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Abstract

We construct potentials for the gradient, the curl, and the divergence operators over domains with
shellable triangulations. Notably, the class of shellable triangulations includes local patches (stars) in
two or three dimensions. The operator norms of our potentials satisfy explicitly computable bounds
that depend only on the geometry. We thus compute upper bounds for constants in Poincaré–
Friedrichs inequalities and lower bounds for the eigenvalues of vector Laplacians. As an additional
result with independent standing, we establish Poincaré–Friedrichs inequalities with computable
constants for the Lp de Rham complex over bounded convex domains, derived as explicit operator
norms of regularized Poincaré and Bogovskĭı potential operators. We express all our main results in
the calculus of differential forms and treat the gradient, curl, and divergence operators as instances
of the exterior derivative. Computational examples illustrate the theoretical findings.

1 Introduction

Potentials for the differential operators of vector calculus and exterior calculus are of fundamental impor-
tance. The operator norms of these potentials are upper bounds for the Poincaré–Friedrichs constants.
These quantify the fundamental stability properties of numerous partial differential equations and enter
the stability and convergence theory of numerical methods. Upper bounds of the Poincaré–Friedrichs
constants also provide lower bounds of the eigenvalues of the associated Laplacians. However, while
potentials and Poincaré–Friedrichs constants for the gradient have been subject to extensive study, quan-
tifiable results regarding the curl and divergence operators, or more generally, the exterior derivative,
are largely unavailable.

This manuscript contributes to the theory of computable estimates for Poincaré–Friedrichs inequal-
ities for the differential operators of vector calculus. How to construct potentials for the gradient over
triangulated domains is well-documented in the literature. Here, we extend this construction to the curl
and divergence operators, treating them as instances of the exterior derivative. However, to proceed
in the general exterior derivative case, we restrict our efforts to so-called shellable triangulations. The
class of shellable triangulations includes practically relevant triangulations: for example, local triangu-
lations around simplices within a larger triangulation (the so-called local patches or stars) are shellable
in dimensions two and three; see also Figure 1. Only contractible domains can ever admit a shellable
triangulation, but having computable upper bounds for such domains is an important stepping stone
toward more general situations. Additionally, we include a study of regularized Poincaré and Bogovskĭı
operators that leads to new Poincaré–Friedrichs inequalities with computable constants for the whole Lp

de Rham complex over bounded convex domains.

1.1 Conceptual overview

We give a conceptual overview of the topic before we outline the known results in the literature and our
contributions in more detail. Our conceptual point of reference is the Poincaré–Friedrichs inequality for
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the gradient of scalar functions, which has been subject to extensive research.

1.1.1 Potentials and Poincaré–Friedrichs inequalities for the gradient

For the purpose of illustration, we let Ω ⊆ R3 be a bounded connected open set. We let Lp(Ω) denote the
Lebesgue space over Ω with integrability exponent 1 ≤ p ≤ ∞, and we write W 1,p(Ω) for the first-order
Sobolev space over Ω with integrability exponent p.

We are interested in a constant Cgrad,Ω,p > 0 such that the following holds: for every gradient vector
field f ∈ ∇W 1,p(Ω) there exists a scalar potential u ∈ W 1,p(Ω) such that ∇u = f and

∥u∥Lp(Ω) ≤ Cgrad,Ω,p∥f∥Lp(Ω). (1)

This inequality is called Poincaré–Friedrichs inequality and the constant Cgrad,Ω,p is called the Poincaré–
Friedrichs constant with exponent p. The question is therefore whether we can always find a gradient
potential of sufficiently small norm so this inequality holds. One possible choice is the norm-minimizing
potential

Φgrad(f) := argmin
u∈W 1,p(Ω)

∇u=f

∥u∥Lp(Ω). (2)

In the present setting, where Ω is connected and the potential of the different gradient potentials can
thus only differ by a constant, computing Φgrad(f) is a one-dimensional convex minimization problem.
This inequality is therefore equivalent to

min
c∈R

∥u− c∥Lp(Ω) ≤ Cgrad,Ω,p∥∇u∥Lp(Ω), ∀u ∈ W 1,p(Ω). (PF)

Such an inequality holds if we can bound the operator norm of this gradient potential operator. Then
the best constant is

Cgrad,Ω,p := max
u∈W 1,p(Ω)\R

∥Φgrad(∇u)∥Lp(Ω)

∥∇u∥Lp(Ω)
. (3)

Finding the norm-minimizing potential and the optimal Poincaré–Friedrichs constant is generally tricky.
Attention has focused on linear potentials instead of the norm-minimizing nonlinear potential (2). The
operator norm of any linear potential construction serves as an upper bound for the Poincaré–Friedrichs
constant. One straightforward example for such a bounded linear potential operator is the average-free
potential,

Φ∅(f) := argmin
v∈W 1,p(Ω)∫

Ω
v=0

∥∇v − f∥Lp(Ω), ∀f ∈ ∇W 1,p(Ω), (4)

whose mean value is fixed to zero. Its operator norm is the Poincaré constant C∅,Ω,p > 0 that satisfies

∥u− uΩ∥Lp(Ω) ≤ C∅,Ω,p∥∇u∥Lp(Ω), ∀u ∈ W 1,p(Ω), (P)

where uΩ denotes the average of u. We emphasize that the average-free potential is generally not
the norm-minimizing potential unless p = 2. Hence, the optimal Poincaré constant and the optimal
Poincaré–Friedrichs generally differ. Considerable research efforts have gone into determining constants
in the Poincaré–Friedrichs inequalities (PF) or Poincaré inequalities (P). Upper estimates for these
constants also correspond to lower bounds for the spectra of Neumann–Laplacians over those domains.
The relationship between the Poincaré constant and the Poincaré–Friedrichs constant will be elaborated
upon in later sections of this manuscript.

1.1.2 Potentials and Poincaré–Friedrichs inequalities for the curl and divergence

We study potentials and Poincaré–Friedrichs inequalities for the curl or divergence operators in vector
calculus. There are substantial changes and much fewer results are available in the literature. We use
the spaces of vector field

W p(curl,Ω) :=
{
u ∈ Lp(Ω)3 : curlu ∈ Lp(Ω)3

}
, (5)

W p(div,Ω) :=
{
u ∈ Lp(Ω)3 : divu ∈ Lp(Ω)

}
. (6)
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Their members are those vector fields in Lebesgue spaces whose distributional curls and divergences,
respectively, are in Lebesgue spaces. In contrast to the gradient, this only requires that certain sums of
distributional partial derivatives are integrable, and hence these spaces are not classical Sobolev spaces
of vector fields. Our objective is to find bounded potentials (i.e., right inverses) for the operators

curl : W p(curl,Ω) → Lp(Ω)3, div : W p(div,Ω) → Lp(Ω).

We are interested in the natural analogues for the Poincaré–Friedrichs inequality of the gradient (PF),
which for the curl and divergence are the inequalities

min
v∈W p(curl,Ω)

curlv=f

∥v∥Lp(Ω) ≤ Ccurl,Ω,p∥f∥Lp(Ω), (7)

min
v∈W p(div,Ω)

div v=f

∥v∥Lp(Ω) ≤ Cdiv,Ω,p∥f∥Lp(Ω). (8)

The fundamental difference to the gradient is that the curl and divergence have infinite-dimensional
kernels. The kernel of the gradient is the one-dimensional space of constant functions, and it is thus
trivially complemented for all p, with a canonical choice of projection. By contrast, the kernels of the
curl and divergence operators are generally infinite-dimensional. Moreover, it is not immediately evident
that the kernels of the curl and divergence operators are complemented in the Banach space case when
p ̸= 2, and a canonical projection only exists here in the Hilbert setting p = 2. In that sense, there
generally is no natural analog to the Poincaré inequality (P) for the curl and divergence.

In the Banach space case, not even the existence of norm-minimizing potentials is trivial. We are
therefore interested in any potentials

Φcurl : curlW
p(curl,Ω) → W p(curl,Ω), (9)

Φdiv : divW p(div,Ω) → W p(div,Ω) (10)

and their operator norms. We remark that upper bounds for the Poincaré–Friedrichs inequality of the
curl operator correspond to lower bounds for the so-called Maxwell eigenvalues. In sharp contrast to the
extensive research on gradient potentials, not much research seems available on computable constants in
such Poincaré–Friedrichs inequalities for the curl operators.

1.1.3 Potentials and Poincaré–Friedrichs inequalities for the exterior derivative

Though we present our results in vector calculus, our main arguments are given in the formalism of
exterior calculus. Exterior calculus [34, 44] is used ubiquitously in the mathematical literature of physics
and engineering and has found widespread adoption in the theoretical and numerical analysis for vector-
valued partial differential equations [38, 35, 3, 4, 5, 20, 30, 6]. This formalism is independent of the
spatial dimension and highlights the underlying geometric structures common to the gradient, curl, and
divergence operators in three space dimensions. For every u ∈ W pΛk(Ω), there exists w ∈ W pΛk(Ω)
with the sam exterior derivative dw = du and such that1

∥w∥Lp(Ω) ≤ Ck,Ω,p∥dw∥Lp(Ω). (11)

For the purpose of our discussion, this formalism allows us to leverage results from a larger body of
literature in differential geometry and functional analysis.

1.2 Literature review

We review the literature on Poincaré–Friedrichs inequalities. We also identify the obstructions inherent
to presently known results that we wish to overcome with our contributions.

1All the notation is fixed in detail in Section 5 later.
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1.2.1 General results

The qualitative existence of Poincaré–Friedrichs inequalities for the differential operators of vector cal-
culus and exterior calculus is known for a large class of domains. There is a vast body of literature on
the Poincaré inequality for the gradient and its numerous variants, which may include weighted integrals
or boundary terms. We emphasize that non-constructive arguments, such as the Rellich embedding
theorem, generally do not yield explicitly computable constants.

The divergence operator has received less attention. In the Hilbert space case p = 2, the Friedrichs in-
equality [13] over the Sobolev space with homogeneous Dirichlet boundary conditions along ∂Ω implies (6)
by duality. However, that easy duality argument, which yields an explicit upper bound proportional to
the domain diameter, seems inherently restricted to p = 2.

