction. Let Nd”, (7)) denote the space of vector fields that are
piecewise in the Nédélec space of lowest order but which do not necessarily satisfy
tangential continuity or boundary conditions. If u € Nd° (7)) is supported over a

tetrahedron 7' € 72, then it is observed for ¢ € C*(Q) that

/T curlqbdx—/Tcurlu ¢ dr — Z / (¢ x fipp) ds. (IX.4)

FeA(T

This defines the distributional curl over ngl(T). The face terms integrate the
tangential trace of ¢ against a tangential lowest-order Nédélec vector field over faces,
and we let Nd”, (72) denote the space of such functionals over vector fields; we write
accordingly RT? (77) := RT? (7). With RT,(7) := RT? (7?) @ Nd° ,(T?) we
define a space of distributions over C*(Q) and thus get a well-defined mapping
curl : Nd° (7)) — RT?,(7). In order to arrange a complete differential complex,
we want to determine the divergence over the space RT",(7). Letting Nd” (7
denote the space of distributions that are spanned by the integration over edges of
T and defining P°,(T) := P°(T) & Nd”,(T"), we are in the position to consider
the differential complex

P&(T) grad Ndo (7-) curl RTO (7~> & 7393(7-) (IX5)

Finally, we let P1,(7) denote the space of piecewise affine functions. If ' € 72 and
u € PL,(T) is supported over T, then the distributional gradient of u is defined by

/(dlv¢udm—/¢ gradu dz — Z /¢ irp)uds, ¢ C(9Q).

FeA(T)?

(IX.6)
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More generally, we let PL (T7), PL(T?), PL(T"), and P (T°) denote the spaces
of functionals over C*°(€2) spanned by integrals of functions against affine functions
over tetrahedra, by integrals of vector fields against affine normal fields along faces,
by integrals of vector fields against affine tangential fields along edges, and by point
evaluations, respectively. With a similar construction as above, we introduce the

differential complex

POUT) =25 N2, (T) 5 RT,(T) -5 PO, (7)), (IX.7)

consisting of distributional finite element spaces. These and similar differential com-
plexes have been discussed by Braess and Schoberl [34, Equations (3.3), (3.5), (3.7),
(3.16-3.18)| albeit only over local patches.

We can make several interesting observations at this point. The conforming
de Rham complex (IX.1) is a starting point for a succession of differential complexes,
finishing with (IX.7). On the other hand, consider the differential complex

PO(T?) 22 po (72) <y po (1) A, po (7oy (IX.8)

consisting of spaces of distributions spanned by taking volume averages, normal
averages along faces, tangential averages along lines, and point evaluations. This
is another subcomplex of (IX.7) and it is not difficult to see that this complex is
isomorphic to the simplicial chain complex

C3(T) 2 Co(T) -2 a(T) -2 (7). (IX.9)

In this sense, the simplicial chain complex of T is a subcomplex of (IX.7), and
taking jump terms corresponds to applying the simplicial boundary operator. This
observation will be of fundamental importance throughout this chapter.

We can view the right-hand sides of the integration by parts formulas (IX.2),
(IX.4), and (IX.6) as composed of two different classes of operators: a piecewise
differential operator on the one hand, and an operator corresponding to the “jump
terms” on the other hand. Whereas the jump terms play no role in the conforming
finite element complex (IX.1), the situation is exactly reversed for the differential
complex (IX.8). This indicative of the fact that “taking jump terms“ constitutes
differential complexes on its own. We employ the calculus of differential forms to
treat this in a uniform manner.

Furthermore, we are interested in understanding boundary conditions of dis-
tributional de Rham complexes. It is natural to define such boundary conditions
indirectly by imposing boundary conditions on the test spaces. For example, if the
test functions are assumed to compactly supported, then the aforementioned jump
terms do not involve integrals associated to simplices of 7 included in the boundary
0N) of the domain. This suggests that the boundary conditions are partially encoded
in the differential operators of the differential complex, which is a phenomenon very
different from the case of conforming finite element de Rham complexes.

The notion of double complex in homological algebra puts these observations

into a broader context. The Cech de Rham complex in differential topology is the
most prominent example [178]. We remark that Falk and Winther [87] have recently
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IX. Discrete Distributional Differential Forms

introduced a finite element Cech de Rham complex to finite element theory, albeit
not for questions of homological nature. In our case we start with the following
diagram:

PL(T? 2 N (77) T RTO,(TP) I, po (79)

l l

PL(T?) —227 Na°,(T2) =% RTY,(T?)
l (IX.10)

Nd°’ (T

grad,
B

PL(T)

PLUT?)

The spaces in this diagram have been introduced above. The horizontal mappings
are piecewise differential operators, thus the rows of the diagram are differential com-
plexes by themselves. Conversely, the vertical mappings correspond to the boundary
terms in partial integration formulas as we have used above. It is an original obser-
vation of this research that these "jump-terms* are operators in their own right and
that the columns of the above diagram are differential complexes.

The diagram (IX.10) is a double complez in the sense of homological algebra
[93]. The distributional finite element sequence (IX.7) corresponds to the sequence
of diagonals, also called total complex, of the double complex. Furthermore, our ear-
lier observations transfer: the simplicial chain complex is included in the left-most
column, whereas the conforming finite element complex with essential boundary
conditions is included in the top-most row.

Finite element exterior calculus has provided a unified framework for conforming
finite element de Rham complexes. The major contribution of the present chapter
is the extension of finite element exterior calculus to distributional finite element
de Rham complexes and their incorporation into the larger picture. On the one
hand, the machinery of exterior calculus may improves understanding of the original
Braess-Schoberl sequences. On the other hand, integrating distributional de Rham
complexes into finite element exterior calculus provides new tools that are of inde-
pendent interest.

The original distributional finite element sequences have been studied only for the
lowest-order case in two and three dimensions over local element patches. We switch
from classical vector calculus to the calculus of differential forms, and we study
distributional finite element de Rham complexes over triangulations in arbitrary
dimensions and arbitrary topology, with general partial boundary conditions, and
without restrictions on the polynomial degree.

Again we give a rough outline of the theoretical framework. Let Q2 C R™ be
a bounded weakly Lipschitz domain. Moreover we let 7 be a triangulation of (2
and let YV C T be the simplicial subcomplex that triangulates 2. We consider a
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conforming finite element de Rham complex

L pANTLY) = Pk Y) £ (IX.11)

of the form discussed previously in this thesis (see Chapter IV). This differential
complex can be redirected at index k into a distributional de Rham complex if we
omit the inter-element continuity and the boundary conditions along V), leading to
differential complexes of the form

S AT Y) S Pk (T) S PARNT) S L (IX12)

Here, the subindex —1 indicates omitting the aforementioned continuity and bound-
ary conditions, and subsequent spaces are spanned by distributions containing func-
tionals associated to lower dimensional simplices. Via a succession of generalized
finite element complexes we eventually arrive at the differential complex

dl dn—

0= PAY(T) — PAL(T) 4 . pAr, () =0, (X13)

Similarly as in the preceding outline in the language of vector calculus, the simpli-
cial chain complex of T is isomorphic to a subcomplex of (IX.13). In the course of
this chapter we illuminate how properties of that subcomplex, such as the homol-
ogy theory or Poincaré-Friedrichs inequalities, can be related to the corresponding
properties of other discrete distributional de Rham complexes.

Distributional differential forms appear in different areas of mathematics. Origi-
nally, de Rham [66] introduced the term “currents” for continuous linear functionals
on a class of locally convex spaces of smooth differential forms. Geometric integra-
tion theory [123] knows simplicial chain complexes as a specific example of currents,
which is also rediscovered in this work. Christiansen [54] has studied distributional
finite element complexes in Regge calculus.

Given these differential complexes, how can we relate their homology spaces?
The answer adapts methods of homological algebra. We construct isomorphisms
between the homology spaces of the triangulation, the discrete harmonic forms of
the standard finite element complex, and discrete distributional harmonic forms of
distributional finite element complexes such as (IX.7). In particular, the homology
of these complexes reflects topological properties of the domain. To the author’s
best knowledge, this is the first derivation in the literature of the homology theory
of finite element de Rham complexes with partial boundary conditions.

When a differential complex is equipped with a Hilbert space structure, then it
is natural to ask for Poincaré-Friedrichs inequalities. In the case of discrete distribu-
tional de Rham complexes we want to prove that the Poincaré-Friedrichs constants
with respect to mesh dependent norms can be bounded in terms of only the geom-
etry, the mesh regularity, and the polynomial order.

We recall that the conforming finite element de Rham complexes over trian-
gulations of weakly Lipschitz domains satisfy such uniform inequalities; this follows
easily from the existence of uniformly bounded commuting projections. In particular
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IX. Discrete Distributional Differential Forms

the discrete Poincaré-Friedrichs constant Cpp p satisfies

20k < 2 Ak+1
Vw € dkPAk(T) : E'p c PAk(r]') . { HIOHL AR(Q) _dkil:’iﬂZJwHL AFFL(Q) (IX14)

In other words, the Poincaré-Friedrichs constant measures the norm of the gener-
alized solution operator for the flux equation d*p = w. As we have seen in Chap-
ter VIII, the stability of finite element methods for the Hodge Laplace equation can
be evaluated solely in terms of discrete Poincaré-Friedrichs constants.

In this chapter we establish analogous Poincaré-Friedrichs inequalities for com-
plexes of discrete distributional differential forms with respect to mesh-dependent
scalar products. Our analysis bounds the Poincaré-Friedrichs constants of discrete
distributional de Rham complexes in terms of the Poincaré-Friedrichs constant of
the complex of Whitney forms.

Specifically, we reduce the construction of a solution to the discrete distributional
flux equation d*p = w between spaces of discrete distributional differential forms to
the solution of a flux equation between spaces of simplicial chains. Solving that prob-
lem has stability and complexity comparable to the flux equation between Whitney
forms as we demonstrate using the duality between the simplicial chain complex
and the complex of Whitney forms. The reduction to this simplified problem em-
ploys only local computations and is the only part of the estimate that depends
on the polynomial order of the finite element spaces. Here, Poincaré-Friedrichs and
inverse inequalities for the horizontal and vertical differential complexes, i.e., the
rows and columns of the diagram (IX.10), are instrumental and easy to prove via
scaling arguments.

Thus we bound, for example, the Poincaré-Friedrichs constant of (IX.13) in
terms of the Poincaré-Friedrichs constant of the complex of Whitney forms, up to
terms which are influenced only by the polynomial order and the mesh quality. We
have thus reduced a global problem on high-order finite element spaces to a global
problem on lowest-order case.

A side product of this research pertains to the flux equation d¥*p = w between
conforming finite element spaces. Solving this equation can be reduced via local
operations to solving the analogous equation between spaces of simplicial chains.
Thus, algorithmically solving d*p = w requires a global computation only as diffi-
cult as solving d¥p = w between lowest-order Whitney forms, and additional local
operations whose stability and complexity may be polynomial order dependent.

I1X.1. Basic Definitions
Throughout this entire chapter we let 7 be a finite simplicial complex and we

let 4 C T be a simplicial subcomplex. Moreover we assume that for each simplex
C € T we have fixed a differential complex

e wke) s ame) 2 (IX.15)
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1. Basic Definitions

where A*(C), k € Z, is a finite-dimensional subspace of C*°A*(C), and where we
have

trg, p AF(C) = AMF), keZ, CeT, FeAC). (IX.16)
In particular we have a commuting diagram

dkfl dk dk+1
C 4 AR(C) =S ARHL(C) S

k k+1
trC'Fl trC’Fl

dk—1 gk gr+1
LT AM(F) —— AMYF) I .

Remark IX.1.1.

In many applications, 7 is the triangulation of an n-dimensional topological mani-
fold with boundary, often even a polyhedral domain in R™. The subcomplex If is the
triangulation of an admissible boundary patch. In this chapter, however, such as-
sumptions are not necessary as such. Additional assumptions on the triangulations
will be required later for stronger results.

Example IX.1.2.

An example for the differential complexes (IX.15) is given in Chapter IV. Let
P T — o be a family of admissible sequence types associated to simplices that
satisfy the hierarchy condition. We then define

AR (O) =t PAR(T), CeT.

By construction, we have a surjective mapping tr¢, » : A*(C') — A*(F) forall C' € T
and F' € A(C). This is the most important example for the differential complexes
(IX.15) in this chapter.

We introduce the direct sums

AT U = @ AC), kmel (IX.17)
ceTm\U™
We also introduce the alternative notation

F’jl<7’m7u) = A]il<7'm’u), k7m € Za (IXlS)

to be motivated soon in this chapter. We write we for the component of w €
A (T™,U) associated to the simplex C' € 7™\ U™.

We now define two operators which feature the differential property and which
are central objects of investigation in this chapter. Let k,m € Z. We first define
the horizontal differential operator

Dy - AR (T U) — ASSH(T™ U) (IX.19)
by applying the exterior derivative on each simplex, which means that
Diw:= Y diwe, weA(T™U). (IX.20)
ceTm\uU™
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IX. Discrete Distributional Differential Forms

It is obvious that
Dy Dfw =0, weA(T™U). (IX.21)

The simplicial chain complex of T relative to U is an additional structure in this
context, and it is not quite as obvious that this gives rise to another differential
operator on the spaces A* (T™,U). We define the vertical differential operator

T TE (T™U) — T8 (T 5 U) (IX.22)
by setting
Trw:= Y o .C)trfpwe, weTHT™U). (IX.23)
CeT™\U™
FGTmfl\umfl
FeA(C)
It is easy to see that
T Trw =0, wel* (T™U), (IX.24)

as follows by checking that for all w € T'* [ (T™,U) we have

TP ' Tiw = Z o(F,C)o(f,F)trg jwe = 0.
ceTm™\u™
Fea(o)m—hym—1!
feA(F)m—Z\um—Q
The differential property of the vertical differential is completely analogous to the
differential property of the simplicial boundary operator (I1.42).
It is obvious from the construction that

D I TPw = TP \Di'w,  w e A* (T™U). (IX.25)

Lastly, it will be of interest to study the kernels of the operators D} and T} in their
own right. We define

eAN (T U) [ TRw=01}, (IX.26)
el (T™U) | Dfw=0}. (IX.27)

Remark IX.1.3.

The horizontal and the vertical differential operator have many analogous properties.
As the reader may already tell, the spaces with symbol A will be used when discussing
the horizontal differential operator, and the spaces with symbol I will be used when
discussing the vertical differential operator. Using such notation will be helpful in
later parts of this chapter.

Due to the differential properties (IX.21) and (IX.24), we can introduce several
differential complexes. For each m € Z fixed, we may consider the differential
complex

D

Dm m m
—5 AT s T = (IX)
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1. Basic Definitions

and, because of (IX.25), we may also consider the subcomplex

RSN VI S W SR VRS TS S VIR EE N (IX.29)

Analogously, for each k € Z fixed, we have the differential complex

m—+1 m m—1
BLAES N A7) JLE VN U ) RS (1X.30)
and, because of (IX.25), a subcomplex is given by
m—+1 m m—1
Tk ; Fk(Tm, u) T Fk(Tm_l,U) T o (IX.31)

The homology spaces of these complexes will be determined in the course of this
chapter.

We also consider scalar products on the spaces A* | (T™,U) = T* ,(T™ U). These
allow us to utilize the framework of Hilbert complexes in this chapter. For a par-
ticularly relevant family of scalar products, suppose that we have chosen a family
a : Z — R of real numbers, and suppose that for each C' € 7 and k& € Z we have
fixed a scalar product

<'7 '>L2Ak(C’) : Ak(O) X Ak(C) — R.
We then define the scalar product
W ma= D h™(we,ne) ey, w.m € AL (T™U),
ceTm\um

Example IX.1.4.
Suppose that T is n-dimensional and let k,m € Z. Generalizing a scalar product
used by Braess and Schoberl [34, Subsection 3.4], we may consider

<Wa7l>h = Z hg’_m<w07nc>L2Ak(C)7 w,n e Alil(Tmau) (IX32)
ceTm\um™
Another scalar product takes the form
(wy,n)_p, = Z he ™™ (wes ne) reakcy,  won € AL (T™U). (IX.33)
ceTm\um

Later in this chapter we prove Poincaré-Friedrichs inequalities with respect to the
scalar product (IX.33).

In order to motivate these definitions and the terminology, in particular the term
discrete distributional differential form, we consider the following example in detail.

Example IX.1.5.

Assume that €2 C R” is a weakly Lipschitz domain and that I'y is an admissible
boundary patch. Additionally we assume that 7 is a triangulation of €2, and that
U is a simplicial subcomplex of T that triangulates I'z. We let I'y be the boundary
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patch complementary to I'r. There exists a simplicial subcomplex V of T that
triangulates I'y. For every k € Z we let C*A*¥(Q, ;) be the space of smooth
differential k-forms over €2 that are restrictions of smooth differential k-forms over
R™ and whose boundary trace vanishes over I'r.

We consider a simplex C' € 7™ \ U™ and a differential k-form we € A*(C) over
C. For every smooth differential form ¢ € C*A"™+*(Q, T'1) we define

(wc, ¢> = / wo N\ trTCn_k *Q.
C

Since xqp € CCA™F(Q, T'r), we easily verify that this integral is well-defined. We
also note that this pairing generalizes the L? scalar product of differential forms.
Thus we acts as a functional on C®°A™ *(Q, I'z), and in this sense, we is a distri-
butional differential form. Since we will be a member of a finite element space of
polynomial differential forms over C', we call it a discrete distributional differential
form. Consequently, A* (7™, U) is a finite-dimensional space of functionals over
CRA™+k(Q, Tp).

To give a motivation for the horizontal and vertical differential operators, suppose
that ¢ € C®A"~™+k+1(Q) T';). By the definition of the codifferential (V.17) we find

<w07 5nfm+k+1,l/}> —_ (_1)n7m+k+1 / we A trnclfk**fl dmfkfl *w
c

_ (_1)n—m+k‘+1 / we A tI‘g_k dm—k—l *77/)
c

— (_1)n—m+k’+1 / We /\dncm—k:—l tr?g—k—l *w‘
c

By Stokes’ theorem over simplices (II1.3), we have

/ we ANdETF el R ) = (—1)FH / diwe At sap
c c

+ (=1)* Z o(F,C) / tre, pwe A trp =
FeA(C)m! F
Peu

In combination, this means that
(w84 ) = (<1 [ dhio Attt e
c

+ (—1)n A Z o(F,C) / trlaF we At ap,
FeA(C)m—1 F
FeU
which we restate as

(we, 6" ) = (=1)" (DY we, ¥) + (1) (T we, ¥).