The core challenges are found in the discussion of the curl operator in three dimensions, where
Poincaré–Friedrichs inequalities have appeared under different names. Let us assume momentarily that
Ω is a weakly Lipschitz domain with trivial topology and consider only the Hilbert case p = 2. Then the
constant in (7) agrees with the constant in the so-called Poincaré–Friedrichs–Weber inequality

∥u∥L2(Ω) ≤ Ccurl,Ω,p∥ curlu∥L2(Ω), (12)

valid for all u ∈ W 2(curl,Ω)∩W 2(div,Ω) that satisfy divu = 0 and have vanishing normal or vanishing
tangential trace along ∂Ω. Equivalently, (12) is valid for all u ∈ W 2(curl,Ω) that are L2-orthogonal to
the gradients of scalar fields in W 1,2(Ω) or that have vanishing tangential trace and are L2-orthogonal
to the gradients of those scalar fields in W 1,2(Ω) that satisfy Dirichlet boundary conditions. We refer to
Equation (5) in [27], Equation (2) in [28], [64] as well as [31, Lemmas 3.4 and 3.6], [25, Proposition 7.4],
and the references therein. The general case of Lp differential forms over Lipschitz manifolds subject
to partial boundary conditions is discussed in [33]. However, while many of the above results rely on
non-constructive estimates, we are interested in practically computable upper bounds.

1.2.2 Analytical constants over convex domains

Considerable research effort has gone into computing explicit upper estimates for the constants in the
Poincaré–Friedrichs inequalities over convex domains. Notably, if the constants are required to depend
on the convex domain only via its diameter, then the optimal gradient Poincaré–Friedrichs and Poincaré
constants for the entire range of Lebesgue exponent 1 ≤ p < ∞ are known explicitly [55, 8, 1, 23, 26].

The literature on Poincaré–Friedrichs constants and potentials of curls and divergences is less ex-
tensive than for potentials of gradients, even over convex domains. Guerini and Savo [36] address the
spectrum of the Hodge–Laplace operator on bounded convex domains with smooth boundary in the
Hilbert space case p = 2. Among their results is the observation that the Poincaré–Friedrichs constant
for the gradient already estimates the corresponding constants for the curl and divergence operators.
They also provide explicit (but not necessarily optimal) upper bounds for Poincaré–Friedrichs constants
that depend only on the dimension and diameter of the convex domain. A duality argument also yields
upper estimates of the Poincaré–Friedrichs constants for the gradient, curl, and divergence operators
subject to Dirichlet, tangential, and normal boundary conditions, respectively, along the entire bound-
ary. Their inequalities hold in convex Lipschitz domains, too [48]. However, no results as those of [36]
are known over bounded convex Lipschitz domains and for general Lebesgue exponents 1 ≤ p ≤ ∞.

1.2.3 Domains star-shaped with respect to a ball

When the domain is not necessarily convex but star-shaped with respect to a ball, then several estimates
for Poincaré–Friedrichs constants are known.2 Polynomial interpolation estimates already imply the
gradient Poincaré–Friedrichs inequality [12, 21]. We pay particular attention to the regularized Poincaré
and Bogovskĭı potential operators for the exterior derivative, such as those of Costabel and McIntosh [19].
If we conceive these potentials as mappings between Lebesgue spaces of differential forms, then their
operator norms are upper estimates for the Poincaré–Friedrichs constants of the domain. We are aware
of estimates for the higher-order seminorms of these potentials [37], but estimates in Lebesgue norms
have not been made explicit in the literature yet, to the best of our knowledge. We particularly emphasize

2In fact, Poincaré–Friedrichs inequalities even hold over any star-shaped open bounded set; see [39, Theorem 3.1].
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that all these estimates for domains star-shaped with respect to a ball have in common that they rely
on upper bounds for the eccentricity of the domain.

Let us briefly discuss the practical limitations of the aforementioned estimates for Poincaré–Friedrichs
constants for convex domains or domains that are star-shaped with respect to a ball. Recall that the
main objective of this manuscript is bounding Poincaré–Friedrichs constants over domains with shellable
triangulations, with a key application being local stars within triangulated domains. Not all local stars
describe convex subdomains. Even if the local stars are star-shaped with respect to a ball, which would
enable, e.g., the averaged Poincaré and Bogovskĭı operators [19], the estimates that rely on this geometric
condition deteriorate when the aforementioned ball has a radius much smaller than the domain diameter.
While this is not as much a problem over local patches (stars) around interior subsimplices, where the
size of the interior ball only depends on the shape regularity of the triangulation, the interior ball can be
arbitrarily small when the local patch is around a boundary simplex, even if the triangulation displays
decent shape regularity. This occurs most prominently when the domain has sharp reentrant corners,
illustrative limit cases including the slit domain [61] and the crossed bricks domain [46], which contain
local finite element patches that are not star-shaped with respect to any ball. In view of this, we refrain
from treating local patches (stars) in triangulations as domains star-shaped with respect to a ball.

1.2.4 Triangulated domains

Geometric settings that admit finite triangulations enable different pathways to obtain Poincaré–Friedrichs
inequalities. We review the main outcomes.

Computable estimates for Laplacian eigenvalues over triangulated domains have received much at-
tention. The constant in (1) for p = 2 corresponds to a lower bound for the Laplace eigenvalues and
quantifies the stability properties of the Laplacian on the domain Ω. Similarly, the constant in (7) for
p = 2 corresponds to a lower bound for the Maxwell eigenvalues and quantifies the stability properties
of the Maxwell system on Ω. Thus, computable upper bounds on the Poincaré–Friedrichs constants also
give computable lower bounds for the eigenvalues of the associated Laplacians and vice versa. Prominent
methods numerically compute guaranteed upper bounds on the Poincaré–Friedrichs constants upon solv-
ing a finite element system over a sufficiently fine triangulation and using some clever post-processing
estimates. This approach has led to estimates for scalar Laplacian eigenvalues [14, 49] and vector Lapla-
cian eigenvalues [29]. For the purposes of this manuscript, however, we aim for computable upper bounds
that do not rely on the solution of (global) finite element systems.

There are numerous estimates for Poincaré–Friedrichs constants that only rely on locally computable
geometric quantities, such as the diameter and volumes of simplices. Veeser and Verfürth [61] provide
computable upper bounds in the case of the classical Sobolev space W 1,p(Ω) over triangulated domains,
with a focus on efficient estimates for vertex stars. Naturally, their estimates depend on the shape
regularity of the mesh. A whole class of upper bounds for Poincaré–Friedrichs inequalities uses some
form of passing through the triangulation and constructs the potentials step-by-step. The underlying
idea is that we first construct a potential for the gradient over an initial simplex. Every time we have
found a potential over a subdomain, we construct a potential over a neighboring simplex or patch: along
the interfacing intersection, the two potentials will only differ by a constant, and that difference can
easily be removed to ensure continuity across that interface. Cell by cell, the potential is constructed over
increasing subdomains, matching along the interfacing intersections until the entire domain is exhausted.
The method is known in the finite element literature [21]. It was previously used in the context of finite
volume methods [24], broken (weakly continuous) Sobolev spaces [62], or more recently in continuous–
discrete comparison results [11, 22, 16, 63]. This sequential procedure applies to general triangulated
domains, not only local stars, though the latter are our main interest here. Most importantly, these
sequential estimates of Poincaré–Friedrichs constants generally circumvent the effect of low boundary
regularity and only rely on the shape regularity.

While we thus know Poincaré–Friedrichs constants over local stars for scalar-valued Sobolev spaces,
we are not aware of computable estimates for the case of W p(curl,Ω) and W p(div,Ω) over finite element
stars.
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1.3 Objectives and methodology

The main objective of this manuscript is the construction of potentials for the gradient, curl, and diver-
gence, as well as, more generally, the exterior derivative. The operator norms of our potentials satisfy
computable upper bounds, thus yielding computable upper estimates of the Poincaré–Friedrichs con-
stants as well. In what follows, we focus on domains with shellable triangulations, which include local
patches (stars) in two and three dimensions as important special cases. To that end, we also devote an
important effort specifically to convex domains.

1.3.1 Convex domains

Our main result for convex domains in the exterior calculus setting is the construction of regularized
Poincaré and Bogovskĭı potential operators with explicitly bounded operator norms, as summarized in
Theorem 6.2. These upper bounds for the Poincaré–Friedrichs constants are proportional to the domain
diameter and are bounded in terms of the domain’s eccentricity. The bounds are independent of the
Lebesgue exponent 1 ≤ p ≤ ∞, though the space dimension and the form degree enter the estimates.

The reason for our study of Poincaré–Friedrichs constants over convex domains is twofold: firstly,
they are of evident independent interest, and secondly, we will need them as a component for our main
results on triangulations. Our exposition of regularized Poincaré and Bogovskĭı-type potential operators
follows the general methodology of Costabel and McIntosh [19]. By comparison, we simplify the potential
operators: we only study them over convex domains instead of domains star-shaped with respect to a ball.
Moreover, we use simpler (constant) weight functions. While the resulting potentials feature generally
lower regularity, they are conducive to our purposes. Crucially, this allows us to estimate their operator
norms easily and thus bound Poincaré–Friedrichs constants.

1.3.2 Potentials subject to partial boundary conditions

We also address the construction of potentials for the gradient, curl, and divergence operators, being
special cases of the exterior derivative, over a simplex subject to partial boundary conditions. We are
not aware of explicit estimates or regularized potentials for these boundary conditions in the published
literature. For example, given a divergence-free vector field over a tetrahedron with vanishing normal
trace along three of the tetrahedron’s faces, we want to find the unique vector field potential that not
only is a preimage under the curl operator but also has a vanishing tangential trace along the same three
faces. We achieve this by constructing an auxiliary problem subject to full boundary conditions, so that
we can build upon the regularized Bogovskĭı operators and the Poincaré–Friedrichs inequalities subject
to boundary conditions on the entire boundary. We thus obtain Poincaré–Friedrichs inequalities over
simplices and subject to partial boundary conditions. Again, we address the entire range 1 ≤ p ≤ ∞ of
Lebesgue exponents, and our Poincaré–Friedrichs constants are explicitly computable.