This motivates the introduction of the horizontal and vertical differential operators.
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Now we motivate the spaces A*(T™,U) and T*(T™, U). Consider the special case
m = n and suppose that w € A¥(T™ U). The condition Tfw = 0 then means that for
all distinct n-simplices T, 7" € T" sharing a common face F € A(T)"' N A(T")"!
we have

o(F,T) tr%p wr + o(F,T") trl},,F wrr = 0.

We conclude that tr}, o wp = trﬂ wrr since T" and 7" induce opposing orientations
on F. Moreover, if T € T" and F € A(T)"! with F' € V, then T{w = 0 implies
that

k

In summary, this means that each w € A¥(7T™ i) has single-valued traces and
satisfies homogeneous boundary conditions along I'y. In particular, if additionally
the assumptions of Example [1X.1.2 hold, then

AK(T™ U) = PAK(T, V).

Thus we see that when boundary conditions are imposed on the test function space
along I'r, triangulated by U, then boundary conditions are imposed on the conform-
ing finite element spaces along I'y, triangulated by V.

As a motivation for introducing I'*(7™,U) we consider the special case k = 0.
Suppose that A*(C) contains the constant function 1 for each ¢ € T™. Then
LO(7™,U) is just the space of constant functions associated to m-simplices in 7 \ U.
Consequently, T°(7™,U) is isomorphic to C,(T,U), and the vertical differential
operator corresponds, up to signs, to the simplicial boundary operator.

Remark IX.1.6.

Our notion of discrete distributional differential form is similar but different from
the notion of currents [66] introduced by de Rham. Currents over an n-dimensional
smooth manifold in the sense of de Rham are (n — k)-forms with distributional
coefficients, which act as functionals on compactly supported smooth k-forms. This
extends the canonical pairing of (n — k)-forms and k-forms. The notion of current
only employs the differentiable structure on manifolds. By contrast, our notion
extends the L? pairing of differential forms of the same degree and thus requires a
Riemannian metric.

IX.2. Homology of Horizontal Complexes

In this section we study the homology spaces of the horizontal differential com-
plexes (IX.28). These homology spaces are isomorphic to the direct sum of the
homology spaces of the differential complexes on simplices (IX.15). This is an easy
observation that we make explicit because its analogue regarding the vertical differ-
ential complexes will not be as obvious.

It is instrumental that the horizontal complexes can be localized in the sense of
the following lemma.
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Lemma IX.2.1.
Let m € Z. Then the differential complex

D Ak (T Uy 2 AR (T ) 2R (1X.34)
is the direct sum of the differential complexes
S Aoy S o) 2 (IX.35)
over C' € T™\U™.
Proof. This is evident from the definitions. O]

In order to control the homology of the horizontal complexes, we introduce a new
condition. We say that the local exactness condition holds if for each C € T \U, the
sequence (IX.34) is exact at every non-zero index and furthermore ker d% is spanned
by the constant functions over C'. This implies that the differential complex

0= kerdl, —— AYC) —9 ALQ) 2oy (IX.36)

is exact for each C' € T™\ U™, and that ker d%, = span{1¢}. The following result is
easily verified.

Lemma IX.2.2.
Assume that the local exactness condition holds. Let m € Z. Then

ker (D;” AR (T U) — Akjll(’rm,u)) — ran <D}f_1 AR (T ) < A’jl(Tm,L{)>
for k € Z \ {0}, and

ker (DgL A (T U) — Al_l(’Tm,L{)> = EB span{1l¢}.

ceTm\uUm

Example IX.2.3.
We recall the setting of Example I1X.1.2. Suppose we have fixed an admissible
sequence type Po € & for each C € T such that Prp < P for F' € A(C) and
C € T. Then the sequences
gk—1 dk gk+1

. —— PoAR(C) —= PcAMHC) —=— ...
realize the absolute cohomology of the simplex C, and hence the local exactness
condition holds. To see this, we first recall that 1o € PcA%(C) by construction. On
the other hand, suppose that k£ > 0 and that w € PcA*(C) with dfw = 0. Without
loss of generality, we assume that C' is full-dimensional. Because the L? de Rham
complex over contractible domains realizes the absolute cohomology, there exists & €
HA*=1(C) such that d*~!¢ = w. We invoke the L? bounded commuting projection
7*~1 of Chapter VII and check that 7%71¢ € PA*1(C) with d*'7*~1¢ = w. This
yields the property required for this example.
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3. Homology of Vertical Complexes

IX.3. Homology of Vertical Complexes

We study the homology spaces of the vertical complexes in this section, which
parallels the study of the homology spaces of the horizontal complexes of the previ-
ous section in many regards. The crucial observation is the local decomposition of
the vertical complexes.

Let m € Z and consider the differential complex

I pe oy T e (et gy T (IX.37)

In order to decompose this complex into local contributions, some additional as-
sumptions need to be made.
First we introduce the notation

I*(C) = {wel*C) | VFe A(C)\{C} : trf pw =0} (IX.38)

for the subspace of I'*(C') whose members have vanishing trace on the proper sub-
simplices of C. We say that the geometric decomposition condition holds if we have
linear extension operators

exth, o TF(F) — T(0),
for every C' € T and F € A(C') such that
(i) for all ' € T we have

exthpw=w, we I*(F), (IX.39a)

(ii) for all C' € T with F' € A(C) and f € A(F) we have

tre, g ext’}’c = ext’}’F, (IX.39b)

(iii) and for all C' € T and F,G € A(C) with F' ¢ A(G) we have

tre, ¢ exth, o = 0. (IX.39c¢)

Note that the extension operators ext’fwc are largely analogous to the assumptions
on the local extension operators in Chapter IV. Under these conditions we obtain a
representation of I'* (7™, U) as a direct sum similar to the geometric decomposition
in Chapter IV.

Lemma IX.3.1.
Let k,m € Z. Then

r(ru)y = @ EB exth o T*(F (IX.40)

CeT™\U™ FEA(C
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IX. Discrete Distributional Differential Forms

Proof. Let w € T* (T™, U) and let C € T™\ U™. We define recursively

d’)(CF) = trgF w— Z extfcw

feA (@)
dim f<dim F'

(f)

It is easy to see that wg ) e Ik(V) for V € A(C)°. Next, suppose that F € A(C)

and that oY) € T*(f) for f € A(C) with dim f < dim F. Then we easily see that

(i}éF) is well-defined and a member of I'*(F). An induction argument gives

ext” w . IX.41
FC C

FeA(C)

The desired claim follows. O

Assuming that the geometric decomposition assumption holds, we can now con-
struct the local vertical complexes. We define

IWF) = P exthoTHF), FeT, mel (IX.42)

ceTm™m\uU™
FeA(C)

The next two lemmas formalize that these spaces enable a local decomposition of
the vertical differential complexes.

Lemma IX.3.2.
Let m,k € Z. Then

- @i
FeT
Proof. Using Definition (IX.42) we observe

(1 uy = @ EB exth, o TH(F

CeT™\U™ FEA(C

= @ extch Fk(F)

FeT
ceT™\U™
FeA(C)
=P P eth IE)=Prir
FeT CeTm™\U™ FeT
FeA(C)
which is the desired result. O

Lemma IX.3.3.
Let m,k € Z and F € T. Then TPT{(F) C T H(F).
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3. Homology of Vertical Complexes

Proof. Let C € T™\ U™ with F € A(C), and let wf = exth,, &f for some W €
[*(F). Then wk € T™(F), and we calculate

Trwh = Z o(G,C) tr’aG wE
GeTm-1\ym=1
GEA(C)

- Z O(G, C) trlév,G eXt];?’C (j}g
GeTm—l\um—l
GEA(C)

= Z o(G,C) extl}g g,
GeTm h\ym—t
GeA(C)
where we used Lemma [X.3.1. The final expression is an element of I'}*(F'), which
implies the desired result. [

In combination, these observations imply the following decomposition of vertical
complexes.

Lemma IX.3.4.
Assume the geometric decomposition condition holds. Let & € Z. Then the differ-
ential complex

m—+1 m m—1
LIS N7 RN N SO W ) L SN (1X.43)

is the direct sum of the differential complexes

m+1 m m—1
C D ey T peeyey ey (IX.44)

over all F € T\U.

We have decomposed the vertical differential complexes into local differential
complexes associated to simplices of 7. The next step is analyze the homology
spaces of the local vertical complexes. At this point we refer to material from
Section II.1 in Chapter II, in particular the definition of the micropatch M (T, F)
and the micropatch boundary N (7,U, F'). We prove the following algebraic result.

Lemma IX.3.5.
Let ' € T and k € Z. Then the differential complex

m+1 m m—1
RELIENS 7 LN o) o) LN (IX.45)

is isomorphic to the differential complex

D@ (T U) @ THEF) 222 b (Tou) o Th(F) 2 L (IX.46)
Proof. For the duration of this proof, we introduce linear mappings

Om : CE(T . U) @ TH(F) — T7(F)
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IX. Discrete Distributional Differential Forms

for m € Z that are defined by setting
O (C® C&(F)) = ext’ch o)

for C € M(T,F)"\ N(T,U, F)™ and &) € T*(F). Each of these mappings is

invertible, and we observe

Om (OnC @)= > oG08, (Gaw®)

GeTm— 1 \um— 1
GeA(C)

= Z o(G,C) exth W)
GeTm \ym—1
GeA(C)

= Z o(G, C) trg, g exth o

GeTm-1\ym-1
GeA(C)
=T ext?c W)

This means that the isomorphisms ©,,, constitute a isomorphism of the differential
complexes (IX.45) and (IX.46). This completes the proof. O

The simplicial homology spaces of the micropatches, which we have discussed in
Chapter II, determine the homology spaces of the vertical complexes provided that
the geometric decomposition condition holds. We are particularly interested in the
following special case. We say that the local patch condition holds if

V(T U) =0, meZ\{n}, FeT.

We can then characterize the homology spaces of the vertical differential complex
(IX.37) in the following manner.

Lemma IX.3.6.
Suppose that the geometric decomposition condition and the local patch condition
are satisfied. Then we have

ker (TZ‘ TRL(T U - r’jl(Tmfl,U))
= ran (TP TE, (T, 0) = T, (T7.U) )

form e Z\ {n} and k € Z.

It is not straight-forward to give an intuitive characterization of the spaces
[*(T™,U) in the general case. If T triangulates a manifold, then additional structure
is available, and we obtain the following result as a consequence of Lemma I1.7.1.

Lemma IX.3.7.
Suppose T triangulates an n-dimensional topological manifold M with boundary,
and that U triangulates a topological submanifold T' of M of dimension n — 1
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4. A First Application

with boundary. There exists a simplicial subcomplex V C T that triangulates the
closure of the complement of I' in 0. Assume that the geometric decomposition
assumption holds true, and let £ € Z. Then Lemma IX.3.6 applies, and for every
w € I*(T™U) we have

Z Z ext'}’ch)(F)

FET\V TET™
FEA(T)

where &) € TF(F) for F € T\ V.

I1X.4. A First Application

We have introduced practically feasible conditions under which the horizontal
and vertical differential complexes have homology spaces that are easy to describe.
At this point, we can already provide a result on the homology theory of conforming
finite element complexes. We consider the diagram

0 s AT U D AT )
DT U) —— A (TP U) —s AL (TP U) —s
T T T (IX.47)
PO(T™ L) —— A (T o) —2s AL (T70,U) —
TS Tt Tt

The left-most horizontal and the top-most vertical arrows denote the respective
inclusion mappings. The choice of signs on the arrows in this diagram is motivated
by our observations in Example IX.1.5. We recall the identities

Dy D=0, TP 'TP =0, T, Dy = DT

This implies that (IX.47) constitutes a double complex in the sense of [93, Chapter 1,
§ 3.5]. This allows us to utilize known results from homological algebra in our
setting. Specifically, in this section we will derive a result on the homology spaces
of the differential complexes (IX.29) and (IX.31). We notate the homology spaces
of the differential complexes (IX.29) and (IX.31) by

ker (Dn . Ak(Tn ) — AR Tn )
Ak n - k !
H (7- 72/{) ran (DZ_1 . Akfl(Tn ) - Ak(Tn ))
ker (Tgr: TO(T™ U) — TO(T™ 1, U))
7™ u) = ¢
HIT™U) ran (TS”l ro(rm+ty) — ro(rm, ))

With a result from homological algebra, we obtain the following fact.
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IX. Discrete Distributional Differential Forms

Theorem IX.4.1.

Assume that the local exactness condition, the geometric decomposition condition,
and the local patch condition hold. Then the rows and columns of (IX.47) are
exact, with the possible exception of the top-most row and the left-most column.
Moreover,

PO(T 1) = (T, U). (1X.48)
and we have isomorphisms between homology spaces
Hoon(TU) = HIO(T 7 U) = HAH (T, U) (TX.49)

for 0 <k <n.

Proof. Under the assumptions of the theorem, the rows and columns of (IX.47)
are exact, with the possible exception of the top-most row and left-most column.
This follows from Lemma IX.2.2 and Lemma IX.3.6. The local exactness condition
implies in particular that T°(T™ U) ~ Co(T™ U) for all m € Z, and that the
following diagram commutes:

7™ U —— Co(T™U)

Tan J{ Om l

LT U) —— Co(T™ 1, U)

Hence (IX.48) and the first isomorphism in (IX.49) follow. Finally, the second iso-
morphism in (IX.49) follows via a standard result in homological algebra on double
complexes; see for example Proposition 3.11 of [150], Chapter 9.2 of [31], or Corol-
lary 6.4 of [14]. O

Example IX.4.2.
We continue our example application. The differential complex

0 —— AT U) —2s L AT U —— 0, (IX.50)

is composed of spaces of finite element differential forms whose traces on simplices
of V vanish. This is a conforming discretization of the L? de Rham complex with
partial tangential boundary conditions along I'r. The dimension of the homology
spaces HA®(T",U) of the finite element complex are related to the Betti numbers.
We have

dim HA®(T™,U) = b, (9, Ty)
= dim H"*(Q, Ty, ')
= dim H*(Q, 'y, Tn) = bi(Q, I'7)

for 0 < k < n. This includes the special cases I'r = () and I'r = I', which have been
treated earlier in the literature [58].
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5. Discrete Distributional de Rham Complexes

Remark 1X.4.3.

Christiansen has analyzed the finite element de Rham cohomology on triangulated
manifolds without boundary [52]. Arnold, Falk and Winther have derived the fi-
nite element de Rham cohomology without boundary conditions over domains from
the L? de Rham complex [9], which Christiansen and Winther have successively
extended to the case of essential boundary conditions [58]. Christiansen et al. have
also derived the finite element de Rham cohomology without boundary conditions
within the framework of element systems via de Rham mappings [56]. With dif-
ferent techniques, we have derived the finite element de Rham cohomology without
reference to the L? de Rham complex.

IX.5. Discrete Distributional de Rham Complexes

In this section we introduce discrete distributional de Rham complexes. We con-
tinue to assume that 7 is a finite n-dimensional simplicial complex, and that U/ is a
simplicial subcomplex.

For k, m,b € Z we introduce the direct sums

b—1

AP (T U) =) AT U), (IX.51a)
1=0
b—1

T (T U) = TR (T 1), (IX.51b)
=0

From now on we may also write
Alg(vau) = Ak(vau)v FIS(Tm,U) = Fk(vau)
whenever convenient. We remark that
A’ib(TmJ/{) g A’ibfl(Tmau)a Flib<7'm’u) g F]ibfl(Tmau)u
and that for b > 1 we have
Alib<7—m7 u) — Fli;b—i—l (Tm_b+1, U),

as is easily verified from definitions.
We introduce the discrete distributional exterior derivative

dn_m-l-k : A]il<7'm7u) — A’i—?(Tm’U) D A’jl(Tm—l’u)
by setting
dPm R = (=)D w 4+ (D) T, w e AR (T U).

This operator is inspired by the observations in Example 1X.1.5. Taking direct sums,
we obtain operators

A" AR (T U) — AR (T U,
dnmrR TR (T U) — T8, (T 5 U).
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IX. Discrete Distributional Differential Forms

Via (IX.21), (IX.24) and (IX.25), we verify the differential property
o gty = 0, w e AR(T™U).

This differential property motivates us to consider differential complexes of discrete
distributional differential forms assembled from spaces of the type A*, (7™ U) and
%, (T™ U), which leads us to the notion of discrete distributional de Rham complex.
Consider again the differential complex

L AT >0, (IX.52)

0— A%(T™)
which resembles the standard finite element complex. This complex may be “redi-
rected” at any index k in the following sense: we replace A*(T™) with AF (T™),
and continue with the spaces A*5!(7™), AF¥t%(7T™), and so forth, where the exterior
derivative is to be understood in the generalized sense. We thus have a differential
complex

LTS ATy S Ak (T T AR s L (IX53)

We see that the original complex is already trivially redirected at the n-forms, not-
ing A"(7") = A" (T"). The original finite element complex is a subcomplex of the
differential complex redirected at the (n — 1)-forms. In turn, the latter is a sub-
complex of the differential complex redirected at the n — 2 forms. More generally,
the differential complex redirected at the k-forms is a subcomplex of the differential
complex redirected at the (k — 1)-forms.

T ARy AR () s ARy

T T T N (IX.54)

ARy AR () s ARy

We thus have a succession of (inclusions of) differential complexes of discrete dis-
tributional differential forms. Proceeding in this manner, we eventual obtain a
“maximal” differential complex that is redirected already at the O-forms:

0= A% (T —L o A (T =0 (IX.55)

We have constructed a family of differential complexes starting from the original
finite element complex (IX.52) and completely analogously we start a similar con-
struction with the differential complex of simplicial chains. Consider the differential
complex

07" — . 25 1o(70) 0, (IX.56)

Let us fix an index m € Z. The differential complex (IX.56) at index m looks like

dnf'm72 m—

o7y S

qn—m

S TO(T™) oty S L (IX5T)
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5. Discrete Distributional de Rham Complexes

We redirect this complex at index m to obtain
n—m-—2 n—m—1 n—m n—m-+1
S po(ry S 1 (T S 1o, ()
Again we observe a sequence of discrete distributional de Rham complexes. The orig-
inal differential complex (IX.56) is already redirected at index 0, because ', (7T™) =
(7™). This complex is a subcomplex of the differential complex redirected at in-
dex m = 1, which is a subcomplex of the differential complex redirected at index
m = 2, and so forth. In general, the differential complex redirected at index m is
included in the differential complex redirected at index m — 1.

(IX.58)

n—m-—2 n—m-—1 n—m n—m-+1
d d d d

I oy S oy S Ty S

T | T T (IX.59)

dn—m—2 FO(Tm+1) dn—m-— F(ll(’]"m) dn—m 1—‘(12(’7'77’74—1) dn—m+1

As before, we have a succession of (inclusions of) differential complexes. The maxi-
mal example of this second family of differential complexes is obtained by redirecting
(IX.56) already at index m = n,

0T (77 — L . 0 (79 0. (IX.60)
Unfolding definitions we find that this differential complex is, in fact, identical to
(IX.55). Hence we have two families of differential complexes, one starting at (IX.52)
and the other starting at (IX.56), that lead to the same discrete distributional
de Rham complex.

We have encountered differential complexes that generalize the finite element
complex (IX.52) and are formulated on the lower dimensional skeletons 7™ of T,
for 0 <m <n.

0 AT~ T ATy S, (IX.61)

Similar as above, we may redirect this complex at any index k, and obtain differential
complexes

dk+n7m72 dk+n7m71 dk+n7m dk+n7m+1

A (T Y—— AR T Y—m—
(IX.62)
We have interpreted the simplicial chain complex of T relative to U as a differential
complex of (constant) 0-forms on simplices. We generalize this differential complex
as a complex of k-forms on simplices whose piecewise exterior derivative vanishes
for 0 <k <n.

AR=I(T™)

0— THT™) — . 25 TRTH) 0. (IX.63)

We may redirect this complex at index m, to obtain a differential complex

I‘\k(Terl)

dk+n77n72 dk+n7m71 dk+n7m dk+n7m+l

rr (T — ...
(IX.64)
In the next section, we will determine the homology spaces of these differential
complexes.

e (7™)
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Remark IX.5.1.

The results in this section generalize ideas of [34], in particular the proofs of their
Lemma 3, Theorem 5 and Theorem 7. But the distributional complexes in this sec-
tion can also be related to the double complex of the preceding section. We identify
the maximal complex (IX.55) / (IX.60) as the total complex of the double complex
(IX.47), skipping the left-most column and the top-most-row of that diagram. The
two families of broken complexes, (IX.53) and (IX.58), exemplify the two canonical
filtrations of the total complex. We refer to [31] for more background on notion of
homological algebra. Although the underlying ideas are similar, our presentation
is specifically tailored towards finite element analysis and addresses the harmonic
spaces of the broken complexes explicitly.

IX.6. Discrete Distributional Harmonic Forms

In this section we expand upon the homology theory of discrete distributional
de Rham complexes. It will helpful to switch to the framework of Hilbert complexes
for that purpose. This requires fixing a Hilbert space structure on the spaces of dis-
crete distributional differential forms. For that reason, we henceforth assume for the
remainder of this chapter that the spaces A* (7™, U) are equipped with scalar prod-
ucts, which turns them into Hilbert spaces. Either by taking direct sums or by taking
restrictions to subspaces, this yields a Hilbert space structure on the other spaces of
discrete distributional differential forms discussed in this chapter. A specific choice
of scalar product will be required only later when we address Poincaré-Friedrichs
inequalities, but we remark that the scalar products (IX.33) are a possible choice.

Our goal is to construct isomorphisms between the harmonic spaces of Hilbert
complexes of discrete distributional differential forms. To that end, we denote the
harmonic spaces of these complexes by

H(T™) = we A (T™) et IX.65

—b = w — w dk:-i—n—m—lA/i;il (Tm) ’ ( : )

er(T™) = e’ (T™) dHn ™ =0, (IX.66)
—b = w —b w dk+n—m—lrlib+1(7‘m+1> ) :

The orthogonality is with respect to whatever scalar product is chosen on the dif-
ferential complexes of discrete distributional differential forms.

We use the term discrete distributional harmonic form for the elements of the
harmonic spaces $*,(7™) and €*,(T™). We sometimes write

HHT™) = H5(T™),  €(T™) = &(T™).
The spaces of harmonic forms $*,(7™) and €*,(7T™) are easily described:

Lemma IX.6.1.
Let k,m € Z. Then HE(T™) = $H* (T™).

Proof. Unfolding definitions, we have Hf(7™) C $H*,(7™). Conversely, we have
w € $H*,(T™) if and only if d*w = 0 and w is orthogonal to d* 'Af~'(7™). But
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6. Discrete Distributional Harmonic Forms

in that case w € AE(T™), and w € HE(T™) follows by definitions. The proof is
complete. O

Lemma IX.6.2.
Let k,m € Z. Then €&(T™) = ¢k (T™).

Proof. This is very similar to the proof of Lemma 1X.6.1 above. First, we have
CH(T™) C €k (T™). Conversely, we have w € €*,(7T™) if and only if d*™""w = 0
and w is orthogonal to d**"="1*=1(7™)  But in that case w € TE(7T™), and
w € EE(T™) follows by definitions. The proof is complete. O

Remark 1X.6.3.

In the sequel, we prove statements about the spaces $*,(7™) and €*,(7™). The
respective proofs are very similar in each case, but we provide full proofs for both
for the sake of technical completeness.

To proceed with the agenda of this section, we require the additional assumptions
already used in Section IX.4. This means that in the sequel, we assume that the local
exactness condition, the geometric decomposition condition, and the local patch
condition of 7T relative to ¢ hold.

Moreover, we need to fix generalized inverses of the differential operators D}* and
T3, Specifically, we assume to have operators

Ep c AR (1) — AR (T,
P A(T™) — A%, (T7)
for m, k € Z that satisfy
T = TYEITE,
Dy = Dy'P.'D}.

A possible choice of such generalized inverses are the Moore-Penrose pseudoinverses
[73] of D} and T}, but no specific choice needs to be made at this point. We con-
struct such operators explicitly in Sections IX.7 and IX.8.

We now construct the following operators. When m,k € Z and b € N, then we
define

my AT = AE(T™), wiw (—1)n 7 Hgnm g R, (IXL67)
Sk o TE(T™) = TE(T™), wisw+ (1) rigitnomaipmizily, - (IX.68)
The main application of these operators is shown in the following two lemmas.

Lemma IX.6.4.
Let m,k € Z, let b € N with m < n, and let w € A*,(T™) with d*""™w €
AR (T™).

e We have d¥tn—my e dk+"_mA]ib+1(Tm)-

o If b =1, then w € AF(T™).
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e If b > 2, then d"" "R w = d¥ " "y with Rw € AF,  (T™).

Proof. First we consider the case b = 1. If w € A* (T™) with d¥"—™w € AR (T™),
then T7w = 0. But then w € A§(7T™) by definition.

Next we consider the case b > 2. Let w € A*,(T™) with d*"™mw € AFF1(T™),
and write

w=uw4 -+ W e AFI(TT).

By d*"mw € AMPH(T™) we conclude Tzzf_blfllwal = 0. Using the properties of
the operator E}{”:b’ff and the homology properties of the vertical complex, we have
TP P 2Ep 2wt = Wbl In particular, EJ" /2wt € AMPTH(T™02) ) and we

have

n—m+b jk+n—m—-1pm—-b+2 b-1 _ mym—b+2pm—0+2, b—1  Tm—-b+2pm—b+2, b—1
(1) d Eraw =D B w T Brp W
_ pm—b+2pm—b+2, b—-1 _  b-1
=Dy B w W .

We conclude that
RZT&;W — <'L)O o wb—l 4 (_1)n7m+bdk+nfmfl EZL:bIﬁQWbil
= w4+ DR W
so Rjw € A*, . (T™). Furthermore,

dk+n—mR2r?bw — dk+n—mw + (_1)n—m+bdk+n—mdk’+n—m—1 EZZ_bT—leb_l — dk+n—m

w.
This completes the proof. n

Lemma IX.6.5.
Let m,k € Z,let b € Nwith 0 < k and let w € T%,(T™) with d*"~™w € T*, (T™1).

e We have d*"—my € dk+"_mrlib+1(7-m)-
o If b =1, then w € TE(T™).
o Ifb>2, then d*" ™SE w = d**"""w with Sy, w € T%,  (T™).

Proof. First we consider the case b = 1. If w € T'®,(7T™) with d**""w € TF7H(T™),
then D"w = 0. But then w € TE(7T™) by definition.

Next we consider the case b > 2. Let w € T*,(7T™) with d*+*"mw € T* 1(T™),
and write

w=uw4 -+ W e DM (T,

By d**n=mw € T*, (T™1) we conclude D" 'w?~" = 0. Using the properties
of the operator P;”ﬁbjzl and the homology of the horizontal complexes, we have

mb—1pm+b—1, b-1 _ b1 . m+b—1, b1 k-+b—2 (mb—1
Dy s Pty s w’™ = w’'. In particular, P} 'w®™h € ATy (T ), and we

have

n—m—b+1 jk+n—m—-1pm+b—1, b—-1 _ mym+b—1pm+b—1 b—1  Tm+b—1pm+b—1, b—1
(—1) d Pirp 2w =Di P s w Tiro—a Piiy 2
b1 m+b—1pm+b—1, b—1
=w’ =T Pk+b—2 W
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We conclude that
an,bw = wo + e+ wb—l + (_1)n—m—bdk+n—m—1Pznﬁb_—;wb—l
= (,uo + .o+ wb—2 + T?ﬁb__zl P?.:Lb__zlwb_l,
SO S,’jl,bw € F]in(Tm). Furthermore,

dk:-i—n—msfn W = dk—i—n—mw + (_1)n—m—bdk+n—mdk+n—m—1Pm+b—1 b—1 _ dk—&-n—mw‘

kt+b—2 W
This completes the proof. n

Another auxiliary result restricts the class of discrete distributional differential
forms that are candidates for being discrete distributional harmonic forms.

Lemma IX.6.6.
Let m,k € Z and let b € N with 1 < k, with m < n, and with 2 < b < k + 1.
If we AF, . (T™) with w # 0 and d*™™™w = 0, then w is not orthogonal to

dk:—&-n—m—lAliZil (Tm>

Proof. Suppose that w € A*,(T™) with
w=w’+ w2 W e AT,

and assume that d“*"~™w = 0. The idea of the proof is to construct £ € A*;} (T™)
such that d*~1¢ is not orthogonal to w. We then define

¢ = (—1)"PLw’ € AT,

and recursively

&= (1) tnmprd (wj + (—1)”m+jT;”_jﬂ'“5”> e ABTHTT)

for 1 < j < b— 2. By the homology of the horizontal complexes and D7"w® = 0 we
have

dk+nfm71€(] — WO - Ziléo_
Now assume that we have already shown

deH L 0 @) =W — (LT 6

for some index 0 < j < b — 2. This implies in particular

(1)t mDR ¢ =W if =0,

(—1yHnmDp ) 6 = w4 ()T s 0,
So we find that

m—j—1l-rm—j j __ Tm—jnym—j j _ (_1\j+tn—m m—j
Dk—j—l Tk—j—1§ _Tk—j Dk—j—1§ =(-1) Tk—jw7
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and calculate, using d**"~™w = 0, that

(_1)n—m+j+1 DZL_—jj_—ll (wj+1 _ (_1>n—m+j-|-2n—jj_1§j)

n—-m+ij+1pnm—j—1 41 m—j—1l-+m—j 1
= (=1)r it D,ﬂ_jﬂ._1 R Tk_j_lgf
_ (_1)n—m+y+1 DZ%_—jy_—llel + (_1>y+n—m-|-zw_—jjwj = 0.

By the homology of the horizontal complex we find

(=1 HDRT M = W ()T e
We combine these findings. We have
dk+n—m—1 (50 b8+ §j+1)
=o't w! = (ST

i
H (=)D OT  (—)T R

0 j+1 n—m+j+1m—j—1¢j+1
=W W ()T T
Iteration of this procedure provides us with
dk*l(go Leeoa gbe) — wO 4o wb72 . (_1>nfm+bTZL_fbl:r12€b727
from which we deduce

(@ + ) w) = wliZ

Hence, if w # 0, then w is not orthogonal to dk+”_m_1A’jgi1(Tm). The proof is

complete. O

Lemma IX.6.7.

Let m,k € Z and let b € N with m <n—1, with 0 <k, and with2 < b <n—m+1.
If we ' (T™) with w # 0 and d"™ ™w = 0, then w is not orthogonal to
dk+nfmflrlib+l (Terl)'

Proof. This is similar to the previous proof. Suppose that w € I'*,(7™) with
w=w 4 w2 W e M (T,
and assume that d**"~"w = 0. We then define
€= (—1) R LY € TE (T,

and recursively
& i= (1 () (1D g ) € P

for 1 < j < b—2. By the homology of the vertical complexes and T w® = 0 we
have

dk-&-n—m—lgo — wO _ DZL_lgo.
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Now assume that we have already shown
dk—&-n—m—l(go 4.4 5]) — wO N wj . (_1)n—m+jDZl_:;j+1§j
for some index 0 < j < b — 2. This implies in particular

(1)t T = W if j =0,
(=1 TR = W 4 (=)D @i > 0.
So we find that

m+tj+lpym+tjtle; _ pymtijgmtitle; _ ( q\j+n—mpym+j, j
Tii Diyj & =D T ¢ = (1) D w

and calculate, using d**"~™w = 0, that

n—m+jrTm-+j+1 ( 4 n—m-+jnym+ji+1¢j
(1) T (T (=)D )

= (1) T 4 (1) D W = 0.
By the homology of the vertical complexes we find

j+n—m—17m+j+2 #j+1 j+1 —m+jipym+i+1ej
(_1)J+n m Tzl+j]+1 €j+ :wﬁ- _|_(_1)n m—i—JDZlJer 53‘

We combine these findings. We have
kornfmfl (50 et gj + éfjJrl)

=+ — (_1>n—m+ij+j+1§j

k+j
—mAjH1m+i+2 41 —m+jym+i+2 ¢j+1
+ ()TN + (=)D
— WO et wj—&-l . (_1>n_m+j+1Dzl-;ﬁ2§j+l‘

Iteration of this procedure provides us with
dk—l(gO 44 gb—?) — w() 4ot wb—? _ (_1)n—m+bDZL+—;l:—21£b—2’
from which we deduce
<dk71(£0 +oee fbiQ)a w>,h = Hsz—hv .

Hence, if w # 0, then w is not orthogonal to dk+”_m_1f"j;}r1(7‘m). The proof is
complete. O

The harmonic spaces $*,(7") and €°,(7™) for b > 2 are constructed in a
recursive manner.

Lemma IX.6.8.
Let m,k € Z and b € N. with 1 <k, with 0 <m <n, and with 2 <b <k + 1. Let

QAP (T™) = ker (dF : AR (T) — AL (T™)

be the orthogonal projection. Then the operator Qi R} acts as an isomorphism

from $*, ., (T™) to H*,(T™).
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Proof. Let w € A¥,(T™). We can uniquely write
w=w4 -+ W e NPT,
By construction of RZfb, we have
w— Rtw € d* AR (T™).
This implies in particular that
d*w=0 < d"RPw=0,
wed AL (T = Rwed AR L (T™).
From the last equivalence and the abstract Hodge decomposition, we conclude that
d*'w =0, wlH(T") <<= d"RIw=0, RwLH"(T™).
We use Lemma 1X.6.4 to first observe
d"Rw=0 = dw=0 = RpweA (T™
and second to find
w e d AR (T = Rw e dMIAML(T™).
In that way, we derive
d*Rw =0, Rpyw L&O%(T™)
wpw € dIA L (T)
rpw € d* A" b}rz(Tm)
d"Rw =0, RMw L oFL(T™)
d*w =0, w L (RP,) 91 (T™).

(!

Using the properties of the Hodge decomposition on Hilbert complexes, we conclude
that the projection of (Ry,)” $%, (T™) onto kerd® N A*,(T™) equals £ ,(T™).
Furthermore, Lemma IX.6.6 implies that for p € YJ’in(Tm) we have
(p, Qs Rip) = (p, R p) = (Ri%yp,p) = (p, ).
This means that
lef b - ﬁlib+1(Tm> — ﬁlib(Tm>
is not only surjective but also injective. The proof is complete. O]

Lemma IX.6.9.
Let m,k € Z and b € N. with 0 < k, with 0 <m < n,and with 2 <b<n—m+1.
Let

PE,:TF (T™) — ker (¥ . Tk (T™) — T%,_(T™71))

be the orthogonal projection. Then the operator P,;”,)Sk*b acts as an isomorphism
from €%, (T™) to &€®,(T™).
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Proof. Let w € T*,(T™). We can write
w=u’ 4wt W e TR (T,
By construction of S} we have
w— Sphyw € dMFTmIInE (T,
This implies in particular that

dk-i—n—mw =0 - dk-&-n—msfj%bw _ O,
w E dk+n—m—llﬂlib+1(7‘m+l) S Sﬁwa c dk+n—m—llﬂlib+1(7‘m+l).

From the last equivalence and the abstract Hodge decomposition, we conclude that
d"TMw =0, wl @ (T") = d"TTTSE L w=0, Skw e (Tm).
We use Lemma 1X.6.5 to first observe
gk w=0 = d""Mw=0 = Sk wel* (T
and second to find
Sk yw € dMrImIIDE (T = SEw e dE T ITE, (T,
In that way, we derive

dHtremsk w =0, Show L e, (T™)
an,bw S dk+n_m_lrlib+1<Tm+1)-

an,bw S dk+n_m_lrlib+2<Tm+1)
dk+"_mS§%bw =0, Sﬁ%bw 1 Qf’i;}rl(Tm)
dFrmy =0, wl Sz':bQ:k;}rl(Tm).

rree

Using the properties of the Hodge decomposition on Hilbert complexes, we conclude
that the projection of Sk, €* 1, (T™) onto ker d¥™=™ N T*, (T™) equals € (T™).

Furthermore, Lemma IX.6.7 implies that for p € €%, (7T™) we have
(p. Py Syyvp) = (. Sppp) = (Spopsp) = (p.D)-
This means that
BySye, @€, (T — €5 (T™)
is not only surjective but also injective. This completes the proof. O]

Remark IX.6.10.
If p € $*,(7"), then generally R;,,,p ¢ H%,(7"). However, in the special case
k = n the orthogonal projection is redundant because d"A™,(7™) = 0.
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Remark IX.6.11.

The requirement of an orthogonal projection in the construction of the discrete dis-
tributional harmonic forms seems conceptually unsatisfying. However, one can see
that, if we leave out this projection operators at every stage, the resulting construc-
tion produces at each stage a space of discrete distributional harmonic forms whose
projection onto the discrete distributional harmonic forms is surjective. Analogous
observations apply to the operators S, ;.

The main result of this section is now evident. We generalize Theorem IX.4.1.