1.3.3 Main results

Our main objective remains to find potentials for the differential operators of vector calculus and exterior
calculus, including the curl and divergence over triangulated domains. The operator norms of these
potentials will serve as our computable Poincaré–Friedrichs constants. In light of the different approaches
discussed above, we seek constants that are explicitly computed in terms of mesh geometry, that do not
require the solution of global finite element problems, and that do not depend on the boundary regularity
of the domain.

As discussed earlier, the sequential construction of potentials for gradient vector fields is well-
established in the literature and serves as our conceptual blueprint. Gradient potentials are easily
computed over each individual simplex, but the constants of integration generally do not match, so the
scalar piecewise potential will belong to a broken Sobolev space. However, the local potentials will differ
only by a constant along the simplex boundaries. We can sequentially construct a potential in Sobolev
spaces over increasingly larger intermediate subdomains: at each step, we select a simplex that shares
a face with one of the previously processed simplices and adjust the constant integration of the local
potential. The global potential is built cell by cell until the entire domain is covered. Our main result
in this context is Theorem 4.4.
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We generalize this sequential construction of potentials to the curl, the divergence, and, more gen-
erally, the exterior derivative. However, we need to overcome new challenges that arise due to the
infinite-dimensional kernels of these differential operators, as we now explain in more detail. The basic
inductive strategy remains the same. We start by constructing, for instance, a curl potential over a single
simplex. Having already defined a potential operator over a subtriangulation, we select a neighboring
simplex that shares at least one face with the preceding simplices. We then construct a potential for
the curl operator whose tangential traces along the shared faces match those of the already existing
potential. Repeating this procedure eventually exhausts the original triangulation. Our main result here
is Theorem 9.3.

However, unlike in the potential construction of the gradient, it is not immediately evident whether
the construction of the local curl potential with given tangential traces is a well-posed auxiliary problem.
For the case of the gradient, it is sufficient that the sequential traversal of the triangulation satisfies
that each new simplex shares at least one face with one of the previous simplices. For the differential
operators of vector calculus and exterior calculus, we choose to be more restrictive: we require the new
simplex to intersect with the existing subtriangulation along a boundary submanifold of dimension n−1,
allowing us to define a well-posed auxiliary problem and to extend the existing curl potential to the new
simplex. Whether a triangulation admits such a particular traversal is a non-trivial condition and defines
the class of shellable triangulations.

Shellable simplicial complexes, and more generally polytopal complexes, are a well-established notion
in discrete geometry and combinatorics; see, e.g., Kozlov [40] and Ziegler [66], and the references therein.
Any shellable simplicial complex must necessarily triangulate a contractible space. Concerning our main
interest, local patches (stars) in 2D and 3D triangulations are shellable.

1.4 Notation

Whenever x ∈ Rn is a vector, we write ∥x∥ = ∥x∥2 for its Euclidean norm, and whenever A ∈ Rn×n, we
let ∥A∥2 be its operator norm with respect to the Euclidean norm. Furthermore, JF always denotes the
Jacobian of any mapping F .

1.5 Organization of this manuscript

The remainder of this manuscript is structured as follows. We review Poincaré–Friedrichs constants for
the gradient over convex domains in Section 2, where we also discuss the difference with the Poincaré
inequality and motivate our interest in linear potentials. We review basic notions of triangulations in
Section 3. Subsequently, we develop the computable upper bounds for the Poincaré–Friedrichs constants
for the gradient over face-connected triangulated domains in Section 4. Sobolev spaces in vector calculus
and the calculus of differential forms are reviewed in Section 5. We then introduce our regularized
potentials over convex sets in Section 6, giving rise to computable Poincaré–Friedrichs constants as
their operator norms. We subsequently review shellable triangulations of manifolds in Section 7, and
we construct an important geometric reflection operator in Section 8. Finally, we provide computable
upper bounds for Poincaré–Friedrichs constants for the exterior derivative over shellable triangulations
in Section 9 and present numerical examples in Section 10. We conclude with an outlook in Section 11.

2 Review of Poincaré and Poincaré–Friedrichs inequalities

This section surveys variations of the Poincaré–Friedrichs inequalities for the gradient operator, with
emphasis on analytical upper bounds over bounded convex domains. We explain the difference between
the Poincaré–Friedrichs inequality, which addresses the norm-minimizing potential, and the Poincaré
inequality, which addresses the potential with mean value zero, and rephrase this in terms of potentials.
This survey serves as a building block in constructing computable constants over triangulated domains
in a combinatorial way below, but we believe it is also of independent interest.

Let Ω ⊆ Rn be a connected open set. Given any p ∈ [1,∞], we let Lp(Ω) denote the Lebesgue space
over Ω with integrability exponent p, and we write Lp(Ω) := Lp(Ω)n for the corresponding Lebesgue
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space of vector fields. We also write W 1,p(Ω) for the first-order Sobolev space over Ω with integrability
exponent p.

We say that a domain Ω ⊆ Rn satisfies the Poincaré–Friedrichs inequality with exponent p ∈ [1,∞] if
there exists a constant Cgrad,Ω,p ≥ 0 such that the following holds: for every vector field f ∈ ∇W 1,p(Ω)
there exists u ∈ W 1,p(Ω) such that ∇u = f and

∥u∥Lp(Ω) ≤ Cgrad,Ω,p∥f∥Lp(Ω). (13)

Since Ω is connected, this is equivalent to

min
c∈R

∥u− c∥Lp(Ω) ≤ Cgrad,Ω,p∥∇u∥Lp(Ω), ∀u ∈ W 1,p(Ω).

We call Cgrad,Ω,p the Poincaré–Friedrichs constant with exponent p.

2.1 Relationship with Poincaré inequalities

We wish to clarify the relationship between the Poincaré–Friedrichs inequality, in the sense introduced
above, with other inequalities that are known as Poincaré inequality (or also Poincaré–Wirtinger or
Friedrichs inequality) in the literature [21, Remark 3.32]. Given p ∈ [1,∞] and a domain Ω ⊆ Rn of
finite measure, we say that Ω satisfies the Poincaré inequality with exponent p if there exists C∅,Ω,p ≥ 0
such that

∥u− uΩ∥Lp(Ω) ≤ C∅,Ω,p∥∇u∥Lp(Ω), ∀u ∈ W 1,p(Ω),

where uΩ is the average of u over Ω, that is,

uΩ := vol(Ω)−1

∫
Ω

u(x) dx.

Clearly, this Poincaré inequality implies the Poincaré–Friedrichs inequality and we have

Cgrad,Ω,p ≤ C∅,Ω,p.

Towards a converse inequality, let us first observe that the average of any u ∈ W 1,p(Ω) with p < ∞
satisfies the bound

∥uΩ∥pLp(Ω) =

∫
Ω

(
vol(Ω)−1

∫
Ω

|u(x)| dx
)p

≤
∫
Ω

vol(Ω)−1

∫
Ω

|u(x)|p dx = ∥u∥pLp(Ω). (14)

Here, we have used Hölder’s or Jensen’s inequality. In the case p = ∞, any u ∈ L∞(Ω) satisfies
∥uΩ∥L∞(Ω) ≤ ∥u∥L∞(Ω). We conclude that taking the average is a projection within Lebesgue spaces
with unit norm. The triangle inequality now shows that

∥u− uΩ∥Lp(Ω) ≤ 2∥u∥Lp(Ω), ∀u ∈ Lp(Ω).

Thus, the Poincaré–Friedrichs inequality implies the Poincaré inequality with

Cgrad,Ω,p ≤ 2C∅,Ω,p. (15)

In the special case p = 2, taking the average is an orthogonal projection, and so this improves to
∥u− uΩ∥L2(Ω) ≤ ∥u∥L2(Ω) for any u ∈ L2(Ω). Hence,

C∅,Ω,2 = Cgrad,Ω,2. (16)

This improvement also follows from the projection estimate (see, e.g., [65]). Stern’s generalized projection
estimate [60, Theorem 4.1,Remark 5.1] implies improved estimate for all Lp spaces with 1 ≤ p ≤ ∞:
since taking the average is a projection onto the constants functions with unit norm, from (14) it now
follows that

∥u− uΩ∥Lp(Ω) ≤ min
(
2, 2|2/p−1|

)
∥u∥Lp(Ω) = 2|2/p−1|∥u∥Lp(Ω), ∀u ∈ Lp(Ω).
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Here, we have used 1 ≤ 2|2/p−1| ≤ 2 for 1 ≤ p ≤ ∞. We thus conclude

Cgrad,Ω,p ≤ 2|2/p−1|C∅,Ω,p. (17)

In the limit cases p = 1 and p = ∞ we reproduce (15), and in the case p = 2 we achieve the identity (16)
once again. In summary, our notion of Poincaré–Friedrichs constant is equivalent to the common notion
of Poincaré constant, up to a numerical factor that only depends on 1 ≤ p ≤ ∞ and that is at most 2.

Remark 2.1. Let us further remark why the above notion of Poincaré–Friedrichs inequality (13) suits
our discussion better than the Poincaré inequality. We want to generalize the discussion to the curl
and divergence operators. The kernel of the gradient is the one-dimensional space of constant functions,
and is thus complemented in the Lebesgue spaces with a canonical choice of projection. By contrast, the
curl and divergence operators have infinite-dimensional kernels. Hence, it is not even trivial whether
these kernels are complemented subspaces and admit a projection onto them, not to mention a canonical
projection.

2.2 Relationship with potentials

There is yet another characterization of the Poincaré–Friedrichs inequality that we like to point out. We
define the potential

Φ(f) := argmin
u∈W 1,p(Ω)

∇u=f

∥u∥Lp(Ω), ∀f ∈ ∇W 1,p(Ω).

If there is a Poincaré–Friedrichs constant, then by definition

∥Φ(f)∥Lp(Ω) ≤ Cgrad,Ω,p∥f∥Lp(Ω),

and this inequality is sharp by definition of Φ provided that Cgrad,Ω,p is the smallest possible constant
in (13). Any Poincaré–Friedrichs inequality (13) is comparable to an upper bound for the generalized
(possibly nonlinear) inverse of the gradient operator ∇ : W 1,p(Ω) → Lp(Ω).