Theorem IX.6.12.
Let kkm € Z and b € N with 2 < b <n—m+1, with 0 < m < n, and with
0 < k < n. Under the assumptions of this section, we have isomorphisms

eHT™y =k (T™) =~ ek (T™)
. (IX.69)
— ﬁlingfl(Tm+b71) ~ o~ ﬁliJ{bfl<Tm+b71> _ ﬁk+b71(7—m+b71>

Proof. This follows from iterated application of Lemmas IX.6.8 and 1X.6.9, together
with Lemma IX.6.15 and the fact $*,(7™) = ¢°,(7T™=""1) for b > 2. O

Remark IX.6.13.
With a different choice of indexing convention, Theorem [X.69 states that

thberl(Tmle&) — Qf’flbﬂ (Tmberl) ~ e~ Q:li;bJrl (Tmberl)
=9 (T™) = = 9" (T™) = 9" (T™)
for kkm € Z and b € N with 0 <m < m, with 0 < k <n, and with 2 < b <k + 1.

Corollary 1X.6.14.
Under the assumptions of this section, we have isomorphisms between harmonic
spaces:

Ho (T, U) = (T F) =€ (TF) = oo @y (T
=95, (T - 98 (T7) = 5M(T™)
for 0 <k <n.

Proof. This follows the previous theorem together with the local exactness condition
and the observation $°(7") = &%(T™). O

The identity $H°(7™) = €°(7T™) is evident since this is precisely the subspace of
A% (T™) =T (T") whose members have vanishing horizontal and vertical deriva-
tive. More generally, the following result is true.

Lemma IX.6.15.
Let k,m € Z with k > 1 and m < n. Then €% (T™) ~ §* (T™).

Proof. Tt £ € TE(T™*), then

DY TR PRHE =T e
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7. Inequalities on Horizontal Complexes

by the homology of the vertical complexes. Conversely, if & € AE™1(7™), then
T D ERE = DY ¢
by the homology of the horizontal complexes. This shows that
dk-i—n—m—l]:\g(Tm—&—l) — dk—&-n—m—lAS—l(Tm)'
The desired statement follows as a consequence. O
At the extreme indices, the following result holds.

Lemma IX.6.16.
Let 0 <m <n. Then

HUT™) = (T @ T g (T ). (IX.70)
Let 0 < k <n. Then
CH(T™) = 9F(T™) @ DR AFTHT™). (IX.71)

Proof. Let 0 < m < n and w € A’ (T™). Then w € H°(7™) if and only if
d*tn=my = 0, which is the case if and only if w € I'°(7™) with T'w = 0. Now
(IX.70) follows by the Hodge decomposition.

Analogously, Let 0 < k < n and w € T*,(T™). Then w € €*(7T™) if and only
if d*w = 0, which is the case if and only if w € A*(7™) with T?w = 0. Similar as
above, (IX.71) follows by the Hodge decomposition. O

This completes our description of the harmonic spaces of Hilbert complexes of
discrete distributional differential forms.

IX.7. Inequalities on Horizontal Complexes

So far we have addressed the homology theory of complexes of discrete distribu-
tional differential forms. We have constructed explicit isomorphisms that help us
to determine the discrete distributional harmonic forms. But apart from harmonic
spaces, Poincaré-Friedrichs inequalities are another fundamental topic in the theory
of Hilbert complexes. The remainder of this chapter will be devoted to estimating
the constants in Poincaré-Friedrichs inequalities. We initiate these efforts with an-
alyzing inequalities of horizontal complexes.

As a base for this discussion, we make additional specifications on the class of
discrete de Rham complexes (IX.15) associated to simplices: we assume additionally
that we use polynomial de Rham complexes. Recall that for each C' € 7™ we have
a fixed reference transformation p¢c : A, — C, as described in Chapter II. We say
that the polynomial order R condition holds if for each m, k € 7Z we have

YR (C) C PrAR(A,), CeT™.

This means that on each simplex the differential complexes consist of spaces of
polynomial differential forms of order at most R. For the remainder of this chapter,
we assume that the polynomial order R condition holds for some R € Nj.
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IX. Discrete Distributional Differential Forms

Example IX.7.1.

Suppose that 7 is a finite triangulation and that &/ C 7T is a subcomplex. Suppose
furthermore that we have fixed admissible sequence types Pr € & for each F € T
such that the hierarchy condition holds (see Chapter IV). In that case we obtain
differential complexes (IX.15) of the form

k—1 k k1
C 2 pake) L pakto) 2

as described in Example I1X.1.2. Trivially, the polynomial order R assumption holds
for some R € N sufficiently large.

A first application is an inverse inequality.

Lemma IX.7.2.
Let m,k € Z and a € R. There exists a constant i > 0, depending only on R, m,
k, and u(T), such that for all w € A¥(C) and C € T™ \ U™ we have

o 2 e
he Hdlé'wCHLZAkJrl(C) < fih¢ ? ||WCHi2Ak(C) : (IX.72)
Proof. Let C € T™\ U™ and we € A*(C). We have

HdngHLQAk‘H(C) = H(‘Da*dzmgpéwo“LQAkﬂ(C)
< Omax (D)
~1

. k+1 1 *
S HR,mO max (D Lo ) det (D @C) 2 ”(pC’wCHLQAk(Am) ’

det (D 300)% Hdimw*cWCHLzAkH(Am

where [ip ,, depends only on R and m. Then we use

* k _1\ %
ngcwcHLzAk(Am) S Umax (D (PC) det (D 9001)2 HwCHLQAk(C) .
In combination,
. - k
Hd’ngHLWH(C) < flRm * Omax (D @cl) -k (Dpc)” - ||WCHL2AI<(Am) :
This completes the proof. O

Lemma IX.7.3.
Let m,k € Z and o € R. There exists i > 0, depending only on R, m, k, and u(7T),
such that for all w € A* (T™) we have

E e m 2 - 2 : a— 2
CeTnL\u'nL CET"L\U"L

Proof. This follows because (I1X.34) is the direct sum of differential complexes (IX.35)
associated to the simplices in C' € T™ \ U™. ]

As a converse to the inverse inequality, we prove a Poincaré-Friedrichs inequality.
We use the existence of an L? bounded generalized inverse on the reference simplex
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7. Inequalities on Horizontal Complexes

that preserves polynomial differential forms. Specifically, Proposition 4.2 of [64] and
Lemma 3.8 of [9] imply the existence of a bounded operator

PR L*AM(A,,) — HA(A,,)

such that
di,.Pa,di,E=di & &€ HAY(AL),

and

PX. (PA(A)) CPrARA,).
The operator P’gm is an averaged Poincaré operator. We then define for each simplex

P]é’ = SOC*PZ 9007 CETm\uma k,mEZ,

and combine these simplexwise operators to

P AFHT™) = AM(T™), w > Pluwe.
CeT"L\u'm

We carry out the following estimates.

Lemma IX.7.4.
Let m,k € Z and a € R. There exists a constant g > 0, depending only on R, m,
k, and u(T), such that for all C € T™ \ U™ and w € A*1(C) we have

haC HPIé’wCHiQAk(C) S :&h%_2 ||WC||§/2A’€+1(C) : (IX74)
Proof. Let C € T™\ U™ and wec € A¥(C). We have
HPI&WCHLQAIC(C H(’OC A'm(pc CHLQAI’c )
< Omax (D ()DC ) det (D ()OC’)% HPZmSO*C'wCHLQA’“(Am)

N 1k PR
< O max (D 90(;1) det (D SOC>2 HSOCWCHLzAkH(Am) )

where [i,, depends only on m. Then we use that

=

* k —
HSOCWC”LzAkH(Am) < omax (Do) ! det (D 9001) HWCHLQA’“(C)

In combination,
. k
[PEwel| o i oy < fim - Omax (Do) - £ (D @e)” - lwell gz a,, -
This completes the proof. O

Lemma IX.7.5.
Let m,k € Z and a € R. There exists a constant g > 0, depending only on R, m,
k and u(T), such that for w € A* (T™) we have

o helPrwoliaame S i Y W weliapine . (X.75)
CETW\Um CeT’m\um
Proof. This follows because (I1X.34) is the direct sum of (IX.35). O
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IX.8. Inequalities on Vertical Complexes

We have investigated inequalities in horizontal differential complexes with respect
to a mesh-dependent norm. We now conduct a similar investigation for vertical dif-
ferential complexes. Some additional technical definitions are required, though.

First, the geometric decomposition assumption implies that for each w € I'*(C)
with C € T\ U and k € Z we have a unique decomposition

w= Y exth,(f, & eTHF) (IX.76)
FeA(C)

We use this notation for a decomposition of the form (IX.76) without further notice
in this section. More generally, for each w € T*(7T™) with k,m € Z we have unique

decompositions
F F k F
w= E ¢, ¢ = E extp o (e
FeTlm] CeTm\Um™

The vertical differential operator T} preserves the decomposition of w into terms
associated to simplices F' € 71", In particular, the vertical complex
TZI,+1 % TZL 5 1 'Zz,—l
L — T —— TH(T) —— ...
is the direct sum of differential complexes
m—+41 m—1

RELEENS v F oINS ) o QLS (IX.77)

over F € T. We will transform this differential complex to a reference setting,
for which we use transformations to reference micropatches. For each F' € T, we
write W.I'}*(F') for the piecewise pullback of I'}*(F') onto the m-simplices of the set

./T/T(’T, F)\ N(T,U, F) along the reference transformation Wz. For each F € T we
obtain the reference differential complexes

* +1lg—* -
WETRT UETrw "

T WL (F) pprm-lpy Y (IXUT8)

By the results of Chapter II, we may assume without loss of generality that there
are only finitely many differential complexes of the form (IX.78). This allows for an
inverse inequality with uniformly bounded constants on the differential complexes
(IX.77). For each F' € T, we fix an operator

Er'p: Wl '(F) = WRIT(F)
that satisfies
TR B TR = TReh, ¢ e TR(F).
We eventually define
Ep TR ) =TT, YD e Y wERe it

FeTlm—1] FeTlm—1]
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By construction we have the identity
TRENTiw =TYw, wel*T™).

Again, by the results of Chapter II, we may assume without loss of generality that

the collection (EZfF)FeT has a cardinality that can be bounded in terms of k, m,
and u(7). This observation will be crucial for proving the next lemma.

Theorem IX.8.1.
Let o € R. There exist constants i, f# > 0 such that

Z all( ITW)QH%QA’@(Q) < [t Z h%_lHWCH%Mk(C)’
QeTmfl\umfl CETm\um
« m 2 < ha+1 2
Z 7l (Ex W)THL?M(T) SH Z c HwC”LQA’“(C)'
TeTmH\Ym+1 ceTm\uU™

The constants & and /i depend only on R, «, k, m, pu(T), and puqu(T).

Proof. We use the geometric decomposition. We write

w= Y

FeTlmh\ym

PF
po= >

FeTtm—1\ym-1

Eiw= Z F

FeTm+1\ym+1

for the respective decompositions of w, T'w and EJ'w into terms associated to local
patches as in Lemma IX.3.2. By construction, for F' € T we have

T =¢", Epet=(" (IX.79)
Moreover, as in (IX.76) we write

r= > extho(f, FeTm\utm
CeM(T,F)™
C¢N (T U,F)™

(r = Z ext C57 F e 7m0\ ytm=1,

QEM(T F)ym=1
QEN (T U, F)™ !

G= Y extbalh ety

TeM(T,F)m+t
TEN (T U, F)™+1

Using the triangle inequality and definitions, we observe that

<112
Z h%”( ?W)Q”%QM(Q) < Z “lqu(T)ah(Il? Hext’}@ Cg‘ IA )
. L2AR(Q)
QeT™ FeTtml
QeEum—! QeEM(T,F)ym=!

QEN(T U F)™ 1
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and such that

Z h HL2A'€(T) < Z tiqu(T) A
TeTmt! FeTlml
TeuUm TeN(T,F)ym™+!
TEN (T U, F)™ T

kfF
extr o G ‘ .
FTST (| iy

Next, we use our observation on the maximum number of reference differential com-
plexes (IX.77). Let F € T~ For Q € T '\ U™ with F € A(Q) we find
that

h()é

extlf:QCQ’ < furhg! [extlg CCHLQA’“ (©)

L2AM(Q)

with a constant i that depends only on R, m and p(7). On the other hand, we
find that

k fF . 1
Z W ||extrr Cr ‘ L2AK(T) < pF Z ha+ ||eXtFT CC HLQAk;(C)
TeM(T,F)m+1 CeM(T.F)™
TEN (T U,F)™+1 CEN (T U, F)™

with a constant /i that depends only on R, m and p(7). In particular, the constants
i and fip can be bounded independently of F'.

Finally, another scaling argument implies the existence of p”, depending only on
R, m, k, u(T), and puqu(7), such that

S > lexthe e

FeTlml CeM(T,F)™
c¢N(Tu F)

Z Z ha:tl HeXt CCC’HLQAk ()

Ferlml CeM(T,F)™

CEN (T U,F)™
<y’ Z hgﬂHWCH%Mk(cy
ceTm\um
This completes the proof. O

1X.9. Hilbert Chain Complexes

Earlier in this thesis we have learned about the distinguished role of the complex
of Whitney forms in the theory of finite element differential forms, which is primarily
due to its duality relation with the simplicial chain complex. This has related the
cohomology spaces of the complex of Whitney forms to the homology spaces of the
simplicial chain complex. In this section we use this relation to analyze Poincaré-
Friedrichs constants.

The general idea is as follows: the L? scalar product on n-simplices gives rise
to a Hilbert space structure on the Whitney forms. For example, if 7 triangulates
a domain, then this is just the Hilbert space structure described by the L? norm
of differential forms. This Hilbert space structure induces a Hilbert space structure
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9. Hilbert Chain Complexes

on the spaces of simplicial chains by the duality pairing. Thus we obtain Hilbert
complexes whose Poincaré-Friedrichs constants we put into relation.

We assume that 7 is an n-dimensional simplicial complex and that I/ is a sub-
complex. We recall the differential complex of Whitney forms of Chapter IV, which
we visualize, in this case, as a differential complex from the right to the left:

0 WAMNT,U) & <L WANT,U) « 0. (IX.80)
A Hilbert space structure over WA™ (T ,U) is induced by the scalar product
(0, ) p2am = Z (Pc,be)eamcy, .0 € WA™(T,U). (IX.81)

ceTm\Un

We write WA™ (T ,U)2am for the Hilbert space that results from equipping WA™ (T, U)
with that scalar product. Thus the differential complex (IX.80) gives rise to a Hilbert
complex

0 WANT, U)ponn < . L WAYT U 20 0. (IX.82)

We let Y, > 0 denote the Poincaré-Friedrichs constant of this Hilbert complex.
Thus for every w € d™WA™(T,U) being the exterior derivative of a Whitney m-form
there exists £ € WA™(T,U) such that

€l z2am < prpllwllzamss.

Remark IX.9.1.

In the sequel, we derive generalized Poincaré-Friedrichs inequalities whose constants
can be expressed in terms of u?”u, but we do not enlarge upon characterizing M7W,u
any further in this chapter. In typical applications, however, M7Vy,u can be estimated
in terms of the mesh quality and the Poincaré-Friedrichs constant of the L? de Rham
complex. Previous findings in the literature have accomplished this in the cases
Iy = 0 and Ty = 09; see [9, 58] and Theorem 3.6 of [11]. If T triangulates a
weakly Lipschitz domain and U triangulates an admissible boundary patch, then a
bound for the Poincaré-Friedrichs constant ,LL,VT\f y in terms of the mesh regularity and
geometric properties of the triangulated domain can be proven, as has been outlined
in Chapter VIII.

Next we recall the differential complex

To

0 TO(T™) —8y . T, po(70) 0, (IX.83)

Due to the local exactness condition, the spaces in this complex are spanned by the
indicator functions 1o of the simplices C € T \ U. We equip each space I'°(7T™)
with the scalar product

(wyn)_p = Z RS "wene,  w,n € TYT™), m e Z. (IX.84)
ceTm\um

This makes (IX.83) into a Hilbert complex. We let 1/, denote the Poincaré-
Friedrichs constant of this Hilbert complex. The next result relates pj,, to the
Poincaré-Friedrichs constant Y, of (IX.82).
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Theorem IX.9.2.
The Poincaré-Friedrichs constant 4, of (IX.83) can be bounded in terms of u(7),

tiqu(T), n, and M7Vy,u'

Proof. We recall that we have a non-degenerate pairing of WA™(T,U) with the
spaces of simplicial chains C,,(7,U) via integration. The simplices 7™ \ U™ are a
basis of C,,(T,U), and the Whitney forms ¢¢ for C € T™ \ U™ are the dual basis
with respect to this bilinear pairing, up to a constant factor 1/m!, as described in
Equation (ITL.8).

There exists a scalar product (-, -)x over WA™(T ,U) with respect to which
(¢9)cermym constitutes an orthogonal basis of WA™(T,U) such that

16%ln =n&™", CeT™\u™ (TX.85)
Using Lemma V.2.3 we now see that there exists ux > 0 such that

pix 10l zam < [|@llx < pllgllzzam, ¢ € WA™T,U), (1X.86)

where px depends only on k, n, u(7), and fuqu(7). We write WA™(T,U)x for the
vector space WA™(T,U) equipped with the scalar product (-, -)x. We have got an
isomorphism of Hilbert complexes:

0 e WHT . U)pean < . Ee WUT U p2am — 0
0 W(T U <& . < WOT U —— 0.

We conclude that the Poincaré-Friedrichs constant of the bottom row complex is
bounded by gy,

The scalar product (-,-)x over W™ (T,U) induces a scalar product (-,-)x over
Con(T,U) via duality. We denote by C,,(7T,U)x the vector space C,,(T,U) equipped
with the scalar product (-,-)x. Note that 7™ \ U™ constitutes an orthogonal basis
of C,,(T,U)x, and that

ICl=he 2, CeT™\um (IX.87)
Thus, the Poincaré-Friedrichs constant of the Hilbert complex

0 — Co(T Uy —2s ... 2

CU(T,U)N — 0

is bounded by pgp;, too. Next, via the identification of simplices with their indi-
cator functions, we have an isomorphism of Hilbert complexes

On

0 — Co(T, U Ay Co(T, Uy — 0

g o

0 —— TO(T™) - (7% —— 0.
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10. Poincaré-Friedrichs Inequalities

Elementary computations show that

T HICHs < he? Iltellzznoey < NC]I

We conclude that the Poincaré-Friedrichs constant M%u of the Hilbert complex
(IX.83) satisfies the desired bound. The proof is complete. O

As explained in Section VIII.1, the Poincaré-Friedrichs constant of a Hilbert
complex bounds the operator norm of a generalized inverse of the differential. In
our specific setting, this has the following application. There exists a linear operator
&M TO(T™ 1) — T%T™) such that

TrEmTe =Tee, £el(T™),

and such that for all £ € T°(7T™) we have

\/ Z he " 1(E™E) el Fapoiey < Hru Z L S R

ceTm\uUm™ FeTm—1\yym—1
In particular, for m € Z and & € TP'T?(T™) we have

TGEmE = €.

I1X.10. Poincaré-Friedrichs Inequalities

We finish this chapter with the derivation of Poincaré-Friedrichs constants of
Hilbert complexes of discrete distributional differential forms whose Hilbert space
structure is induced by a mesh-dependent scalar product. The agenda of this chap-
ter is to express the Poincaré-Friedrichs constant of these Hilbert complexes in terms
of the Poincaré-Friedrichs constant Hg',u introduced previously.

The Poincaré-Friedrichs inequalities are proven with respect to a mesh-dependent
scalar product. Earlier in this chapter, we have developed isomorphisms between
harmonic spaces of complexes of discrete distributional differential forms with re-
spect to a general class of scalar products (see Section 1X.6). For this section, we
recall the definition

(wnyn = > hETwe,ne) k), w.n € AR (T, (IX.88)
ceTm\Um

Since A®, (T™) and T*,(T™) are defined as direct sums of spaces of the form A¥(7™),
this yields scalar products on these spaces too. Note that generalizes the scalar
product (IX.84) considered previously.

Example IX.10.1.

At this point we consider a motivational example. Suppose that 7T triangulates
a contractible domain and that U = (. Let w € d°A°(7™) be the gradient of a
function in the conforming finite element space A°(7™). We show how to construct
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IX. Discrete Distributional Differential Forms

a preimage. We let €Y = Pjw so that DJ¢° = w. But €% € A° (7™) is discontinuous
in general. We write n = w — d°¢°. Then

1= w = DRE" 4+ The" = TR
Note that 1 represents the inter-element jumps of £°. Due to the identities
To ' =Tg ' Tgg" =0,
Dy = D' T3e" = TYDRE" = Thw =0
we conclude that 1 € T(7""!) with Tg™'n = 0. Since the domain is contractible,
there exists £ € T°(T™) such that Tj¢ = n. But then

(€ +8) =w—n+dE=w-n+ T =w

We set € := &0+ ¢, so that d°¢ = w. Now & € A°(T™) is the desired preimage in the
conforming finite element space. The only non-local operation in the construction
of £ has been finding &, which is independent of any polynomial order.

The driving motivation in this section is to generalize the previous example. We
derive Poincaré-Friedrichs constants for the Hilbert complex

0= A (T7) 2 L A (T —— 0. (TX.89)

—n—1

Given w € d*A*,  (T™) being the distributional exterior derivative of a discrete
distributional differential form in A*.'(7™), we explicitly construct & € A®.1(T™)
satisfying d*~1¢ = w. Together with the results of Sections I1X.7, IX.8, and 1X.9,
the construction of £ reveals an estimate for the Poincaré-Friedrichs constant. In
the second part of this section we modify the construction to accommodate special
structure in the preimage, which yields Poincaré-Friedrichs inequalities for the other
discrete distributional de Rham complexes.

Throughout this section we assume that
w € dkA]ik71<Tn)

is a fixed but arbitrary discrete distributional differential form that lies within the
range of

dk . A]ikfl(Tn) — Ali—zl_Q(Tn)
There is a unique way to write w as
Ww=wo+ W, w € AT, 0<i<k+L

We explicitly construct & € A*,(7™) such that d*¢ = w in the following manner.
We define £ € AF, | (T™) as

Ei=Co b &t E, (IX.90)
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10. Poincaré-Friedrichs Inequalities

where we first define €0 € A* (T™) by
€)= Pru?, (1X.91)
then recursively define & € A**(7"7%) for 1 <i <k by
¢ = (-1 Pw + PO e (IX.92)

and eventually define £ € TO(T"*) by

£ = (=)MEmMWH — emTpReR, (IX.93)

Here we have used the horizontal antiderivative P} and the operator &™ from Sec-
tion IX.9. The basic idea of constructing a preimage in this manner has been known
in differential topology [31, I1.9] for a long time. We also observe that a similar
construction was already used in the proof of Lemma 1X.6.6. First we verify the
following identity.

Lemma 1X.10.2.
Let w and ¢ be defined as above. Then d*¢ = w.

Proof. First, we have D}, wo = 0 by assumption. The local exactness condition
thus implies D7¢° = w°. Moreover, d*w = 0 implies that

D! (! + Tig") = =Dy w! — DTS

= -Dplw! — TZHDZSO =Dy lw! — TZHwO =0.

Next we use an induction argument. Let us assume that we already have

D= iw™ = (-1)DIT I TRE
for some 0 < 7 < k. But then

Dz:z:%gz—kl — (_1)i+1wi+1 _ TZ:Z i.
Thus we find

w—d" (04 ) = ()T ET W0 W e AR (T,
and
Di 5 (CD)™ ST +w™) = ()DL TS + D W
= TroiHiHl 4 DRoit2,i42 g,

Hence the assumptions for index ¢ hold again for the index i + 1 < k.
Iteration of this argument eventually provides

W — dk’ (50 S §k> — wk-{—l + (_1)k+1-|-g—k§k
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IX. Discrete Distributional Differential Forms

Let  := w — d* (50 +--+ §k). Then n € A° (T"*1), and n € dA*, ,(T"). By
construction we have

Di"'n=0, T p=0

In particular n € [O(7"*71). Since n € d*A*, | (T™), we know that 7 is orthogonal
to HFL(T™) = ¢ (T77%1). Our next goal is showing that 7 is orthogonal to
CO(Tk=1). To see this, let p € €41 (T777+=1) be arbitrary. Then there is a unique
way to write
p:p0+---+pk+pk+1, piEAk+i<Tn+i>7 OSZSk—i‘l
From Lemma IX.6.9 we conclude that p° € €°(7""). Hence
<pO7 (_1)k+1-|-g—k€k + wk+1>_h — <p’ (_1)k+1-|-g—k§k’ + wk+1>_h
= <p7w - dk (50 + - +5k)>,h = <paw>—h =0

by assumption on w. Thus 7 is orthogonal to €°(7"*~1) and we conclude that
(—1)k+iTn-k <g+ §k> — R
This completes the proof. O

Next we bound the ||-||_; norm of £ in terms of the ||-||_, norm of w. In fact, we
more generally prove a family of inequalities parametrized over o € R. The special
case a = 0 gives the desired Poincaré-Friedrichs inequality. The special case o = 1
is of technical use in another proof further below.

Lemma IX.10.3.
Let w and § be as above. For any a € R there exists ji(,), depending only on ji, [,
and «, such that

S0 he ey S H@ Do D T b gy (1X94)

ceTn =0 ceTn
Cgunfl Cgunfj

Moreover, we have

2 k+1 B

Z hak HéC‘ L2A0(C) S MZ Z hal WZC'||L2Ak—¢+1(C) (IX95)
CeTn—k i=0 cgn—k-1
c¢un—* Cgun—rk-1

with a constant g that depends only on i, i, and M%u-

Proof. From Theorem 1X.7.5 we find

Do el S Do B |we gy (1X.96)
ceTm\uU" ceTr\U"

This shows (IX.94) in the case i = 0.
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10. Poincaré-Friedrichs Inequalities

Suppose that (IX.94) holds for some index 0 < ¢ < k— 1. Using the construction
of £ and Theorem IX.7.5 and Theorem IX.8.1, we then have

D0 I e

CeTri=t
C¢un—i—l
—i1—1 1 1 1
= > hE PR - P (Mo
cerict
Cez/{nfzfl
y Z he T ot = (TRZE) HL?Ak (o)
CeTri=!
C%U”7i71
< 2’u Z h% i leCJrlHL2Ak_i(C) + 2““ Z hg‘ ' HglCHLQAk—i(C)
ceTni-1 ceTni
C’&U"—l—l Cgun—t
i+1 )
o .
= ”(O‘)Z Z he HWJC'”LZA’C*J*l(C)’
=0 ceTm—J
cgun—I

where fu(,) is a constant that depends only on /i, i, and o. We conclude that (1X.94)
holds for i + 1 too. An induction argument shows (1X.94) for all 0 < i < k.
In order to show (IX.95), let n € TO(7T"*71) be defined by

ni=w—d" (& +--+&"),

as in the proof of the Theorem 1X.10.2. We find by Theorem IX.9.2 that

DSR2 I 179 K S Ll e

L2AO(C

ceTn—Fk Cegn—k-1
C%U” k C¢Z/I”—’“—1
2 k— k —keky |2
= (Wru)” Do Tl = (TNl gy -
CeTnFk-1
Céun—k—l

To estimate the last term, we use
> T ey < B D Pl o
CeTn—k-1\yn—k-1 ceTn—k\yn—*

Finally, we apply (IX.94) with i = k and o = —2 to obtain (IX.95). This completes
the proof. O

Corollary 1X.10.4.
The Hilbert complex

dO dn—l

0= A (T") —2 o A (T = 0

satisfies Poincaré-Friedrichs inequalities with respect to the scalar product (-, -)_,.
The Poincaré-Friedrichs constant depends only on -y, u(T), puqu(T), n, and R,
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IX. Discrete Distributional Differential Forms

We have proven Poincaré-Friedrichs-type inequalities for the “maximal” com-
plexes of discrete distributional differential forms (IX.55) / (IX.60). We would like
to obtain analogous inequalities for the subcomplexes (IX.52) — (IX.58), and the
key idea is again to explicitly construct a preimage under the distributional exterior
derivative. In other words, if w features additional properties, then we construct &
with additional properties.

For example, let 0 < m < n and suppose that w; = 0 for 0 <7 < n—m. By defi-
nition we then have w € A"~ (7™). We would like to have £ € AF,_(T™)
in that case, since that would immediately imply a Poincaré-Friedrichs inequality

for the Hilbert complex

dk+n7'm71 dk+n7'm dk+n77n+1

A]ik—&-n—m(Tm) EE— Aliz}l—n—m—l(Tm) — 7 ...

with respect to the norm || - [|_5. But it is trivially seen that our construction of £
satisfies £, = 0 for 0 <7 < n—m in that case. Hence we can formulate the following
corollary.

Corollary 1X.10.5.
Let 0 < m < n. The Hilbert complex

qn—m dan

0— A2 (T™) oA (T S0

—m—1

satisfies Poincaré-Friedrichs inequalities with respect to the scalar product (-, -)_p.
The Poincaré-Friedrichs constant depends only on p%- ., pu(T), fuiqu(7T), n, and R.

Another interesting special case, whose analysis is more complicated, is w satis-
fying w; =0 for b < i < k+ 1 where 2 < b < k + 2. In that case w € A’i*l;l(T”) and
we would like to have £ € A*, ,(7T™). Note that the special case b = k+2 is covered
by the preceding construction, but 2 < b < k£ + 2 is not. Since £ as constructed
above only satisfies £ € A¥, | (7T") in general, some modifications are due.

If we AP (T™), then w = w® + - + W', We have

¢ =P
for b <11 <k, and we have
5 — _gnfk-rgfkfk
Unfolding this recursive relation, we find that
¢ =P P T

for b <i <k, and that

& en—kTn—kpn—kTn—k+1 n—bTn—b+1¢b—1
5— & To Po T1 "'Pk—ka—b+1§ :

By iterative application of Lemma [X.6.4 we find

Rk’,i R Rk7k+1€ S AEZ(Tn)p dkRk’,l e Rk,k+1£ =w
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10. Poincaré-Friedrichs Inequalities

for b < i < k+ 1. In particular, the case ¢ = b provides us with a member of
A*, . (T™) whose distributional exterior derivative equals w. This is the desired
preimage.

It remains to provide the relevant norm estimates. We have
Rk,b---Rk,k+1£:£0+"’+£b72+9b71+"'+9k+§,
where 0° € AFPP2(T"70+2) is given by

T i—byn—b+2En—b+2 n—i+lpn—i+1¢&1
0" = (_1) Dk—b—i—lEk—b-i—l U Dk:—i Ek:—i 3

for b—1<i <k, and where § € A*;""2(T702) is given by

n_ k—b+1yn—b+2-n—b+2 n—k+lpn—k+1g
0 = (_1) Dk—b+1 Ek—b+1 T Do Eo f-

The terms £°,...,£"% have been estimated earlier. It remains to treat the terms
G-t ..., 6% and 0.

We derive estimates via repeated application of Lemma IX.7.3, Lemma 1X.7.5,
and Lemma IX.8.1. Let a € R and let p denote a generic constant that depends
only on fi, fi, /1, [, ufm{, and «, and whose value may change from line to line.
Skipping over a series of repeated estimates, we obtain

D Sl (175 VRS T Sy Yol 4 I

CeTn—b+2 CeTnt
C¢un—b+2 C¢UH77’
b—1 )
a—b+1 || gb—1]2 a=b+3 ||, J
S K E : he 1€¢ HL2Ak—b—1(C) = ”E : § : he HwCHLQAk—J'(C)
Cegn—b+l Jj=0 ceTm—J
C%unflrkl C¢un,]

Next, with application of Lemma [X.10.3, and Theorem 1X.9.2, we find

~ 12 — 12
bt fc| <u X el
Z_b . LQA‘“‘M(C)_HJ o . L2A0(C)
CeTn—bt ceTn
C%M"*HQ ogur—*
—k—2 || ¢k ||? —b—1 || ¢b—1[|2
<p Yo hd € ey <o D B THIE nei
CceTnk CeTn—b-1
C%Mnik C%unfbfl
b—1 ,
—b+1|, ,J
S“Z Z he ”wCHBAkﬂ'(C)‘
J=0 CceTn—I
Cgun—i

This proves the desired Poincaré-Friedrichs inequality.

Finally, we treat the case b = 1. Suppose that w = w°, so that w € AFYH(T™).
Since w € d*A¥ [ (T™), we find that w € A¥™1(T™) and w € d*A¥(T™). The construc-
tion of ¢ then assures that & € A¥(7T™). This gives the desired Poincaré-Friedrichs
inequality.
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Conclusively, we have bounded the Poincaré-Friedrichs constants of discrete dis-
tributional de Rham complexes. We summarize those findings in the following main
result.

Theorem IX.10.6.
The Hilbert complexes

dk+n7m72 dk+n7'm71 kornfm dk+n7m+1

Aty S k) ST k) S
and

dk+n7m72 dk+nfmfl dk+n7m dk:+n7m+1

F(T™H) T (T™) PL(T™ ) ——— -

satisfy Poincaré-Friedrichs inequalities with respect to the scalar product (-, -)_j.
The Poincaré-Friedrichs constants depend only on g%y, pu(T), fuqu(7T), n, and R.

Remark 1X.10.7.

In |34, Section 3.4], Braess and Schéberl employed the scalar product (-, -),, defined
as in (IX.32). They proved Poincaré-Friedrichs inequalities with respect to that
scalar product when the underlying triangulation is a local patch, essentially relying
on a scaling argument. It is easily seen that their Lemma 9 holds for our scalar
product (-,-)_; in a similar manner if the distributional finite element complex is
considered on a local patch. In the light of the result of this chapter, we are inclined
to consider (-,-)_5 as the “natural” scalar product for distributional finite element
spaces.

Example IX.10.8.

Let T again be a triangulation of a connected domain and let &/ = (). The previous
results imply that for any f € A"(7™) we can construct o € A" }(7™) such that
d""loc = f. The construction consists of local operations and one single global
computation: given a O-chain s € Cy(7) (i.e. a linear combination of oriented points),
we need to find a 1-chain s € C;(T) (i.e. a linear combination of oriented edges) such
that 0S5 = s. The condition number of the latter global problem with respect to
the norm || - ||_;, depends only on the Poincaré-Friedrichs constant of the complex
of Whitney forms with respect to the L? product and the mesh regularity. It does
not depend on any polynomial order of the finite element spaces.
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In this chapter we approach the work of Braess and Schoberl from a different angle
and elaborate upon equilibrated a posteriori error estimation in finite element exte-
rior calculus. We obtain a practically relevant result: we generalize the publication
of Braess and Schéberl [34] to the case of higher order edge elements.

A priori error estimates for finite element methods bound the approximation
error of the Galerkin solution using only data available prior to the computation
of the Galerkin solution. But it is reasonable to assume that posterior to comput-
ing an approximate solution we can derive sharper error estimates: after all, the
approximate solution is additional information explicitly known. The continuity of
research on a posteriori error estimation (see, e.g., the monographs [4, 156, 172|)
may be partially explained by their critical role for many adaptive finite element
methods [48, 51].

One of the most important residual error estimators, found in many introductory
textbooks on finite element methods [32, 83|, is the classical residual error estimator.
We demonstrate the basic idea by the means of the Poisson equation. Let € be a
Lipschitz domain. Tt is standard that for every f € L%(Q) there exists u € HE ()
such that —divVu = f. For u, € H}(Q), conceived as an approximation of w,
we define the residual r, € H 1(Q) as the functional f + div Vu in the dual space
of H}(Q2). It follows from definitions and basic facts that the H~' norm of r, is
comparable to the H' norm of the approximation error u — wy,.

When we choose uy, to be the (piecewise polynomial) Galerkin solution of a finite
element method, then the distribution 7, can be represented as the sum of integrals
over full-dimensional simplices and trace integrals over faces (each against a poly-
nomial weight). The latter integrals over faces are also known as jump terms in this
context. Since 1), features this special structure, the whole trick is now to estimate
the H~! norm of rj, in terms of a mesh-dependent norm of r,. We refer to the
monograph of Braess [32] for further details.

The classical residual error estimator leaves room for improvement. The estimate
typically involves unknown constants that are not easy to estimate in practice, and
the resulting error bounds are generally not regarded as sharp. The research in
adaptive finite element methods has driven much of the development of alternative
methods for a posteriori error estimation, of which equilibrated a posteriori error
estimators |3, 32, 33, 118, 155, 171] are one important example.

We let the aforementioned Poisson problem again serve as a basic example. Sup-
pose that o € H(div, Q) is a square-integrable vector field with divergence in L*(Q)
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that solves the flux equation —dive = f. The Prager-Synge theorem (see [34])
states that

2 2 2
[Vup = otz = [[Vun — Vullpeq) + [Vu — o1z -

An estimate for the error norm [[Vu — V|12 g in terms of [|[Vuy — o[z q) follows
immediately; the only condition is that o solves the flux equation. Of course, in order
to make this error estimate computationally feasible, we need to obtain such a flux
o in the first place. Under the assumption that f € P[(7) is piecewise polynomial
of order r with respect to a triangulation 7 of the domain, this is computationally
feasible: there exists o, € RT"(7) in the Raviart-Thomas space solving the flux
equation —divey, = f. The mixed finite element method for the Poisson equation
determines such a solution.