Because Φ : ∇W 1,p(Ω) → Lp(Ω) is generally a nonlinear operator for p ̸= 2, any linear potential
operator Φ : ∇W 1,p(Ω) → Lp(Ω) satisfying ∇Φ(f) = f for any f ∈ ∇W 1,p(Ω) must have an operator
norm that obeys the lower bound

max
u∈W 1,p(Ω)\R

∥Φ(∇u)∥Lp(Ω)

∥∇u∥Lp(Ω)
≤ max

u∈W 1,p(Ω)\R

∥Φ(∇u)∥Lp(Ω)

∥∇u∥Lp(Ω)
.

A natural choice is the linear operator Φ∅ : ∇W 1,p(Ω) → Lp(Ω) that satisfies

Φ∅(∇u) = u− uΩ, ∀u ∈ W 1,p(Ω).

Its operator norm is just the optimal Poincaré constant C∅,Ω,p.

Remark 2.2. Upper bounds for Poincaré–Friedrichs constants (13) are easily obtained from linear poten-
tials. We highlight this perspective because it is our theoretical backbone when generalizing the discussion
to the curl and divergence operators.

2.3 Analytical constants in Poincaré–Friedrichs inequalities over bounded
convex domains

We collect examples for Poincaré and Poincaré–Friedrichs inequalities for the important special case of
bounded convex domains. We have the Poincaré inequalities [55, 8, 1] (or [21, Lemma 3.24])

∥u− uΩ∥L1(Ω) ≤
δ(Ω)

2
∥∇u∥L1(Ω), ∀u ∈ W 1,1(Ω), (18)

∥u− uΩ∥L2(Ω) ≤
δ(Ω)

π
∥∇u∥L2(Ω), ∀u ∈ W 1,2(Ω), (19)

9



where δ(Ω) is the diameter of the domain Ω. These two estimates are the best possible Poincaré inequal-
ities in the cases p = 1 and p = 2, respectively, in terms of the diameter alone. Upper bounds for the
Poincaré constant over convex domains with 1 < p < ∞ are known in the literature [18, Theorem 1.1,
Theorem 1.2]:

∥u− uΩ∥Lp(Ω) ≤ CCW,pδ(Ω)∥∇u∥Lp(Ω), ∀u ∈ W 1,p(Ω), (20)

where we use an upper bound by Chua and Wheeden:

CCW,p := sup
v∈C∞([0,1])\R

∥v − v[0,1]∥Lp([0,1])

∥∇v∥Lp([0,1])
≤ p

√
p21−

1
p = 2

(p
2

) 1
p

.

Note that (20) is generally not optimal among the upper bounds that only depend on the domain diameter
and the Lebesgue exponent. As discussed above, these Poincaré inequalities imply Poincaré–Friedrichs
inequalities.

We know optimal Poincaré–Friedrichs constants over convex domains ([26, Theorem 1.1], [23, Theo-
rem 1.1]): when 1 < p < ∞, one can show that

min
c∈R

∥u− c∥Lp(Ω) ≤ CEFNT,pδ(Ω)∥∇u∥Lp(Ω), ∀u ∈ W 1,p(Ω), (21)

where CEFNT,p is the best possible constant that only depends on p and equals

CEFNT,p :=
p sin(π/p)

2π p
√
p− 1

.

Note that the last inequalities from (17) imply, again when 1 < p < ∞, the Poincaré inequalities

∥u− uΩ∥Lp(Ω) ≤ 2|1−
2
p |CEFNT,pδ(Ω)∥∇u∥Lp(Ω), ∀u ∈ W 1,p(Ω). (22)

When p = 1, then the optimal Poincaré constant also bounds the Poincaré–Friedrichs constant:

min
c∈R

∥u− c∥L1(Ω) ≤
δ(Ω)

2
∥∇u∥L1(Ω), ∀u ∈ W 1,1(Ω). (23)

When p = ∞, since convex domains are Lipschitz domains, Rademacher’s theorem leads to

min
c∈R

∥u− c∥L∞(Ω) ≤ δ(Ω)∥∇u∥L∞(Ω), ∀u ∈ W 1,∞(Ω). (24)

Remark 2.3. Any estimate for the Poincaré–Friedrichs constant implies an estimate for the Poincaré
constant, via (17). Let us compare CCW,p for the Poincaré inequality with CEFNT,p for the Poincaré–
Friedrichs inequality. In the case 2 ≤ p,

21−
2
pCEFNT,p =

21−
2
p

2

sin(π/p)

π/p

1
p
√
p− 1

≤ 4−
1
p ≤ CCW,p.

In the case p ≤ 2,

2
2
p−1CEFNT,p =

2
2
p−1

2

sin(π/p)

π/p

1
p
√
p− 1

≤ 2
2
p−1

2
= 2

2
p−2 = 4

1
p−1 ≤ CCW,p.

It follows that (22) is generally a tighter estimate than (20) for 1 < p < ∞.

Remark 2.4. The above Poincaré and Poincaré–Friedrichs constants are optimal for the class of convex
domains, but individual convex domains may allow for better constants. We refer to [50, 15, 52] for
discussions; for example, triangles allow the reduction of the constant by 20%.

10



Figure 1: From left to right: local patches around a vertex, and edge, and a triangle. The local patch of
any full-dimensional simplex only consists of that simplex itself (and its subsimplices).

3 Basic notions of triangulations

We gather basic notions and definitions concerning simplicial meshes.
A k-dimensional simplex T is the convex hull of k+1 affinely independent points v0, v1, . . . , vk ∈ Rn.

We call these points the vertices of the simplex T . The strictly positive convex combinations of the
vertices of the simplex constitute the interior of the simplex, and its remaining points constitute the
boundary of the simplex. If S is a simplex whose vertices are also vertices of another simplex T , in which
case S ⊆ T , then we call S a subsimplex of T and call T a supersimplex of S.

A finite family of simplices T is a simplicial complex or triangulation if it satisfies the following
conditions: (i) T contains all the subsimplices of its members (ii) any non-empty intersection of two
members of T is a common subsimplex of each. We say that a simplicial complex T has dimension n or
is n-dimensional if each of its simplices is a subset of an n-dimensional member of that triangulation.3

We also write |T | for the underlying set of the simplicial complex T , which is the union |T | =
⋃
T of all

simplices in T . One calls any set triangulable if it is the underlying set of some triangulation.
Given any simplex T , we write S↓(T ) for the simplicial complex that contains all subsimplices of T ,

and S↓
k(T ) ⊆ S↓(T ) denotes the set of k-dimensional subsimplices of T . We write V(T ) := S↓

0 (T ) for
the set of vertices of T . Whenever T is a simplicial complex, the set of k-dimensional simplices in T is
denoted as S↓

k(T ). Similarly, the notations V(T ) := S↓
0 (T ) and F(T ) := S↓

n−1(T ) refer to the vertices
and the faces (that is, members with codimension one) of this triangulation.4 In practice, we do not
always distinguish between points and singleton simplices.

When T is a triangulation and T ∈ T , then stT (T ) denotes the local patch or local star of T , which
is the simplicial subcomplex of T that contains all supersimplices of T and their subsimplices. We write
∂stT (T ) for the subset of the local patch whose members do not contain T itself. Formally,

stT (T ) :=
⋃

T ′∈S↓
n(T )

T⊆T ′

S↓(T ′), ∂stT (T ) :=
⋃

T ′∈stT (T )

T⊈T ′

S↓(T ′).

We also write AT := | stT (T )| for the closed underlying set of the local patch. A crucial structural
observation is the following.

Lemma 3.1. Let T be an n-dimensional simplicial complex and let S, S′ ∈ T . Then either stT (S) and
stT (S

′) only intersect in simplices of dimension at most n− 1 or there exists S′′ ∈ T such that

stT (S) ∩ stT (S
′) = stT (S

′′), V(S) ∪ V(S′) = V(S′′).

Proof. Let T ∈ T be n-dimensional. We have T ∈ stT (S) if and only if all vertices of S are vertices of T .
We have T ∈ stT (S

′) if and only if all vertices of S′ are vertices of T . Consequently, T ∈ stT (S)∩stT (S
′)

if and only if T ∈ stT (S
′′), where S′′ ∈ T is the convex closure of S and S′.

We introduce a specific notion of connectivity when we are given an n-dimensional simplicial complex
T . We call two n-dimensional simplices S, S′ ∈ T face-neighboring if S ∩ S′ is a common face of both of

3Simplicial complexes that we call n-dimensional are called purely n-dimensional in the literature on polytopes (cf. [66])
and simply “simplicial meshes” in the finite element literature.

4Our use of the term face as is common in classical geometry and the finite element literature [12] and is synonymous
with facet as used in the literature on polyhedral combinatorics [57]. Notably, this terminology differs from the uses face
and facet in the theory of polyhedra [66].
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them. We call n-simplices S, S′ ∈ T face-connected in T if there exists a sequence S = S0, S1, . . . , Sm =
S′ ∈ T such that Si and Si−1 are face-neighboring for all 1 ≤ i ≤ m. Such a sequence is called a face
path from S to S′ in T . Clearly, face-connected in T is an equivalence relation among simplices. A
face-connected component of T is an equivalence class under this equivalence relation, and we call T
face-connected if it has only one face-connected component.

3.1 Shape measures and related quantities

We introduce several quantities that measure the regularity of a triangulation. These have in common
that they can be computed from purely local information.

We write δ(T ) and vol(T ) for the diameter and n-dimensional volume of any n-simplex T . Moreover,
h(T ) refers to the smallest height of any vertex of the simplex T , where the height of a vertex is defined
as the distance to the affine span of its opposing face. For the purpose of the usual scaling arguments,
the n-dimensional reference simplex ∆n ⊆ Rn is the convex closure of the origin and the n canonical
unit vectors.

Whenever T is any n-dimensional simplex T , we define the aspect shape measure κA(T ), and the
algebraic shape measure κM(T ) by

κA(T ) :=
δ(T )

h(T )
, κM(T ) := sup

φ:∆n→T
∥Jφ∥2∥Jφ−1∥2, (25)

where the last supremum is taken over all affine transformation from the reference n-simplex onto the
n-simplex T . When T is an n-dimensional simplicial complex, we naturally define

κA(T ) := sup
T∈S↓

n(T )

κA(T ), κM(T ) := sup
T∈S↓

n(T )

κM(T ). (26)

We call these the aspect and algebraic shape measure, respectively, of the triangulation.