The mixed finite element method, however, comes at the cost of solving a global
finite element problem. These computational costs can be circumvented by a pro-
cedure called local equilibration in the literature, which is also the namesake for the
whole method, and which we outline as follows. Let ¢ be a subcomplex of 7 that
triangulates the boundary and let P"(7,U) denote the Lagrange space of order r
with Dirichlet boundary conditions. We assume that u, € P"(T,U) satisfies the
Galerkin property

/Vuh~VUh dx:/fvh dz, v, € P"(T,U).
Q Q

For simplicity we assume that f is piecewise of polynomial order r — 1. We let
RT" ,(7) denote the subspace of L?(2) whose members are piecewise in the Raviart-
Thomas space of order r. Writing ¢y for the hat function associated with any vertex
V € T, one can show that the distribution Thy = ¢y - 1}, is supported in the local
patch around V and that there exists g,y € RT" (T ), supported in the same local
patch, such that — div g,v = 7,,v. Now let g, be the sum of all g v over all vertices
V € T° We observe —div g, = rj,. Letting o, = 0, + Vuy, we discover that

—diVO’h = —diVQh — divVuh
=7y, — div Vu,
= f + divVu, — divVu, = f.

In particular, o, € RT"(T). The key observation is that o, is constructed using
only local operations, which are independent from each other and hence paralleliz-
able. Computational experiments indicate that this estimator is competitive [33, 47].
We remark the locally reconstructed flux is generally different from the flux deter-
mined by a mixed finite element method.

Whereas numerous publications treat a posteriori error estimation for the Pois-
son problem, much less is known for the curl curl problem. Several publications have
adapted the classical residual error estimator to Maxwell’s equations [16, 144, 160]
but little has been published on different error estimators, even though the experi-
ence with the Poisson problem suggests that this is of practical relevance.
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Important progress has been accomplished by Braess and Schéberl [34] who
approached a generalization of the equilibrated residual error estimator to the finite
element method for the curl curl equation based on Nédélec elements. For a brief
outline of the idea, which has many parallels to the equilibrated error estimator for
the Poisson problem, let us assume that ) is a contractible Lipschitz domain in R?
and that f € Hy(div,2) with divf = 0. Then there exists o € Hy(curl, Q) solving
the flux equation curl e = f. Furthermore, there exists a solution u € H(curl, Q) to
the curl curl problem

curlu € Ho(curl, 2), curlcurlu = f£.

To select a unique solution, we may require u € Hy(div, 2) and, say, the divergence
free constraint divu = 0.

Now suppose that u, € H(curl,Q) and that & € Hy(curl, Q) with curl¢ = f.
Then one can show via a generalized Prager-Synge theorem [34, Theorem 11| that

| curluy, — £H%2(Q) = || curlu;, — curlu||i2(9) + || curlu — £Hi2(9).

Similar as before, we obtain an estimate of the error u, — u in the H(curl, 2)
seminorm in terms of the L? norm of curluy, — &. For a computational application
we need an algorithm to compute & € Hy(curl, Q) solving the flux equation. Let
T be a triangulation of the domain 2 and let &/ be the induced triangulation of
the boundary 0€). We additionally assume that f € RT"(7,U) for some r € Ny.
Now divf = 0 implies the existence of &, € Nd"(7,U) solving the flux equation
curl§, = f. The flux &, can obtained via a mixed finite element method.

The computational costs of a global problem can again be avoided with a local-
ized flux reconstruction. A prerequisite is that u, € Nd"(7) satisfies the Galerkin

property

/ curluy, - curl v, do = / f-vy,de, v, eNd(T).
0 0

Following the same philosophy as for Poisson problem, we may define the residual,
decompose it into divergence-free distributions localized over patches, and solve the
(distributional) flux equation on each patch locally. The crux of the construction,
however, is finding the residual decomposition, which has been accomplished for
r = 0 in the aforementioned publication by Braess and Schoberl. Generalizations to
higher order edge elements have remained elusive as of now.

In this thesis we reassess equilibrated error estimators in the framework of finite
element exterior calculus and improve upon the situation. We emphasize that we
do not elaborate upon the details of the classical residual error estimator, for which
a comprehensive study from the perspective of finite element exterior calculus has
already been accomplished by Demlow and Hirani [72]. The major contribution of
this chapter are algorithms for partially localized flux reconstruction, which builds
immediately upon the concepts of Chapter IV.

Partially localized flux reconstruction seems to be a new tool in the theory of
finite element methods, and our construction of finite element spaces in Chapter IV
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provides the underlying formalism. In this context, flux reconstruction refers to
computing a generalized inverse of the exterior derivative between finite element
spaces of differential forms, i.e., solving the flux equation. Specifically, we want to
compute a generalized inverse for the mapping curl : Nd"(7,U) — RT"(T,U) from
order r Nédélec elements to order » Raviart-Thomas elements.

Algorithmically we can tackle the problem either with a mixed finite element
method or by solving normal equations, both of which involve global problems over
higher order finite element spaces. Our framework, however, reduces the global prob-
lem to the lowest-order case. For example, assume that w € RT"(7,U) is the curl of
a member of Nd"(7,U). We decompose w = w'® + curl €™ where w' € RT(T, )
is the canonical interpolation of w onto the lowest-order Raviart-Thomas space, and
where £ € Nd' (T ,U) is constructed by solving independent local problems. These
local problems are associated to single tetrahedra, and their stability and complexity
depends only on the local polynomial order and mesh quality; they are independent
of each other and hence amenable for parallelization. One can show the existence
g ¢ Nd°(T,U) with curl € = w', computed by solving a global problem only
on a smaller lowest-order space. Eventually € := £° + &M € Nd"(T,U) satisfies
curl € = w. The flux reconstruction is partially localized in the sense that only
lowest-order terms require a global computation.

A minor application of theoretical interest is determining the cohomology spaces
of finite element de Rham complex of higher polynomial order. Specifically, the
finite element interpolant from higher order finite element de Rham complexes onto
the Whitney forms induces isomorphisms on cohomology.

A major application, however, solves the open problem in the theory of a equi-
librated posteriori error estimators. We devise a fully localized flux reconstruction
for the operator curl : Nd"(7,U) — RT"(T,U) provided that the Galerkin solution
is given as additional information. Efficient algorithms for finite element flux recon-
struction are critical to make the estimator feasible in computations [17, 18, 32, 84].
The partially localized flux reconstruction of this chapter finally enables a fully lo-
calized flux reconstruction and thus the equilibrated a posteriori error estimator for
edge elements of arbitrary and possibly non-uniform polynomial order.

X.1. Partially Localized Flux Reconstruction

We introduce partially localized flux reconstructions in the calculus of differential
forms. This section can be read as a direct continuation of Chapter IV. Let T
be a simplicial complex and let &4 C 7T be a simplicial subcomplex. We recall the
complex of Whitney forms:

dk+1

L WARTL U — AR (T )

Additionally, we let P : T — & be a hierarchical association of admissible sequence
types to the simplices of 7. Following the construction principles of Chapter IV, we
have a finite element de Rham complex with boundary conditions:

dk+1

dkfl dk
oo —— PANTU) —— PAMU(TU) —— ...
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1. Partially Localized Flux Reconstruction

The canonical interpolation onto the Whitney forms

dk+1

dk—1 dk
. —— PANT,.U) —— PN (T U) —— ...
ﬂgvl I{jjll
S WARTL U — WARY(T L U) s

gives a morphism of differential complexes. For the purpose of this section we use
in particular the differential complexes

gkt . dk 3 g+l
. —— PA¥F) — PAMYF) —S— ...

associated to F' € T. We focus on constructively solving the flux equation
d" ¢ = w, (X.1)

where w € PAR(T,U) is the given data and & € PA*Y(T,U) is sought in the finite
element space. Even if a solution exists, it might not be unique. Under the assump-
tion that a solution exists, the problem of flux reconstruction is to find any solution
to (X.1) in the finite element space. Moreover, we want to compute that solution in
an efficient manner.

Flux reconstruction amounts to determining a generalized inverse of the operator
d*=t PAMH (T U) — PAR(T,U) (X.2)

between finite element spaces. In this chapter we develop a method to reduce this
problem to the lowest-order case. It then only remains to find a generalized inverse
of the operator

d*t WARY T U) — WAR(T, U) (X.3)

between the spaces of Whitney forms. The higher order aspects of the problem are
treated in local problems associated to simplices which are solved independently
from each other. This is a fundamental result on the structure of higher order finite
element spaces that is not only of theoretical interest but also relevant in numerical
algorithms.

Before formulating the main result, we make our assumptions more precise. First
we fix a generalized inverse of the exterior derivative (X.3) between Whitney forms.
Specifically, we assume that we have a linear mapping

Py, WAR(T , U) — WA (T, U) (X.4)
such that
d* Py dM e = dM e, e WARY(T U, (X.5)

In particular, w = d"'P§ w whenever w € WA¥(T,U) is the exterior derivative of
a Whitney form in WA*Y(T U).
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Similarly, for each simplex F' € T we fix a generalized derivative
P . PAF(F) — PARL(F) (X.6)
such that
di PR IE = dilE, € € PAN(E). (X.7)

We have w = d% 'Pkw whenever w € PA* (F) is the exterior derivative of a member
of PA*=1(F). The existence of a mapping P}, and mappings P% with such properties
is an elementary fact of linear algebra.

Remark X.1.1.

There is no canonical choice in fixing the generalized inverses. Upon fixing a Hilbert
space structure on the Whitney forms, however, the Moore-Penrose pseudoinverse
of d*=1 : WAYT U) — WA*(T,U) is a natural choice. This Moore-Penrose
pseudoinverse provides the least-squares solution of the problem. Entirely analogous
statements hold for choosing the generalized inverses P%..

Assuming to have fixed generalized inverses as above, we introduce the partially
localized flux reconstruction without further ado.

Theorem X.1.2.
Suppose that w € PA¥(T) with d*w = 0. For m € {k,...,n} we let

m—1
¢mi= > Exti Pl (w —w—Y d’“gl> : (X.8)

FeTm I=k
Then

Lw +dt (i 5’”) = w. (X.9)
m=k

In particular, if there exists £ € PA* (T, U) with d*~1¢ = w, then

dh! (P’;Vfﬁvw +> 5m> = w. (X.10)

m=k

Proof. We use the modified geometric decomposition (Lemma IV.3.9) to write

w:[{ﬁvw—l—i Z Ext} o,

m=k FET™
where &p € PA¥(F) for each F € T. We thus find for F € T* that
trh (w— Lw) € PAR(F).
The proof is completed by an induction argument. For each F' € T we set

dim F'—1
0 =t k ( o ]’k o Z dk*l l)
pi=tp | w—Ihw .

=k
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Let m € {k,...,n — 1}. Suppose that 0y € éAk(f) for each f € 7™, which is
certainly true if m = k. Then £ as in (X.8) is well-defined. We find

m—1
b0, = dh trf (w —Iw— Y d“gl)

=k

m—1
= trf <dkw —d* Iw —d* > d’“g’)

=k
= trf (d*w — I}/ 'd*w) = 0,

since d¥w = 0, and conclude that dl;’lp}“ﬁf = 0¢. In particular,

m—1
trf d*1E™ = di T Pyl = trf <w —yw—>_ dk—lgl> . (X.11)

=k

If m < n, then 0 € PAF(F) for each F € 7™ The argument may be iterated
until m = n. In the latter case (X.11) provides (X.9).
Finally, if there exists & € PA*1(T,U) with d*"*¢ = w, then

Lyw = Lyd* e = dM e,
and hence d*~'P¥, If,¢ = I}, ¢, which shows (X.10). This completes the proof. [

One implication of the theorem is that for every w € PA*(T,U) with d*w =0
there exists £&M € PAF1(T,U) such that

w = [{fvw + dFehi,

If additionally w is the exterior derivative of a member of PA*~1(T,U), then there
exists £° € WA (T, U) with d*~1¢° = [}, w. Thus

g — é}lo T ghi

is a solution of d*~1¢ = w in the finite element space PA*~1 (T, U).

As a simple first application we address the dimension of the cohomology classes
of the finite element de Rham complex. This is a new proof of a result which
has been shown before [11, 56, 132| with different techniques. Conceptually, this
shows that the cohomological information are encoded completely in the lowest
order component of the finite element de Rham complex.

Lemma X.1.3.
The commuting interpolant I, : PA*(T,U) — WA*(T,U) induces isomorphisms
on cohomology.

Proof. Let w € WA*(T ,U) with d*w = 0. If we have w ¢ d*""WAF1(T i), then
in particular w ¢ d*"1PA*1(T U), since the finite element interpolant commutes
with the exterior derivative. Hence 1%, is surjective on cohomology.
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Conversely, suppose that w € PA*(T,U) with d*w = 0. If w ¢ d*'PA*Y(T U),
then there exists ¢ € PA* (T ,U) such that w = d*7'¢ + [w. Since I}, com-
mutes with the exterior derivative, we conclude Iw ¢ d* 'WAF (T U) from
w ¢ d*1PA*Y(T U). Hence I}, is injective on cohomology. O

The partially localized flux reconstruction is also relevant from a computational
point of view. Consider again the flux equation d*~1¢ = w for given w € PA*(T,U).
Under the condition that w is contained in the image of

d* 1 PARNT U) — PAR(T U) (X.12)

there exists a solution ¢ € PA* (T ,U) to the flux equation d*'¢ = w. One
possibility to computationally solve the flux equation is treating it as a least-squares
problem: we fix a Hilbert space structure on the finite element spaces and compute
the action of the Moore-Penrose pseudoinverse of the operator (X.12). This is a
standard topic of numerical linear algebra. A drawback of this method is that
the spectral properties of the operator (X.12) for higher polynomial order can be
disadvantageous with regards to the L? norm. The condition number of the least-
squares problem generally grows with the polynomial order, as does the size of the
linear system of equations, which negatively affects the performance of the numerical
methods. In particular, the stability and size of the problem on higher order spaces
is comparable to computing the flux variable in a mixed finite element method.

How to avoid solving a global problem on a high order finite element space is
now apparent by Theorem X.1.2. We invoke the following steps.

1. As outlined above, with a block of mutually independent local computations
we split the main problem into two independent subproblems: one subproblem
is to solve a flux equation d*~1£° = I¥,w over the space of Whitney forms,
whereas the second subproblem involves the higher order contributions.

2. In the first subproblem we seek a flux reconstruction £° € WA*1(T . U) for
Ifw € WAF(T,U). Hence we still need to solve a global least-squares problem
but this time only for the operator d*=! : WA*Y(T U) — WA*(T,U) over
finite element spaces of lowest order.

3. In the second subproblem we calculate M by iterating over the dimension
of the simplices in T from lowest to highest; at each step we solve a block
of mutually independent local subproblems. In particular, at each step the
computation is amenable to parallelization.

In this sense the flux reconstruction is partially localized: the only remaining global
operation involves a finite element space of merely lowest order instead of the full
finite element space. A fully localized flux reconstruction is feasible when additional
structure is provided; this will be crucial to our application in the next section.

Remark X.1.4.

We can rearrange the construction of £™ such that, instead of solving a sequence of
parallelizable blocks of mutually independent local computations, we process only
one parallelizable block of mutually independent local problems associated to full-
dimensional simplices. This comes at the cost of redundant computations.
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Remark X.1.5.

The L? stability of the global lowest-order problem depends only on the mesh quality
and the domain, and the L? stability of the local problems depends only on the mesh
quality and the polynomial order. Whether the dependency on the polynomial order
can be dropped remains for future research (but see [33]).

Remark X.1.6.

We briefly compare the flux reconstruction of this chapter with the flux recon-
struction encountered in Chapter IX. In the latter case, the purpose of the flux
reconstruction was to derive Poincaré-Friedrichs inequalities. In this chapter, the
problem of flux reconstruction is approached from a different point of view. In par-
ticular, we pose the problem over conforming finite element spaces. We emphasize
at this point that the construction is similar but strictly different. The flux recon-
struction in Chapter IX can be used on conforming finite element spaces too, but
the structure of the construction is very different. A global flux reconstruction is
performed as a subproblem in both cases. But the flux reconstruction in this chapter
can be conducted independently from flux reconstruction on local patches (only the
interpolant onto the Whitney forms needs to be computed), whereas the global flux
reconstruction on simplicial chains in Chapter IX is both preceded and succeeded
by local computations. Furthermore, the flux reconstruction of this chapter can be
applied in a posteriori error estimation as we demonstrate in the next section.

X.2. Applications in A Posteriori Error Estimation

In this section we use the partially localized flux reconstruction to obtain a
fully localized flux reconstruction for the equilibrated a posteriori estimation of the
curl curl equation. The original construction of Braess and Schoberl works only
for finite element spaces of lowest polynomial order. With the partially localized
flux reconstruction at our disposal, it is no difficulty to generalize this to the case
of higher order finite element spaces. We demonstrate the theory by the means
of an example in three dimensions, which has already been alluded to in the intro-
duction of this chapter. The construction works fully analogously in two dimensions.

Let Q C R® be a bounded weakly Lipschitz domain. We let C°°(Q) denote
the space of restrictions of smooth functions over R™ to Q and define C>(Q) :=
C>®(Q)3. We let C=°(2) denote the space of smooth functions over Q with support
compactly contained in Q. We let C°(Q) := C°(Q)%. Moreover, we let L?(2)
and L*(Q) := L*(Q)? denote the Hilbert spaces of square-integrable functions and
vector fields, respectively, over (2. The corresponding scalar products and norms are
written (-, )72, || - [|z2, (-,-)12, and || - ||L2. The partial derivatives of such tensor

fields are well-defined in the sense of distributions, and hence we may set
HY(Q):={veL*Q)]|gradveL*Q) },
H(curl, Q) :== { v € L*(Q) | curlv € L*(Q) },
H(div,Q) := { v e L*(Q) | divv e L*(Q) }.

These are Hilbert spaces when equipped with the canonical norms. We also consider
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subspaces of these with boundary conditions imposed. Specifically, we define

H(Q)
Hy(Q) :=Cx(Q)

Ho(curl, Q) = (joo(Q)H(curl,Q)7

———H(div,Q)

Hy(div, Q) := C(Q)

We can assemble the differential complexes

HY(Q) % H(cwrl, Q) —% H(div, Q) —2 12(Q) (X.13)
and
L2(Q) <2 Hy(div, Q) «2 Hy(curl, Q) <2 H1(Q). (X.14)

Here, the differential operators have closed range. If moreover the domain is con-
tractible, then the differential complexes (X.13) and (X.14) are exact. We also recall
the integration by parts formulas

(gradu, V). = — (u,divv)y,, ue H'Y(Q), v eHy(div,Q), (X.15)
(curlu, v);. = (u,curl v);., ue H(curl, ), v e Hy(curl, ), (X.16)
(divu,v),» = — (u,gradv),,, u€H(div,Q), v e Hy(9Q). (X.17)

Conceptually, the curl-curl problem for a given vector field f asks for a vector field u
that satisfies curl curlu = f. Specifically, we consider the following weak formulation
of the problem in terms of Sobolev spaces. We assume that f € L?(Q) and search
for u € H(curl, Q) with

(curlu, curl v), = (f,v);2, v & H(curl, Q). (X.18)

One can show that (X.18) has a solution. Without further conditions, there is
no unique solution because the curl operator has a non-trivial kernel. To ensure
uniqueness one may require the solution u to be orthogonal to the gradients of
functions in H'(£2); one can show that this enforces u € Hy(div, Q) with divu = 0.
Conditions to ensure uniqueness of u, however, are not central to our exposition in
this section.