Remark 3.2. The ratio κA(T ) measures the “shape quality” of an n-dimensional simplex T and is an
instance of a so-called shape measure. For example, the reference triangle has aspect shape measure 2 and
the reference tetrahedron has aspect shape measure

√
6. Numerous alternative shape measures have been

used throughout the literature of numerical analysis and computational geometry to quantify the quality
of simplices (see [10, p.61, Definition 5.1], [12, p.97, Definition (4.2.16) ], [21, Definition 11.2]).

We gather a few relationships between geometric and algebraic entities and compare the different
shape measures of a single simplex.

Lemma 3.3. Let T be an n-simplex and let φ : ∆n → T be an affine diffeomorphism from the reference
n-simplex. Then

∥Jφ∥2 ≤ C1,n · δ(T ), ∥Jφ−1∥2 ≤ C2,n · κA(T )h(T )
−1,

1√
2n

κA(T ) ≤ κM(T ) ≤ nκA(T ).

Here, C1,n = C2,n =
√
n.

Proof. Let φ : ∆n → T be an affine transformation. We abbreviate M := Jϕ for its Jacobian. We begin
with observing that the largest ℓ2-norm of any column of M , which here denote by cmax(M), equals the
maximum of the quotient ∥Mx∥ℓ2/∥x∥ℓ1 over all non-zero x ∈ Rn. The diameter of T is the length of
its longest edge. Our first pair of inequalities follows via standard comparisons of Euclidean norms:

δ(T )√
2

≤ ∥M∥2 ≤
√
n · cmax(M) ≤

√
n · δ(T ).

The columns of the matrix M−1 are the gradients of the barycentric coordinates of the vertices of T ,
except for the vertex φ(0) ∈ T . It immediately follows that

∥M−1∥2 ≤
√
ncmax(M

−1) ≤
√
n · h(T )−1.

The smallest height in the reference simplex ∆n is h∆ = 1/
√
n, whence h(T ) ≥ ∥M−1∥−1

2 /
√
n. This

yields our second pair of inequalities. Notice that h(T )−1 ≤ κA(T )δ(T )
−1. All relevant results follow.
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We will need the maximal ratio of volumes between face-neighboring n-simplices, written Cρ(T ), and
the ratio of the diameters of any intersecting simplices, written Cθ(T ). Formally,

Cρ(T ) := sup
T,T ′∈S↓

n(T )

T∩T ′∈S↓
n−1(T )

vol(T )

vol(T ′)
, (27)

Cθ(T ) := sup
T,T ′∈S↓

n(T )

T∩T ′ ̸=∅

δ(T )

δ(T ′)
. (28)

Finally, whenever T, T ′ are two n-simplices that share a common face F of codimension 1, we let ΞT,T ′ :
T → T ′ denote the affine diffeomorphism that preserves F . We then define

Cξ(T ) := sup
T,T ′∈S↓

n(T )

T∩T ′∈S↓
n−1(T )

∥JΞT,T ′∥2 (29)

to be the maximum of the operator norm of the Jacobian of any such diffeomorphism. This indicator
quantifies how much reflection across the shared face distorts the geometry.

Lemma 3.4. Let T1 and T2 be two n-simplices that share a common face F . Then

δ(T1) ≤ κA(T1)δ(F ) ≤ κA(T1)δ(T2),
vol(T1)

vol(T2)
≤ δ(T1)

δ(T2)
κA(T2) ≤ κA(T1)κA(T2).

If Ξ : T1 → T2 is the affine diffeomorphism that is the identity over F , then at least n−2 of its Jacobian’s
singular values equal 1, and we have

∥JΞ∥2 ≤ 1

2

√(
δ(T2)

δ(T1)
κA(T1) + 1

)2

+ κA(T1)2 +
1

2

√(
δ(T2)

δ(T1)
κA(T1)− 1

)2

+ κA(T1)2,

∥JΞ−1∥2 ≤ 1

2

√(
δ(T1)

δ(T2)
κA(T2) + 1

)2

+ κA(T2)2 +
1

2

√(
δ(T1)

δ(T2)
κA(T2)− 1

)2

+ κA(T2)2,

det(JΞ) =
vol(T2)

vol(T1)
≤ δ(T2)

δ(T1)
κA(T1).

Proof. The diameter of F is at least as large as the height hS of some other vertex of F in T1. Now,

δ(T1)κA(T1)
−1 ≤ h(T1) ≤ hS ≤ δ(F ).

The first estimate follows. As for the second estimate, let h1 and h2 be the heights of F in the simplices
T1 and T2, respectively. By the volume formula for simplices, vol(T1) = h1 vol(F )/n and vol(T2) =
h2 vol(F )/n, and thus vol(T1)/ vol(T2) = h1/h2. Thus follows the second estimate:

vol(T1)

vol(T2)
=

h1

h2
≤ δ(T1)

h2
≤ κA(T1)

δ(F )

h2
≤ κA(T1)κA(T2),

δ(T1)

h2
≤ δ(T1)

δ(T2)
κA(T2).

Lastly, let Ξ : T1 → T2 be as stated. To estimate the Lipschitz constant of Ξ, we study the singular
values of its Jacobian. Without loss of generality, F lies in the span of the first n − 1 coordinates and
contains the origin. Write z1 ∈ T1 and z2 ∈ T2 for the two vertices not contained in F . There exists a
unit height vector ĥ0 that goes in the direction of the vertex z1. Without loss of generality, ĥ0 is in the
n-th coordinate direction. Suppose that b1, b2 ∈ F such that z1 = b1 + h1ĥ0 and x2 = b2 + h2ĥ0. The
mapping Ξ is linear, being the identity over F and mapping z1 to z2. Hence,

Ξ(ĥ0) = h−1
1 (b2 − b1) + h2h

−1
1 ĥ0.
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We see that Ξ equals the identity over the orthogonal complement of the span of ĥ0 and b2 − b1. The
only singular values of its Jacobian are the two singular values σ− ≤ 1 ≤ σ+ of the matrix(

a 0
c 1

)
, a = h2/h1, c = ∥b2 − b1∥/h1.

These are

σ± =
1√
2

√
1 + a2 + c2 ±

√
(1 + a2 + c2)

2 − 4a2

=
1√
2

√
1 + a2 + c2 ±

√
((1 + a)2 + c2) ((1− a)2 + c2)

=
1

2

(√
(1 + a)2 + c2 ±

√
(1− a)2 + c2

)
.

We remark that this provides the upper bound

σ+ ≤ 1

2

√(
δ(T2)

δ(T1)
κA(T1) + 1

)2

+ κA(T1)2 +
1

2

√(
δ(T2)

δ(T1)
κA(T1)− 1

)2

+ κA(T1)2.

The desired estimates are shown.

Remark 3.5. While we will utilize Cθ(T ) at numerous places throughout the manuscript, Cρ(T ) and
Cξ(T ) will only be used throughout Section 4, the following section. Lemma 3.4 obviously shows that
Cρ(T ) of (27) is controlled by the shape measure. In a face-connected triangulation where we have an
upper bound for the number of simplices sharing a vertex, this Lemma also allows, at least in principle,
control of Cθ(T ) of (28).

4 Poincaré–Friedrichs inequalities over triangulated domains

In this section, we develop stepwise computable estimates for Poincaré–Friedrichs constants of triangu-
lated domains. The following very classical procedure serves us as an inspiration: given a gradient vector
field, we can reconstruct the scalar potential up to a constant by fixing a starting point and integrating
the gradient vector field along lines emanating from that starting point. We perform a discrete analogue
of this procedure over triangulated domains: having fixed a starting triangle, we traverse the triangu-
lation along face-neighboring simplices. We always construct a gradient potential over the new simplex
and fix the constant of integration using the value already known on the connecting face, thereby con-
structing a scalar potential over larger and larger subdomains. This basic idea has appeared in various
forms before, for instance recently in [11, 22, 16, 63].

We begin with an auxiliary result with independent relevance, where we estimate the Poincaré–
Friedrichs inequality when homogeneous boundary conditions are imposed along a single face of the
boundary.

Lemma 4.1. Let T be an n-simplex with a face F and p ∈ [1,∞]. If u ∈ W 1,p(T ) with trF u = 0, then

∥u∥Lp(T ) ≤ CPF,T,F,p∥∇u∥Lp(T ),

where CPF,T,F,p = p−
1
p δ(T ) for p < ∞ and CPF,T,F,∞ = δ(T ).

Proof. Since the inequality follows from Rademacher’s theorem in the limit case p = ∞, we assume
1 ≤ p < ∞. Let u ∈ C∞(T ) have support disjoint from F . We tacitly extend this by zero to a function
u ∈ L∞(Rn). Without loss of generality, the segment from the midpoint of F to the opposing vertex lies
on the first coordinate axis, and the minimal first coordinate among all the points of F equals 0. We
write g for the trivial extension of ∇u over the entire Rn. Using the fundamental theorem of calculus

14



and Hölder’s inequality,∫
T

|u(x)|p dx dx ≤
∫
Rn−1

∫ δ(T )

0

|u(x1, x)|p dx1 dx

≤
∫
Rn−1

∫ δ(T )

0

∣∣∣∣∫ x1

0

|g(y, x)| dy
∣∣∣∣p dx1 dx

≤
∫ δ(T )

0

xp−1
1

∫
Rn−1

∫ x1

0

|g(y, x)|p dy dx dx1

≤
∫ δ(T )

0

xp−1
1 dx1 ·

∫
T

|g(y, x)|p dy dx ≤ δ(T )p

p

∫
T

|∇u(x)|p dx.

If u ∈ W 1,p(T ) has vanishing trace along F but is not necessarily smooth, then we conclude ∥u∥Lp(T ) ≤
δ(T )p−

1
p ∥∇u∥Lp(T ) from approximation via members of C∞(T ) whose support is disjoint from F . We

very briefly verify that density argument: There exists an affine diffeomorphism φ : ∆n → T from the
reference simplex onto T that maps the convex closure of the n unit vectors onto the face F . We let
û := u ◦ φ. Let Û be the unit ball of the ℓ1 metric, which contains ∆n. We let ũ be the extension of
û onto Û by reflection across the coordinate axes. Then ũ ∈ W 1,p

0 (Û), and ũ is the limit of a sequence

um ∈ C∞
c (Û). Now um ◦ φ−1 ∈ C∞(Û) approximates u within the Banach space W 1,p(T ) and has the

desired support property.

Remark 4.2. We can improve Lemma 4.1 in the special case p = 2. The variational formulation of
the Poincaré constant over a convex domain reveals that CPF,T,F,p lies between the Poincaré constant
without boundary conditions and with full boundary conditions. In particular,

CPF,T,F,2 ≤ δ(T )

π

is an improved Poincaré inequality.

The next auxiliary result establishes Poincaré–Friedrichs constants over face patches within simplicial
triangulations. We emphasize that face patches are not necessarily convex, but we can still extend the
results on convex domains from Section 2.3. The following result is reasonably sharp when the two
simplices have similar volumes and diameters.

Lemma 4.3. Let T be a triangulation. Let T1, T2 ∈ T be two n-simplices whose intersection is a common
face F := T1 ∩ T2. Write U := T1 ∪ T2. If p ∈ [1,∞] and u ∈ W 1,p(Ω), then

min
c∈R

∥u− c∥Lp(U) ≤ CPF,T1∪T2,p∥∇u∥Lp(U).

Here, CPF,T1∪T2,p = 2C1,nCEFNT,pCρ(T )
1
p max (δ(T1), δ(T2)).

Proof. Without loss of generality, F has the vertices v0, . . . , vn−1, and z1 ∈ T1 and z2 ∈ T2 are the
remaining vertices of the two triangles. Let ∆1 = ∆n be the reference n-simplex and let ∆2 be obtained
from it by flipping the n-th coordinate. We let φ1 : ∆1 → T1 and φ2 : ∆2 → T2 be affine transformations
that map the origin to v0, that map each unit vector ei to vi for i = 1, . . . , n − 1, and that satisfy
φ1(en) = z1 and φ2(−en) = z2. Write Û := ∆1 ∪∆2. We have a bi-Lipschitz mapping φ : Û → U .

Suppose that u ∈ W 1,p(U). Then û := u ◦ φ ∈ W 1,p(Û). We observe

∥∇û∥Lp(Û) ≤ max
(
|det(Jφ1)|−

1
p ∥Jφ1∥2, |det(Jφ2)|−

1
p ∥Jφ2∥2

)
∥∇u∥Lp(U).

Notice that Û has diameter 2 and is (crucially) convex. Thus, due to Poincaré–Friedrichs inequality (21),
there exists ŵ ∈ W 1,p(Û) such that ∇ŵ = ∇û and

∥ŵ∥Lp(Û) ≤ 2CEFNT,p∥∇û∥Lp(Û).

Next, setting w := ŵ ◦ φ−1, we find ∇w = ∇u and

∥w∥Lp(U) ≤ max (|det(Jφ1)|, |det(Jφ2)|)
1
p ∥ŵ∥Lp(Û).

For both i = 1, 2, we now recall the well-known equation |det(Jφi)| = n! vol(Ti), and the estimate
∥Jφi∥2 ≤ C1,nδ(Ti), which is given in Lemma 3.3. We obtain the desired result.
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Figure 2: Face-connected triangulation of a domain. The arrows depict a spanning tree in the face-
connection graph.

The main result of this section constructs a potential and gives an upper bound for the Poincaré–
Friedrichs constant. It follows the same underlying principle as the “discrete mean Poincaré inequality”
of [24, Lemma 3.7]. This procedure serves as the blueprint for constructing potentials of the curl and
divergence operators in later sections.

Two different variations of the underlying idea are analyzed, yielding slightly different estimates. On
the one hand, we can extend the scalar gradient potentials over each intermediate domain to another
simplex by solving a local auxiliary problem on that new simplex, subject to partial boundary conditions.
On the other hand, we can instead cover the domain with overlapping simplicial patches (such as face
patches), over which local scalar potentials are easily found. Since these can only differ by constants at
their overlaps, we assemble a global scalar potential piece by piece as we adjust the local constants of
integration. Both estimates of Poincaré–Friedrichs constants capture the correct asymptotic behavior as
p grows to infinity.

Theorem 4.4. Let T be a face-connected n-dimensional finite triangulation. Suppose 1 ≤ p, q ≤ ∞
with 1 = 1/p + 1/q, and that the domain Ω is the interior of the underlying set of T . Then for any
u ∈ W 1,p(Ω) there exists w ∈ W 1,p(Ω) with ∇w = ∇u and satisfying the following estimates: there exists
an n-simplex T0 ∈ T with

∥w∥Lp(T0) ≤ CPF,T0,p∥∇u∥Lp(T0).

For any n-simplex TM ∈ T there exists a face path T0, T1, . . . , TM such that for all 1 ≤ m ≤ we have one
of the following recursive estimates:

∥w∥Lp(Tm) ≤ Am∥w∥Lp(Tm−1) +B′
m∥∇u∥Lp(Tm) +B′′

m∥∇u∥Lp(Tm−1),

∥w∥Lp(Tm) ≤ Am∥w∥Lp(Tm−1) +B⋆
m∥∇u∥Lp(AFm ),

where

Am ≤ Cρ(T )
1
p , B′

m ≤ CPF,Tm,Fm,p, B′′
m ≤ CPF,Tm,Fm,pCρ(T )

1
pCξ(T ),

B⋆
m ≤

(
1 + Cρ(T )

q
p

) 1
q

CPF,AFℓ
,p.

Here, for any 1 ≤ m ≤ M , let Fm = Tm ∩ Tm−1.

Proof. Let u ∈ W 1,p(Ω). We start with the Poincaré–Friedrichs inequality on the first simplex T0. There
exists w0 ∈ W 1,p(T0) satisfying ∇w0 = ∇u over T0 together with

∥w0∥Lp(T0) ≤ CPF,T0,p∥∇u∥Lp(T0).

In particular, c0 := w0 − u is a constant function. We then define

w := u+ c0.

Clearly, w ∈ W 1,p(Ω) with ∇w = ∇u. By construction w|T0
= w0. We verify that w can be chosen such

that it satisfies the desired recursive estimates. Suppose that T0, T1, . . . , TM is a face path in T and that
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1 ≤ m ≤ M . Recall that we write Fm := Tm ∩ Tm−1, which is a face of dimension n − 1 shared by the
n-simplices Tm and Tm−1, and that we write AFm

:= Tm ∪ Tm−1.
We study two constructions, beginning as follows. We define w′

m := w|Tm−1
◦ Ξ ∈ W 1,p(Tm), where

Ξ : Tm → Tm−1 is the unique affine diffeomorphism that leaves Fm invariant. By construction, w′
m ∈

W 1,p(Tm) with

trFm
w′

m = trFm
w|Tm−1

.

We now define w′′
m ∈ W 1,p(Tm) via

w′′
m := w|Tm

− w′
m = u|Tm

− u|Tm−1
◦ Ξ. (30)

We crucially note that w′′
m is trace-free along Fm since

trFm w′′
m = trFm

(
w|Tm

− w′
m

)
= trFm w|Tm

− trFm w|Tm−1
= trFm u|Tm

− trFm u|Tm−1
= 0.

An application of Lemma 4.1 to the first expression in (30) gives

∥w′′
m∥Lp(Tm) ≤ CPF,Tm,Fm,p

(
∥∇w∥Lp(Tm) + ∥∇w′

m∥Lp(Tm)

)
≤ CPF,Tm,Fm,p

(
∥∇u∥Lp(Tm) + ∥∇w′

m∥Lp(Tm)

)
.

Using Lemma 3.4 as well as Definitions (27) and (29), we find

∥∇w′
m∥Lp(Tm) ≤ |det(JΞ)|−

1
p ∥JΞ∥2∥∇w∥Lp(Tm−1)

≤
(

vol(Tm)

vol(Tm−1)

) 1
p

Cξ(T )∥∇w∥Lp(Tm−1) = Cρ(T )
1
pCξ(T )∥∇u∥Lp(Tm−1).

Since w|Tm
= w′′

m + w′
m, we finally find

∥w∥Lp(Tm) ≤ ∥w′
m∥Lp(Tm) + ∥w′′

m∥Lp(Tm)

≤ Cρ(T )
1
p ∥w∥Lp(Tm−1) + CPF,Tm,Fm,p

(
∥∇u∥Lp(Tm) + Cρ(T )

1
pCξ(T )∥∇u∥Lp(Tm−1)

)
.

Therefrom, the first recursive estimate follows.
Now we discuss the second recursive estimate. Suppose again that 1 ≤ m ≤ M . We use the Poincaré–

Friedrichs inequality over AFm , as given in Lemma 4.3, to find wFm ∈ W 1,p(AFm) such that ∇wFm = ∇u
over AFm and

∥wFm∥Lp(AFm ) ≤ CPF,AFm ,p∥∇wFm∥Lp(AFm ). (31)

We can define the constant

cm := w|AFm
− wFm

.

Now we observe that

∥w∥Lp(Tm) ≤ ∥wFm∥Lp(Tm) + ∥cm∥Lp(Tm),

∥cm∥Lp(Tm) =
vol(Tm)

1
p

vol(Tm−1)
1
p

∥cm∥Lp(Tm−1),

∥cm∥Lp(Tm−1) ≤ ∥w∥Lp(Tm−1) + ∥wFm
∥Lp(Tm−1).

In combination,

∥w∥Lp(Tm) ≤ ∥wFm
∥Lp(Tm)

+
vol(Tm)

1
p

vol(Tm−1)
1
p

∥wFm
∥Lp(Tm−1) +

vol(Tm)
1
p

vol(Tm−1)
1
p

∥w∥Lp(Tm−1).
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We sum the two integrals of wFm
. When 1 < p < ∞, recalling the complementary exponent q =

p/(p− 1) ∈ (1,∞), we use Hölder’s inequality to verify

∥w∥Lp(Tm) ≤

(
1 +

vol(Tm)
q
p

vol(Tm−1)
q
p

) 1
q (

∥wFm∥pLp(Tm) + ∥wFm
∥pLp(Tm−1)

) 1
p

+
vol(Tm)

1
p

vol(Tm−1)
1
p

∥w∥Lp(Tm−1)

=

(
1 +

vol(Tm)
q
p

vol(Tm−1)
q
p

) 1
q

∥wFm∥Lp(AFm ) +
vol(Tm)

1
p

vol(Tm−1)
1
p

∥w∥Lp(Tm−1).