Let us assume additionally that 2 is contractible and that f € Hy(div, 2) with
divf = 0. Then the differential complex (X.14) is exact at Hy(div,2) and f is the
curl of a vector field in Hy(curl, Q). Under these conditions, any weak solution u of
(X.18) satisfies curlu € HJ () with curl curlu = f, and thus is a strong solution.

In order to address a posteriori error estimation we fix a solution u € H(curl, Q)
and let u, € H(curl,Q2) be arbitrary. Furthermore, we let o € Hy(curl, Q) with
curl o = f. By the binomial theorem we see

o — curluy|jf2 = ||o — curlu + curlu — curl uy ||z
= |lo — curlu|jf> + || curlu — curl uy [|72

— 2 (o — curlu, curlu — curlug);» .
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Using (X.16) and curle = f = curlu we note
(o — curlu, curlu — curluy);. = (curl(o — curlu),u —up). = 0.
Thus we conclude
o — curluy|jf. = ||o — curlul|i: + || curlu — curl uy|[3.. (X.19)

Equation (X.19) generalizes what is known as Prager-Synge identity or hypercircle
identity in the literature (see [34]).

This identity has the following practical significance. Let u € H(curl, Q) with
curlu € Hy(curl, Q) be a strong solution of (X.18). Given any exact solution o €
Hy(curl, Q) of curle = f and any u, € H(curl, ), we obtain via (X.19) that

|l — curluy|2 > || curlu — curl uy,||g:. (X.20)

The left-hand side of (X.20) is given in terms of known objects and dominates the
right-hand side of (X.20), which depends on the generally unknown true solution u.
Seeing uy, as an approximation of u, we may regard (X.20) as an error estimate in
the H(curl, 2) seminorm.

In a typical application, uy, is the Galerkin solution of a finite element method.
We can apply (X.20) to obtain an upper bound on one component of the error in
the H(curl, Q) norm provided that an exact solution o € Hy(curl,Q2) of curle = f
is available. Note that curlu is generally unknown and hence not a candidate for
o. But numerical algorithms for flux reconstruction make (X.20) productive for
applications.

As a technical preparation, we consider finite element de Rham complexes over
the domain €). Let 7 be a simplicial complex triangulating 2 and let &/ denote the
subcomplex of T triangulating 0€2. We focus on higher order finite element spaces
of uniform order; the generalization to spaces of non-uniform polynomial order is
straight forward.

Let r € Ng. With respect to T we let P"(T) denote the Lagrange space, let
Nd"(T) denote the Nédélec space, let RT"(T) denote the Raviart-Thomas space,
and let P} (7) denote the space of piecewise polynomial functions, each with poly-
nomial order r. From spaces of this form we may assemble the finite element
de Rham complexes

PrUT) 5% Nd'(T) <5 RT'(T) == Ppo(T). (X.21)

Next we recall finite element spaces with boundary conditions. We let P"(T,U),
Nd"(T,U), RT"(T,U) denote the subspaces of P"(T), NA"(T), RT(T) with
Dirichlet, tangential, and normal boundary conditions along 02, respectively. Again
we may assemble a finite element de Rham complex

Pho(T) = Nd'(T.U) 5= RT(T.U) <= PTu). (X2)

The differential complex (X.21) is a finite-dimensional subcomplex of (X.13) and
the differential complex (X.22) is a finite-dimensional subcomplex of (X.14).
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Let f € Hy(div,2) be as before except for the additional assumption that f €
RT"(T,U). Then there exists a member of Nd"(7,U) whose curl equals f. In
order to utilize the error estimate (X.20) in practical computations, it remains to
algorithmically construct a generalized inverse for the operator

curl : Nd"(7,U) — RT"(T,U). (X.23)

One possibility is solving a least-squares problem over the whole finite element space.
We have seen, however, that a global computation over only lowest-order finite
element spaces is sufficient. In the light of Theorem X.1.2 and the subsequent
discussions in the previous section, we decompose

f =1y + curl&,,

where fy € RT"(T,U) is the canonical interpolation of f onto the lowest-order
Raviart-Thomas space with homogeneous normal boundary conditions and where
& € Nd"(T,U) is computed through a number of local problems over simplices
whose computation is parallelizable. This reduces the flux reconstruction problem
to the special case r = 0.

The partially localized flux reconstruction can be extended to a fully localized

flux reconstruction if additional information is given. Specifically, assume that u, €
Nd"(T) satisfies the Galerkin condition

(curluy, curl vp,) o = (£, vp) 2, vy, € NA'(T). (X.24)

As a first step towards the fully localized flux reconstruction, we compute the de-
composition f = fy + curl ¢, with fy € RT°(7,U) and &, € NA"(T,U). This can
achieved by independent local computations.

For the next step we observe that both curluy, and &, are members of PL(7)?,
i.e., they are vector fields piecewise polynomial of order r. We let v;, € P3(T)? de-
note the L? orthogonal projection of &€, —curl uy, onto the space P3.(T)? of piecewise
constant vector fields. Note -, can be computed for each simplex independently.
By construction we have

<'7ha Th>L2 = <€7" — curl Up, Th>L2 y Th € PI%C(T>3
Using the Galerkin orthogonality (X.24) we verify

0= (f,vp)12 — (curluy, curl vy

fo + curl &y, v )2 — (curluy, curl vy .

fo, V)12 + (& — curluy, curl vy

fo,Vh>Lz + (Y, curl Vh>L2

o~ o~ o~ ——

for every v, € Nd"(T); here we have used that curlv, € P3.(7)%. Moreover,
divfy = 0 since the finite element interpolant commutes with the differential op-
erators. The next crucial step is using the fully localized flux reconstruction for
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lowest-order finite element spaces in [34]. The original construction of Braess and
Schoberl gives g, € RTY(T,U) with

(on,curl v)io = (£, V)2 + (vn,curlv); ., v € H(curl, Q), (X.25)

where g;, is computed by solving local independent problems over element patches

around vertices. We refer specifically to Section 4.2 and Section 4.4 of [34] for the

details in the literature, but we outline the construction in Remark X.2.4 below too.
This leads us to

<f7 V>L2 - <C111"1 uy, curl V>L2
= (fo, V)12 + (& — curluy, curl v); .

= (£, V)12 + (Yn, curl v)1o + (&, — curluy, — v, curl v,

= (on + & — curluy, — ,, curl v) o

for all v € H(curl). Upon setting
on = 0n+ & — M,
this can be rewritten as
(f,v)12 — (curluy, curl v);, = (o), — curluy, curlv); ., v € H(curl, Q),
which immediately implies
(f,v)12 = (op,curl v);., v € H(curl, Q).
We conclude that o), € Hy(curl, Q). By construction we have o, € Nd"(7,U) with
= curl oy,

Constructing o, has involved only local computations. This completes the fully
localized flux reconstruction and enables the a posteriori error estimate (X.20).

Remark X.2.1.

Our techniques apply similarly to higher order flux reconstruction for edge elements
in dimension two. Again, the lowest-order case is treated in [34]. Moreover, we may
treat the curl curl problem with mixed boundary conditions in an entirely analogous
manner as long as the differential complexes are exact.

Remark X.2.2.

Our construction has assumed a contractible domain and that f € RT"(7,U) with
divf = 0. We remark that the condition f € Hy(2,div) has appeared in the
discussions of Demlow and Hirani, who have discussed it under the label Hodge
imbalance [72]. In general, the flux equation curl¢ = f is not solvable exactly. We
expect this to hamper the estimator in practical computations.

Remark X.2.3.
With Remark X.1.4 in mind, we see that &, and -, are computable on each simplex
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using only the information given on that simplex. At the cost of redundant compu-
tations, we may rearrange the calculations so that o is constructed with a single
parallelizable block of problems associated to patches.

Via Remark X.1.5 we furthermore see that the stability of the construction of o7,
depends only on the mesh quality, the domain, and the polynomial order of the finite
element spaces. We conjecture that the last dependence can be dropped, i.e. that
equilibrated a posteriori error estimators for edge elements are robust with respect
to the polynomial order (see [33]).

Remark X.2.4.

We have referred to the original publication of Braess and Schoberl for the details of
how to construct g,. In order to give a self-contained exposition, we provide more
details in this lengthy remark. We define the distributional vector field 3 by

(B,v) = (fo, V)2 + (yp,curl v);2, v € H(curl, Q). (X.26)

Since 7y, is piecewise constant, integration by parts shows

(Yn, curl vipz = Z/ v - curlv ds = Z / (Yn X fipF)ds

TeT? TeT3
FeA(T
for all v € H(curl, Q), where 7ip g is the outward unit formal of 7" along the boundary
face F. We conclude that there exist unique constant vector fields By € RT(T)
for T € T° and unique constant tangential vector fields 3r € RT(F) over F € T2
such that we can represent 3 by

/ﬂT v dr + Z //BF i (X.27)

TeT? FeA(T)?

for all v € H(curl,Q2). Here 7x(v) denotes the tangential component of v along F'.
We have for = Br for each T € T2, whereas B for each F' € T2 is the jump term
along F' induced by the integration by parts over adjacent tetrahedra.

The idea is to decompose 3 into the sum of locally supported divergence-free dis-
tributional vector fields 3" associated to vertices V € T°. The vanishing divergence
of each 3V then proves solvability of the local flux equation curl ) = 3Y. Summing
the local solutions yields a solution g to the global flux equation curl g, = 3.

We gather more information about the summands in the representation (X.27).
Since f; is divergence free, we find for each T' € T3 that

0= / div f0|T dz = / div /BT dz = / IBT TZTF ds. (X28)
T T

FeA(T)?
Feu

For v € C*(Q) and F € T2 we observe

O:/ﬁp-TF(gradv)dSZ/,@F-gradrp(v)ds

/dlv,ﬂp 7 (v) ds — Z /TF Nip g - Br de.

EeA(F
E¢u
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Since v € C*°(Q) was arbitrary, we find for all F' € T2 that

EEA(F

and we find for all £ € T that

= ) / fipp - Br de. (X.30)

FeT2
EeA(F

We equip every E € T' with an arbitrary but fixed orientation, so that one vertex
of E is the back vertex and the other is the front vertex. For every tetrahedron T
containing the edge F we let F1(T, E) and F?(T, E) denote the two faces of T' that
are opposite to the back and the front vertex of E, respectively. Similarly, for every
face I’ containing the edge F we let E'(F, E) and E*(F, E) denote the two edges of
F' that are opposite to the back and the front vertex of E, respectively. It is then
possible to show that

Z / Br - nF EY(T,E) de — / Br - ﬁF,E2(T,E) de
EY(F,E) E2(F,E)

EEA(F

(X.31)
Z / Br - ”T FY(T.E) ds — / Br - ﬁT,F2(T,E) ds.
F1(T,E) F2(T\E)

TeT3

This is precisely Equation (4.9) of [34] except for a different sign convention, and
can be seen by evaluating 3 on the basis vector field in Nd°(7) associated with E,
and then recalling the Galerkin orthogonality

</67Vh> = 07 Vi € NdO(T)

Having gathered these properties of 3, we develop the localized decomposition.
Let V € TY be any vertex of the triangulation. First we define vector fields over
tetrahedra. Whenever T' € T2 with V € A(T)? is a tetrahedron containing V as a
vertex, and F' € A(T)? is a face of T containing V' as a vertex, then we let F''(T, V)
and F?(T,V) denote the other two faces of T containing V' in arbitrary order, and
furthermore we let F°(T,V) denote the face of T opposite to V. We define the
vector field 8% € RT?(T) by requiring

/ ,BT nTF ds = / Br - nTF ds + Br - ﬁT,Fo(T,V) ds

Fo(T,V)

Br - nT FL(T,\V) ds — — Br - ﬁT,F? TV ds
24 Fl(T,V) 24 FQ(T,V) ( )

for each F' € A(T)? that contains V as a vertex, and by requiring

/ ﬂ¥ . ﬁT7F‘7(T,V) ds=0
Fo(T,V)
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on the face opposite to V. Since these integrals are the degrees of freedom of RTO(T)7
this uniquely defines 3Y..

Additionally we define vector fields over faces. Whenever F' € T2 with V €
A(T)" is a face containing V as a vertex, and £ € A(F)! is an edge of F' containing
V as a vertex again, then we let E'(F,V) denote the edge of F containing V and
opposite to E, and we let E°(F, V') denote the edge of F' opposite to V. Moreover,
whenever T' € 72 is a tetrahedron containing F, then we let F'(T, E, V') be the face
of T' containing V' but not containing . We define the vector field 3}, € RT?(F)
by requiring’

— 1 —
/BZ'”F,Edezi/ﬂF'nF,Ede
E E

1 ., 1 .
+ = / BF - g pery) de — —/ Br - Tipe (v de
6 Jeo(rv) 6 /ey

Z / Br - nFOTV ds — / Br - nF/(TEv

TET? | po(T, (T,E,
FeA(T)? V) V)

Similarly as for the terms on the tetrahedra, we set

/ ,6% . ﬁF,EU(F,V) d€ = O
E°(F\V)

over the edge opposite to V. Since these integrals are the degrees of freedom of
RTY(F), this uniquely defines B}.
For each V € T° we define the distributional vector field 3" by

(BY,v):= Z (By.v)+ Z (Bf,v), veC®Q).

TeT? FeT?
VeA(T)? VeA(T)?

It is easily checked that 3 is again the sum of all 3" over the vertices of 7.

B=> 8"

veTo

To see this, we use symmetries in the definition to find

Z/'BT nrr ds = Z /ﬂT nTFdS—/ﬁT i ds

VeTo VEA(F

for every T € T2 and F € A(T)?, and to find

/5}7 nFEde— /51: nFEde—/IBF nFEde
VeA(E

iTo the author’s best understanding, the definition of the local face terms in Equation (4.18)
of [34] are subject to a sign error.

VeTo
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for every F € T? and E € A(T)".
We want to show that each 3" has vanishing distributional divergence. Let
V € T° be an arbitrary but fixed vertex. For every v € C*®(Q) we observe

<5V,gl"adv>= Z Z / nTF ﬁT)ds—/v le,BT dz

TeT? FeA(T
VeA(T)? EA(F)

+ Z Z / (7ire - ,BF)dS—/’U div B} ds

FeT? EcA(F
VEA(F)° VEA(E)O

For every tetrahedron T' € T3 containing V we see

/dwﬂde— > /BT nTFds— > /ﬂT fippds=0

FeA(T)? FGA

as a consequence of (X.28). When F' € T? is a face containing V, then

/ div B} ds —
F

follows by a direct combination of (X.28) and (X.29). Lastly, when E € T contains
the vertex V, then (X.30) and (X.31) imply that

= Y /nFE B de.

FeT?
EeA(F)!

//BT nTFdS—O

TeT?
FeA(T)?

In summary, the distributional divergence of 3" vanishes. Since 3" is supported
only over the macropatch around V, it is possible to construct g} € L2(2) with
support in the local macropatch around V' that is piecewise in the Raviart-Thomas
space of lowest order and that satisfies curl o) = @Y. Summing over V, we obtain
on, as desired. This finishes our remark on the localized flux reconstruction.
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XI. Conclusions and Perspectives

This thesis has addressed the theoretical foundations of finite element exterior cal-
culus. We have contributed to the understanding of basis constructions, we have
clarified and extended the applications of smoothed projections, and we have made
important progress in the theory of a posteriori error estimation. These mathemat-
ical investigations open perspectives for future research.

We have commenced our mathematical investigations with one of the most basic
concepts of mathematics, namely simplices and triangulations, in Chapter II. We
have approached how to quantify the regularity of simplices and simplicial triangu-
lations. The purpose of this exposition was providing rigorous and explicit proofs
for several mathematical results which are usually treated as mathematical folklore.
An interesting qualitative observation is that global properties of the triangulated
domain enter local estimates (see, e.g., Remark 11.4.7). The quantitative bounds in
Chapter II, however, are generally far from sharp, and more technical effort may
produce more precise results. In addition, similar tracks of research emerged in dif-
ferent areas of geometry [50, 78, 133, 180], and connecting these developments may
lead to results interesting to a broader mathematical audience.

In Chapter III we have outlined finite element spaces of differential forms with
particular attention to the construction of geometrically decomposed bases for the
P,A* and P, A" families of finite element spaces. We have elaborated several con-
tributions in the literature that have not found as much attention yet, and we have
also provided some new results. This includes a new presentation of geometrically
decomposed bases, and we have given a detailed analysis of the two isomorphic pairs

PAF(T) ~ T AT, Pron i AF(T) ~ PAH(T)

rn—k+1
in finite element exterior calculus. This has enabled the identification of linear
dependencies in the canonical spanning sets and has produced explicit formulas for
the canonical duality pairings. Here, our major point of reference has been a recent
publication by Christiansen and Rapetti [57].

Future work could integrate ideas of Chapter III into a fully self-contained ex-
position that can be used in introductions to finite element exterior calculus. More-
over, the techniques of finite element exterior calculus can potentially contribute to
the already considerable efforts of research in higher order finite element methods,
which have addressed properties of finite element bases, such as sparsity, hierarchical
structure, condition numbers of finite element matrices, or fast evaluation of finite
element matrices (see, e.g., [20, 21, 22, 23, 24, 116, 119, 120, 136, 161]).
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We have then proceeded from finite element spaces on single simplices to finite
element de Rham complexes over entire triangulations. Combining ideas from dif-
ferent sources (]9, 11, 56, 69, 183]), we have set up the theory in a new manner
that emphasized the locality of the higher order parts of finite element spaces. The
resulting framework formalizes finite element de Rham complexes of non-uniform
polynomial order in finite element exterior calculus.

A short-coming of our exposition is that our representation of the degrees of
freedom involves generally non-canonical Riemannian metrics, whereas the degrees
of freedom of finite element spaces of uniform polynomial order have well-known
metric independent descriptions [9]. This open problem might be subject to future
research but does not affect our applications in this work.

Finite element de Rham complexes with non-uniform polynomial order have been
only of secondary interest in this thesis: their theory has emerged naturally from our
way of constructing the finite element de Rham complexes, motivated by preparing
the partially localized flux reconstruction in Chapter X. Of course, finite element
spaces of non-uniform polynomial order are an active topic of research in their own
right and constitutive for hp-adaptive finite element methods. This thesis prepares
an access for research on mixed hp-adaptive finite element methods in finite element
exterior calculus.