Note that in the limit cases p = 1 and p = ∞ we get, respectively,

∥w∥L1(Tm) ≤ max

(
1,

vol(Tm)

vol(Tm−1)

)
∥wFm

∥L1(AFm ) +
vol(Tm)

vol(Tm−1)
∥w∥L1(Tm−1),

∥w∥L∞(Tm) ≤ 2∥wFm∥L∞(AFm ) + ∥w∥L∞(Tm−1).

The local inequality (31) now provides the second recursive estimate. The proof is complete.

The recursive construction of a gradient potential in the previous theorem, marching from simplex
to simplex, can be associated with a concept of graph theory. Indeed, the face-neighbor relationship
between adjacent n-simplices gives rise to an undirected graph that we call face-connection graph. If the
potential is constructed starting from an initial n-simplex T0, then the sequence of simplices corresponds
to a path in that graph. In practice, we will pick a spanning tree for the undirected graph to describe
the construction of the potentials.

We use that formalism to describe an estimate for the Poincaré–Friedrichs constant of the gradient
potential, unwrapping the recursion. While the notation is a bit technical, the underlying idea is this:
Unrolling the recursion gives estimates for the potential over a simplex in terms of the potential over
previous simplices. The final constant can be estimated by a norm of the vector of the coefficients that
appear in the recursion.

Theorem 4.5. Let T be a face-connected n-dimensional finite triangulation and that the domain Ω
is the interior of the underlying set of T . Let 1 ≤ p, q ≤ ∞ with 1 = 1/p + 1/q, and suppose that
u,w ∈ W 1,p(Ω) with ∇w = ∇u.

Suppose that n-simplices are enumerated as T0, T1, . . . , TM , and that with each n-simplex Tm ∈ T we
have a sequence of indices

0 = ı(m, 0), ı(m, 1), . . . , ı(m,Lm) = m

such that for each 0 ≤ m ≤ M we have estimates of the following form:

∥w∥Lp(T0) ≤ Am,0∥∇u∥Lp(T0),

∥w∥Lp(Tı(m,ℓ)) ≤ Am,ı(m,ℓ)∥w∥Lp(Tı(m,ℓ−1))

+B′
m,ı(m,ℓ)∥∇u∥Lp(Tı(m,ℓ)) +B′′

m,ı(m,ℓ)∥∇u∥Lp(Tı(m,ℓ−1)), 1 ≤ ℓ ≤ Lm.

Then

∥w∥Lp(Ω) ≤

 M∑
m=0

(
Lm∑
ℓ=0

Dq
m,ℓ

) p
q


1
p

∥∇u∥Lp(Ω),

where

Dm,Lm
= Am,m,

Dm,ℓ =
(
Bm,ı(m,Lm) · · ·Bm,ı(m,ℓ+2)

) (
Bm,ı(m,ℓ+1)Am,ı(m,ℓ) +A′

m,ı(m,ℓ+1)

)
, 1 ≤ ℓ ≤ Lm − 1.
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Proof. Unwrapping the recursion for the norm over the m-th simplex, the total expression takes the form

∥w∥Lp(Tm) ≤
Lm∑
ℓ=0

(
Bm,ı(m,Lm) · · ·Bm,ı(m,ℓ+1)

)
Am,ı(m,ℓ)∥∇u∥Lp(Tı(m,ℓ))

+

Lm−1∑
ℓ=0

(
Bm,ı(m,Lm) · · ·Bm,ı(m,ℓ+2)

)
A′

m,ı(m,ℓ+1)∥∇u∥Lp(Tı(m,ℓ))

= Am,m∥∇u∥Lp(Tı(m,Lm))

+

Lm−1∑
ℓ=0

(
Bm,ı(m,Lm) · · ·Bm,ı(m,ℓ+2)

) (
Bm,ı(m,ℓ+1)Am,ı(m,ℓ) +A′

m,ı(m,ℓ+1)

)
∥∇u∥Lp(Tı(m,ℓ))

=:

M∑
ℓ=0

Cm,ℓ∥∇u∥Lp(Tℓ).

Here, Cm,ℓ is the coefficient of ∥∇u∥Lp(Tℓ), possibly zero, as it appears in the unwrapped recursive
estimate of ∥w∥Lp(Tm). The global Poincaré–Friedrichs inequality follows via Hölder’s inequality:

∥w∥pLp(Ω) ≤
M∑

m=0

∥w∥pLp(Tm)

≤
M∑

m=0

(
M∑
ℓ=0

Cm,ℓ∥∇u∥Lp(Tℓ)

)p

≤
M∑

m=0

(
M∑
ℓ=0

Cq
m,ℓ

) p
q M∑
ℓ′=0

∥∇u∥pLp(Tℓ′ )
≤

 M∑
m=0

(
M∑
ℓ=0

Cq
m,ℓ

) p
q

 ∥∇u∥pLp(Ω),

where q ∈ [1,∞] satisfies 1 = 1/p+ 1/q and with obvious modifications if p = 1 or p = ∞.

Remark 4.6. The computable Poincaré–Friedrichs constants obtained in Theorem 4.4 depend on only a
few parameters of the given triangulation: the length of any traversal from the root simplex, the ratios of
the volumes of any pair of adjacent simplices, and the Poincaré–Friedrichs constants on each face patch
or each simplex. Poincaré–Friedrichs constants on face patches are estimated in terms of shape regularity
parameters of the triangulation; if the face patches of the triangulation are convex, then better estimates
are possible.

These computable Poincaré–Friedrichs constants increasingly overestimate the best one as the number
of n-simplices in the triangulation T increases. Hence, we conceive their target application to be local
patches (stars), in particular non-convex boundary stars. The latter occur inevitably at reentrant corners.
Clearly, the same building principle applies whenever we have any non-overlapping partition of Ω into
convex local patches {Am} of n-simplices with an appropriate notion of connectivity. The proof proceeds
verbatim, where we merely replace the simplices {Tm} by the convex local patches {Am}. This may allow
for partitions of Ω with significantly fewer elements, which enables a largely improved estimate of the
best Poincaré–Friedrichs constant.

5 Review of vector calculus and exterior calculus

We review in this section the Sobolev spaces of vector and exterior calculus with particular emphasis
on their transformation behavior. We refer the reader to Ern and Guermond [21] and Hiptmair [38] for
background material on Sobolev vector analysis and to Greub [34] and Lee [44] for exterior algebra and
exterior products.

5.1 Vector calculus

Let Ω ⊆ R3 be a bounded open set. We recall Lp(Ω), the space of scalar-valued p-integrable functions
defined on Ω and that Lp(Ω) := Lp(Ω)n for vector-valued functions with each component in Lp(Ω). In
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the three-dimensional setting, we are particularly interested in the Sobolev vector analysis. The space
of scalar-valued Lp(Ω) functions with weak gradients in Lp(Ω) is

W p(grad,Ω) := W 1,p(Ω) = {u ∈ Lp(Ω) | grad v ∈ Lp(Ω)}.

The space W p(curl,Ω) of vector-valued Lp(Ω) functions with weak curls in Lp(Ω) and the space of
vector-valued Lp(Ω) functions with weak divergences in Lp(Ω) are written

W p(curl,Ω) = {u ∈ Lp(Ω) | curlu ∈ Lp(Ω)},
W p(div,Ω) = {u ∈ Lp(Ω) | divu ∈ Lp(Ω)}.

We are interested in transformations of these Sobolev tensor fields from one domain onto another.
Suppose that Ω,Ω′ ⊂ R3 are open sets and suppose that ϕ : Ω → Ω′ is a bi-Lipschitz mapping. We
introduce the gradient-, curl-, and divergence-conforming Piola transformations, respectively, as the
mappings ϕgrad : Lp(Ω′) → Lp(Ω), ϕcurl : Lp(Ω′) → Lp(Ω), and ϕdiv : Lp(Ω′) → Lp(Ω). We also
introduce ϕb : Lp(Ω′) → Lp(Ω). These are defined for any v ∈ Lp(Ω′) and w ∈ Lp(Ω′) by setting

ϕgrad(v) = v ◦ ϕ,
ϕcurl(w) = JϕT (w ◦ ϕ),
ϕdiv(w) = adj(Jϕ) (w ◦ ϕ) ,
ϕb(v) = det(Jϕ) (v ◦ ϕ) ,

Here, Jϕ is the Jacobian matrix of ϕ (see also [21, Definition 9.8]), and adjJϕ denotes taking its adjugate
matrix. These transformations are invertible. Bounds on the Lebesgue norms will follow from a more
general result below. We use the commutativity relations

gradϕgrad(v) = ϕcurl(grad v), (33a)

curlϕcurl(v) = ϕdiv(curlv), (33b)

div ϕdiv(w) = ϕb(divw), (33c)

where v ∈ W p(grad,Ω), v ∈ W p(curl,Ω), and w ∈ W p(div,Ω). We summarize this as a commuting
diagram:

W p(grad,Ω′)
grad−−−−→ W p(curl,Ω′)

curl−−−−→ W p(div,Ω′)
div−−−−→ Lp(Ω′)yϕgrad

yϕcurl

yϕdiv

yϕb

W p(grad,Ω)
grad−−−−→ W p(curl,Ω)

curl−−−−→ W p(div,Ω)
div−−−−→ Lp(Ω).

Remark 5.1. The Piola transform goes into the opposite direction of the mapping ϕ : Ω → Ω′: scalar
and vector fields over Ω′ are transformed into scalar and vector fields over Ω. This definition is in
accordance with the notion of pullback, which we will review shortly. One advantage of that definition is
that it also makes sense whenever the transformation is not bijective. However, the literature also knows
the Piola transform in the direction of the original mapping.