We have invested considerable effort in a detailed exposition of the smoothed
projection in finite element exterior calculus and its applications to a priori error es-
timates in Chapters V, VI, VII, and VIII. On the one hand, this has extended finite
element exterior calculus to a broader class of domains and boundary conditions. On
the other hand, our detailed calculations have revealed some interesting qualitative
relations (see, e.g., Remark VII.8.3 or Remark VII.8.13), and have pointed out non-
trivial gaps (and small mistakes) in the existing literature (see Remarks VII.8.12 and
VIL.8.9). As a remedy for the latter, we have introduced new mathematical tech-
niques into numerical analysis based on Lipschitz topology and geometric measure
theory, which may be helpful in future research.

The construction of our smoothed projection has followed the line of thought of
previous publications (which is why we call it a smoothed projection) but there have
been considerable modifications. We have implemented the first step of extending
a differential form by reflection across the boundary with a result from Lipschitz
topology that seems to be a new tool for numerical analysis. We have accommodated
the possibility of partial boundary conditions with a bi-Lipschitz deformation, again
with reference to Lipschitz topology. The extended differential form is then mollified
with a generalization of the classical convolution by a smooth mollifier that allows
us to locally control the mollification radius.

The next step towards the smoothed projection has instantiated this smoothing
operator with a function that indicates the local mesh size. Here we have identified
a small mistake in the literature, which, however, has also pointed out a hitherto
overlooked qualitative property of smoothing operators (see Remark VII.8.12). The
final stage in the construction of the smoothing operator has employed the Schoberl
trick to bound the interpolation error over the finite element spaces. During the
course of this research, a gap in the proof of Lemma 5.5 of [9] was identified (which
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applies similarly to Lemma 4.2 in [58]). This has been our driving motivation for
using geometric measure theory in numerical analysis.

Since the construction and analysis of the smoothed projection involves coor-
dinate transformations of low regularity, we have related our entire discussion of
the smoothed projection with research on analysis on “rough” spaces. This includes
Lipschitz topology and geometric measure theory, and we have pointed out the class
of weakly Lipschitz domains as a natural choice of geometric ambient in the theory
of finite element methods. Furthermore, we have related the theory of finite element
exterior calculus with the analysis of W4 differential forms on Lipschitz manifolds.
Our analysis of the Hodge Laplace equation with mixed boundary conditions is
based on recent contributions in global analysis [99], and we have emphasized the
role of de Rham complexes with partial boundary conditions.

There are several interesting perspectives for future research on smoothed pro-
jections. One direction is to further generalize the admissible geometric background.
In this thesis we have only considered domains in R", but the numerical analysis of
partial differential equations on manifolds is an active topic of research [60, 71, 80].
Finite element exterior calculus uses the language of differential geometry and thus
admits a natural background for such research. In the opposite direction of research,
local additional regularity is used, for example, in the design of a priori hp-adaptive
methods [49, 162, 163, 164], and even in the case of scalar-valued problems, this is
still an area of active research with numerous open problems.

The smoothed projection can be seen as a generalization of the classical smooth-
ing operator on R", which is defined by convolution with the classical mollifier.
Apart from numerical analysis, this idea has emerged in the global analysis on man-
ifolds [66, 97, 100, 101]. Relating the developments in both areas is an intriguing
research perspective, and one result of this thesis can be regarded as a step to-
wards that direction: we construct a commuting mollification operator over weakly
Lipschitz domains from W79 de Rham complexes into the complex of smooth differ-
ential forms (see Theorem VII.4.1). In particular, this smoothing operator preserves
partial boundary conditions. As an application, we have proven a result of purely
analytical interest: we have shown the density of smooth differential forms in the
WP classes of differential forms over weakly Lipschitz domains with partial bound-
ary conditions.

We do not leave unmentioned that a considerably more detailed study of smooth-
ing operators is feasible, as demonstrated by Karkulik and Melenk [117]. More-
over, whereas explicit calculations have been a guideline in the construction of the
smoothed projection, we have used abstract existence results at several points when
fixing Lipschitz collars. It seems plausible that explicit constructions of Lipschitz
collars are possible for polyhedral domains.

We have concluded our research on smoothed projections with a priori error es-
timates for the Hodge Laplace equation with mixed boundary conditions. We have
omitted eigenvalue problems, which are another straightforward application of the
Galerkin theory of Hilbert complexes. With regards to partial boundary conditions,
two particularly noteworthy topics justify further research. First, not many Gaffney-
type inequalities are available in the case of partial boundary conditions, besides a
general H2 estimate ([113]). Second, the approximation of harmonic forms has at-
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tracted special attention in numerical analysis [70] and we have seen that non-trivial
harmonic forms appear in the presence of partial boundary conditions, even if the
domain itself has a simple topology.

After a priori error estimates we have addressed a posteriori error estimation in
finite element exterior calculus. The classical residual error estimator was treated by
Demlow and Hirani [72]. We have directed our interest instead towards equilibrated
a posteriori error estimation [4, 156, 172| and focused on Braess and Schoberl’s
equilibrated a posteriori error estimator for edge elements |34].

In Chapter IX, we have investigated differential complexes of discrete distribu-
tional differential forms. These generalize the distributional finite element sequences
of Braess and Schéberl [34]. During the development of this PhD thesis the homology
theory of discrete distributional differential forms was completed and the Poincaré-
Friedrichs inequalities were successfully analyzed. An aspect that deserves further
attention are duality relations between discrete distributional differential forms and
conforming finite element spaces.

The final chapter has approached the seminal contribution of Braess and Schéberl
from a different perspective. Here we have introduced partially localized flux recon-
structions, which build upon the principle that has already been central to Chap-
ter IV: the global properties of the finite element space are encoded in the lowest-
order part, whereas the higher-order part is localized. In Chapter X we have reduced
the problem of flux reconstruction between higher-order finite element spaces to flux
reconstruction between lowest-order finite element spaces, using only local computa-
tions. This has extended Braess and Schéberl’s equilibrated residual error estimator
to the case of edge elements of higher and possibly non-uniform polynomial order.
This opens several possibilities for future research in computational science, even
though many basic questions still remain. For example, not many computational
studies of this error estimator are presently available in the literature. An interest-
ing question is how to generalize the results of [34] from the case of edge elements
in two and three dimensions to the full framework of finite element exterior calculus.

This thesis has investigated the foundations of finite element exterior calculus.
We have contributed several extensions to the theoretical framework, which have
already stimulated successive research activities. The elaboration of technical de-
tails has provided new qualitative insights and has driven the development of new
techniques for future research in numerical analysis.

Revisiting the foundations of a mathematical theory can be demanding as much
as it can be rewarding. The great book of mathematics is constantly being rewritten
and annotated. I hope that this work will be useful both to present and future
mathematicians, and that it will encourage other researchers to contribute their
ideas to the greater good.
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A. Appendix

This appendix outlines notational conventions, definitions, and results that are as-
sumed to be known throughout this thesis and that may be used without any further
explanation.

Basic Conventions and Combinatorics

We follow the tradition of Dedekind and Piano and let N denote the set of natural
numbers, i.e. the positive integers, and let Ny := N U {0}. We let Z denote the set
of integers and let R denote the set of real numbers. We write R for the positive
real numbers and Ry for the non-negative real numbers. For every set A we let # A
denote its cardinality.

For every real number s € R we let [s] € Z denote the smallest integer that is
not smaller than s. Moreover, we define

-1 ifs<0,
sgn(s) = 0 ifs=0,
1 ifs>0.

The Kronecker delta ¢;; for 7, j € Z is defined by

1 iti=y,

% _{ 0 ifi]. (A1)
We let [a : b] = {a,...,b} for a,b € Z. Note that [a : ] = 0 if b < a. We let
Perm(a : b) denote the group of permutations acting on the set [a : b]. The signum
of m € Perm(a : b) is written sgn(m).

Given integers m,n € Z with m < n, we let A(m : n) be the set of functions
from [m : n] to Ng. The members of A(m : n) are called multiindices over [m : n].
The absolute value of & € A(m : n) is defined as |a| ;== a(m) +--- + a(n). We let
A(r,m : n) be the set of all multiindices over the index set [m : n] with absolute
value r € Z. We may abbreviate A(r,n) := A(r,0: n). Whenever «« € A(m : n), we
write

a] :={ie[m:n]|a()>0}, (A.2)

and we write |a] for the minimal element of [«], provided that [a] is not empty.
The sum « + 5 of multiindices a, 8 € A(m : n) is defined in the obvious manner. If
a € A(m :n) and p € [m : n|, then we let a +p € A(m : n) be identical to « except
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for (&« +p)(p) = a(p) + 1, and if ¢ € [a] then we let & — ¢ € A(m : n) be identical
to a except for (o — q)(q) = a(q) — 1.

For a,b,c,d € Z we let ¥(a : b,c : d) be the set of strictly ascending mappings
from [a : 0] to [c : d]. If a > b, then this set contains only the empty function ), and
hence X(a : b,c: d) := {0} in that case. Whenever o € X(a : b,c: d), we write

o] :={o(i) | i€ [a:b]}, (A.3)

and we write || for the minimal element of [o], provided that [o] is not empty.
Furthermore, if ¢ € [c : d] \ [0], then we write o + ¢ for the unique element
of ¥(a : b+ 1,¢ : d) with image [0] U {¢}. In that case, we also write €(q,0)

for the signum of the permutation that brings the sequence ¢,o(a),...,o(b) into
ascending order, and we write €(o, ¢) for the signum of the permutation that brings
the sequence o(a),...,o(b),q into ascending order. Thus

e(q,0) = (—1)#pelllert (5 g) = (—1)# pelol la<p},

Conversely, if p € [o], then we write o — p for the unique element of X(a : b—1,c¢: d)

with image [o] \ {p}.
When o € X(1: k,0:n) and p € £(0:1,0: n) with [o] N [p] = 0, then we let

c+peX(0:k+1,0:n)

be the unique strictly ascending from [0 : k + ] to [0 : n] with image [o] U [p],
and we let ¢(o, p) denote the signum of the permutation that orders the sequence
o(1),...,0(k), p(0),...,p(l) in ascending order. In particular,

e(o,p) = (_1)#{ (p:q)€lo]x[p] | a<p }

If n is understood and k,l € [0 : n], then for any ¢ € 3(1 : k,0 : n) we
define 0¢ € 3(0 : n — k,0 : n) by the condition [¢] U [¢¢] = [0 : n], and for any
p€3(0:1,0:n) wedefine p° € X(1:n—1,0:n) by the condition [p|U[p°] = [0 : n].
In particular, 0° = ¢ and p* = p. We emphasize that ¢ and p° depend on n, which
we choose to suppress in the notation.

Above we have introduced symbols for several signs that appear in combinatorial
calculations. For p,q € Z with p # ¢ we additionally introduce €(p,q) :=1if p < g
and €(p,q) = —1 if ¢ < p. Obviously we have €(p,q) = —e¢(q,p) for p,q € Z with
p # q. With some combinatorial insight it is easily verified that

€(g,0 —p) = e(q,p)e(q, 0), (A4)
forc € ¥(a:b,c:d), p € [o] and q ¢ [0], and that

e(p,o+q—p) =ep.a)e(p,o —p) (A.5)
forc € ¥(a:b,c:d), p € [o],and q & [0 + p].

Remark A.0.1.

The notion of multiindex is commonplace, while the definition of X(a : b,c : d) is
not. The latter notion is a minor generalization of the sets ¥(k,n) and Xy(k,n) in
several publications on finite element exterior calculus (e.g. [10, 11]). There does not
seem to be an established name for them in natural languages. The author proposes
alternating index as a spoken term.
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Notions of Linear Algebra

We briefly summarize basic notions and notation from the fields of linear algebra,
metric spaces, and analysis.

All vector spaces in this thesis are over the real numbers. If X is a vector space
and A is a linear subspace, then we let X/A or % denote the quotient space obtained
from X by factoring out A. We let R™ be the canonical n-dimensional real vector
space. If p € [1,00] and x € R™ with entries (2;)1<;<n, then the p-norm is given by

=

[zllp == (z1]” + -+ + [2n]”)
for 1 < p < oo and by

[£]loc = max [z;
1<i<n

for p = oo.

If T:X — Y is a linear mapping from a vector space X into another vector
space Y, then we let ker T’ C X denote the kernel of 7" and let ranT C Y denote
the range of T.

Let M € R™™ be a matrix with entries (M;;)i1<i<ni<j<m- If m = n and M
is invertible, then M ~! denotes the inverse of M. In any case, we let MT € R™x"

denote the Moore-Penrose pseudoinverse of M. For p,q € [1, o] the operator norm
| M||,,q of M is given by

| M|
|M]|lpg = sup <.
zeR™\{0} Hpr

Assume that m < n. We let the non-negative scalars o1(M),...,0,,(M) denote
the singular values of M in ascending order. We also write o, (M) = o1(M) and
Omax(M) = o, (M) for the smallest and the largest singular value of M, respectively.
If the singular values of M are all positive, then

1M]l22 = Ouwax(M), [ M |22 = omin(M) 7
The generalized condition number k(M) of M is the quantity
(M) = | M 2] M 22.

If omin(M) > 0, then it can be expressed equivalently as k(M) = omax (M) /omin(M).
The determinant det(M) of a square matrix M € R™*" can be estimated by

det(M) < [T lIM],
=1

known as Hadamard’s inequality, where M, M,, ..., M, denote the columns of M.
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Notions of Metric Spaces

Whenever X is a topological space, taken to be understood, and U C X is a
subset, then U denotes the closure of U and U¢ denotes the complement of U in the
topological space X.

Throughout this thesis, and unless stated otherwise, we let finite-dimensional
real vector spaces R™ and their subsets be equipped with the canonical Euclidean
metric. We let B,.(U) be the closed Euclidean r-neighborhood, r > 0, of any set
U C R", and we write B,(x) := B,({z}) for the closed Euclidean ball of radius
r > 0 centered at x € R".

More generally, suppose that p : U — R is a function over some set U C R".
For any subset A C U we then write piy(A) and pg,p(A) for the infimum and the
supremum, respectively, of p over A whenever these exist, and we write ppy;,(A) and
Pmax(A) for the minimum and the maximum, respectively, of p over A whenever
these exist.

Suppose that v, ..., vy € R". We define the convex hull by

N N
convex{vg,...,Un} = { Zaivi | ao,...,an €[0,1], Zai: 1 }

i=0 i=0
The following important result is also known as Lebesgue’s number lemma.

Lemma A.0.2.

Let U C R™ be compact and let Uy, ..., U,, be a finite covering of U by sets that are
relatively open in U. Then there exists v > 0 such that for all z € U there exists
1 < i < m satisfying B,(z) NU C U,.

Notions of Analysis

If mn € Nand U C R" is an open set, and if v : U — R™ is a differentiable
function, then we let du,...,Jd,u denote the partial derivatives of u into the co-
ordinate directions. We let Du : U — R™*"™ denote the Jacobian of u over U. If
a € A(1:n) is a multiindex in n variables, then we write

9% = 9P . gaty

for the corresponding higher order derivative of u. The same notation is applied
when the derivative only exist in the weak sense or in the sense of distributions.

The standard mollifier is the function

if iyl <1,

1
LR[00, gy d OO (HyHLl)
0 it lyll =1,

where C' > 0 is chosen such that p has unit integral. The function p is smooth and
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is supported in B;(0). For € > 0 we define the scaled mollifiers
Ly

e : R™ — [0, 1], yr—>—,u<—).

€ €

In particular, p = p.

Differential Complexes

Suppose that V' = (V;),., is a family of real vector spaces indexed over the
integers and that 0 = (0;),, is a family of linear operators 0; : V; — Vi1, indexed
over the integers such that for all ¢ € Z we have 9,,10; = 0. Then the tuple (V,0)
is called a differential compler. A differential complex can be written as a diagram

O0i—1 0; Oit+1

Vi > Vipp —

We have the inclusion rand;_; C ker d;, and the homology spaces can be seen as
a measure in how far this inclusion is proper. The i-th homology space of (V,0) is
defined as the factor space

ker 81
ran 87;_1 ’

Hi =

We say that (V,0) is ezact at index i if H; = {0}, and we say that (V,0) is ezact if
H; = {0} for all i € Z.

Sometimes we use the notion of differential complex with different index conven-
tions, where the indices of successive operators are not ascending but descending.
Moreover, most differential complexes in this thesis have only finitely many non-zero
terms, and we often display only those non-zero terms.

Remark A.0.3.

The terms homology and cohomology generally designate different concepts in ho-
mological algebra, but for the purposes of this thesis they are used interchangeably.
Which of the terms we use depends on terminological conventions.
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absolute simplicial homology, 33

abstract Hodge decomposition, 156

adjoint Hilbert complex, 155

adjoint operator, 155

admissible boundary partition, 107

admissible boundary patch, 106
complementary, 106

admissible sequence type, 73, 79

affinely independent, 18

alternating index, 238

barycentric coordinates, 40
barycentric polynomial, 41
basic k-alternator, 93
basic alternator, 41
Betti number
absolute simplicial, 34
absolute topological, 34
simplicial, 34
topological, 34
bi-Lipschitz, 92
bounded Hilbert complex, 155
bounded operator, 154

canonical finite element interpolant,
78

closed Hilbert complex, 155

closed operator, 154

closed range, 154

codifferential, 96

cohomology, 241

complementary boundary patch, 106

convex hull, 240

creased domain, 108

crossed bricks domain, 103

curl-curl problem, 224

densely-defined operator, 154

differential complex, 241

differential property, 33, 96, 155, 175,
188

dimension, 18, 19

Dirac operator, 157

discrete distributional differential
form, 177

discrete distributional harmonic form,
190

discrete harmonic space, 165

discrete Hodge decomposition, 165

discrete Poincaré-Friedrichs
inequality, 165

edge, 18

equivalent, 132

exact, 241
at index, 241

exterior derivative, 39, 96
weak, 96

exterior product, 39, 93

face, 18

finite element interpolant, 86
flat cochains, 133

flat differential forms, 97

flat norm, 133

flux equation, 219

flux reconstruction, 219
full-dimensional, 18

Gaffney inequality, 164
generalized condition number, 23, 239
geometric decomposition condition,
181
geometric shape measure
of a simplex, 21
of a triangulation, 26
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global extension operator, 84
global uniform refinement, 29

harmonic forms
with mixed boundary conditions,
160
harmonic interpolant, 74
harmonic space, 156
discrete, 165
height, 21
hierarchical, 83
hierarchy condition, 83
Hilbert complex, 155
adjoint, 155
bounded, 155
closed, 155
Hodge decomposition, 160
abstract, 156
discrete, 165
Hodge Laplace operator, 157
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