5.2 Exterior calculus

We now move the discussion to exterior calculus, beginning with exterior algebra. Let V be a real vector
space. Given an integer k ≥ 0, we let Λk(V ) denote the space of scalar-valued antisymmetric k-linear
forms over V . Recall that any k-linear scalar-valued form u over V is called antisymmetric if

u(vπ(1), vπ(2), . . . , vπ(k)) = sign(π)u(v1, v2, . . . , vk)

for any v1, v2, . . . , vk ∈ V and any permutation π of the indices {1, 2, . . . , k}. By definition, Λ1(V ) is just
the dual space of V , and Λ0(V ) is the space of real numbers. Formally, we define Λk(V ) to be the zero
vector space when k < 0.
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The wedge product (or exterior product) of alternating multilinear forms is a fundamental operation
in exterior algebra (see Chapter 14 in [44]). Given two alternating multilinear forms u1 ∈ Λk(V ) and
u2 ∈ Λl(V ), their wedge product u1 ∧ u2 is a member of Λk+l(V ) defined by the formula

(u1 ∧ u2)(v1, v2, . . . , vk+l) =
1

k!l!

∑
π

sgn(π)u1(vπ(1), . . . , vπ(k))u2(vπ(k+1), . . . , vπ(k+l)),

for any v1, v2, . . . , vk+l ∈ V . Here, the sum runs over all permutations π of the index set {1, 2, . . . , k+ l}.
The exterior product is bilinear and associative, and satisfies

u1 ∧ u2 = (−1)klu2 ∧ u1, ∀u1 ∈ Λk(V ), ∀u2 ∈ Λl(V ).

The interior product is in some sense dual to the exterior product. Given v ∈ V and u ∈ Λk(V ), we
define the interior product v⌟u ∈ Λk−1(V ) via

(v⌟u)(v1, v2, . . . , vk−1) = u(v, v1, v2, . . . , vk−1), ∀v1, v2, . . . , vk−1 ∈ V.

We employ the exterior algebra only in the special case V = Rn of alternating forms over the
n-dimensional Euclidean space. Here, it is customary to identify Λk(V ) with the space of antisym-
metric tensors in k indices. Moreover, this particular setting comes with a canonical basis. We let
{dx1, dx2, . . . , dxn} be the basis dual to the canonical unit vectors. This is a canonical basis of Λ1(Rn).
To define a canonical basis of Λk(Rn), we first introduce Σ(k, n), the set of strictly ascending mappings
σ : {1, . . . , k} → {1, . . . , n}, where k, n ∈ Z, and introduce the basic k-alternators

dxσ := dxσ(1) ∧ · · · ∧ dxσ(k), ∀σ ∈ Σ(k, n).

These define a basis of Λk(Rn). Note that dimΛk(Rn) =
(
n
k

)
. In particular, Λk(Rn) is the zero vector

space whenever k > n.
We notice that the canonical scalar product on Rn gives rise to a scalar product on Λ1(Rn), which

induces a scalar product on Λk(Rn). The basic k-alternators are an orthonormal basis of Λk(Rn) with
respect to that inner product.

5.3 Smooth differential forms

We let Ω ⊆ Rn be any bounded open set. We write C∞Λk(Ω) for the space of smooth differential k-forms
over Ω ⊆ Rn, which is the vector space of smooth mappings from Ω into Λk(Rn). The exterior derivative
d is an operator that takes a k-form ω ∈ C∞Λk(Ω) to a (k + 1)-form dω ∈ C∞Λk+1(Ω). Every k-form
ω ∈ C∞Λk(Ω) can be written

ω =
∑

σ∈Σ(k,n)

ωσ dx
σ =

∑
σ∈Σ(k,n)

ωσ dx
σ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k), (34)

where ωσ : Ω → R are smooth functions. The exterior derivative dω is defined by

dω =
∑

σ∈Σ(k,n)

n∑
j=1

∂ωσ

∂xj
dxj ∧ dxσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k).

The exterior derivative is linear and nilpotent, which means d(dω) = 0 for any ω ∈ C∞Λk(Ω). Moreover,
it satisfies the Leibniz rule:

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, ∀ω ∈ C∞Λk(Ω), ∀η ∈ C∞Λl(Ω).

The integral of a differential n-form is uniquely defined via∫
Ω

ωdx1 ∧ · · · ∧ dxn =

∫
Ω

ω(x) dx.
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Remark 5.2. In three dimensions, the calculus of differential forms is in correspondence with classical
vector calculus. This is expressed formally as the commuting diagram

C∞Λ0(Ω)
d−−−−→ C∞Λ1(Ω)

d−−−−→ C∞Λ2(Ω)
d−−−−→ C∞Λ3(Ω)yϖ0

yϖ1

yϖ2

yϖ3

C∞(Ω)
grad−−−−→ C∞(Ω)3

curl−−−−→ C∞(Ω)3
div−−−−→ C∞(Ω),

where ϖ0 and ϖ3 are the identity mappings and where

ϖ1
(
u1dx

1 + u2dx
2 + u3dx

3
)
= (u1, u2, u3) ,

ϖ2
(
u12dx

1 ∧ dx2 + u13dx
1 ∧ dx3 + u23dx

2 ∧ dx3
)
= (u23,−u13, u12) .

In two dimensions, the calculus of differential forms can be translated into 2D vector calculus in two
different ways. To the authors’ best knowledge, neither convention is dominant over the other in the
literature. We summarize the situation in the following commuting diagram:

C∞(Ω)
curl−−−−→ C∞(Ω)2

div−−−−→ C∞(Ω)xκ0

xκ1

xκ2

C∞Λ0(Ω)
d−−−−→ C∞Λ1(Ω)

d−−−−→ C∞Λ2(Ω)yϖ0

yϖ1

yϖ2

C∞(Ω)
grad−−−−→ C∞(Ω)2

rot−−−−→ C∞(Ω).

Here, ϖ1
(
u1dx

1 + u2dx
2
)
= (u1, u2) is the lower middle isomorphism. We introduce the rotation oper-

ator J(x, y) = (y,−x) and define κ = Jϖ and rot = div J . The other vertical arrows are the identity.
The utility of exterior calculus is that the operators of vector calculus can be translated into a common
framework that does not depend on the dimension.

5.4 Sobolev spaces of differential forms

Let us now turn our attention to Sobolev spaces of differential forms. Since the exterior product space
Λk(Rn) carries a norm, induced from the Euclidean norm on Rn, there are pointwise norms of differential
k-forms. We let LpΛk(Ω) be the space of differential k-forms over Ω with locally integrable coefficients
such that its pointwise norm is p-integrable. The exterior derivative is defined in the sense of distributions
and we introduce

W pΛk(Ω) := {u ∈ LpΛk(Ω) | du ∈ LpΛk+1(Ω)}.

We observe that u ∈ LpΛk(Ω) has weak exterior derivative f ∈ LpΛk+1(Ω) if and only if for all v ∈
C∞

c Λn−k−1(Ω) we have the integration-by-parts formula∫
Ω

dv ∧ u = (−1)k(n−k)+1

∫
Ω

v ∧ f.

Lastly, we are also interested in differential forms whose trace vanishes along a part of the boundary.
Suppose that Γ ⊆ ∂Ω is a relatively open subset of the boundary. We say that u ∈ W pΛk(Ω) has
vanishing trace along Γ if for all x ∈ Γ there exists r > 0 such that for all v ∈ C∞

c Λn−k−1(Rn) whose
support lies in the open ball Br(x) we have the integration-by-parts formula∫

Br(x)

dv ∧ ũ = (−1)k(n−k)+1

∫
Br(x)

v ∧ d̃u.

If that condition is satisfied, we also write

trΓ u = 0.
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Accordingly, we write trΓ u = trΓ u
′ for trΓ(u− u′) = 0 whenever u, u′ ∈ W pΛk(Ω). Lastly, we introduce

the closed subspaces

W p
0Λ

k(Ω) := {u ∈ W pΛk(Ω) | tr∂Ω u = 0}.

This is a closed subspace. We know that u ∈ W p
0Λ

k(Ω) if and only if its extension by zero ũ : Rn →
Λk(Rn) is a member of ũ ∈ W pΛk(Rn). Moreover, dW p

0Λ
k(Ω) ⊆ W p

0Λ
k+1(Ω). We also observe that

W pΛn(Ω) = W p
0Λ

n(Ω) = Lp(Ω). We use the abbreviation W 1,p
0 (Ω) := W pΛ0(Ω).

5.5 Transformations by bi-Lipschitz mappings

We are interested in transformations of Sobolev tensor fields from one domain onto another. Suppose
that Ω,Ω′ ⊂ Rn are open sets and suppose that ϕ : Ω → Ω′ is a bi-Lipschitz mapping. The pullback of
u ∈ LpΛk(Ω′) along ϕ is the (measurable) differential form

ϕ∗u|x(v1, v2, . . . , vk) := u|ϕ(x)(Jϕ|x · v1,Jϕ|x · v2, . . . ,Jϕ|x · vk) (35)

for any v1, v2, . . . , vk ∈ Rn and any x ∈ Ω. One can show that ϕ∗u ∈ LpΛk(Ω) and the following
estimates.

Proposition 5.3. Let ϕ : Ω → Ω′ be a bi-Lipschitz mapping between open sets Ω,Ω′ ⊆ Rn. Let p ∈ [1,∞]
and u ∈ LpΛk(Ω′). Then ϕ∗u ∈ LpΛk(Ω) and

∥ϕ∗u∥LpΛk(Ω) ≤ ∥Jϕ∥kL∞(Ω)∥ detJϕ
−1∥

1
p

L∞(Ω′)∥u∥LpΛk(Ω′). (36)

If ϕ is affine and σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values of Jϕ, then

∥ϕ∗u∥LpΛk(Ω) ≤ σ1σ2 · · ·σk · ∥ detJϕ−1∥
1
p

L∞(Ω′)∥u∥LpΛk(Ω′). (37)

Moreover, if u ∈ W pΛk(Ω′), then ϕ∗u ∈ W pΛk(Ω) and dϕ∗u = ϕ∗du.

Proof. See [46] and Corollary 6 in [59].

5.6 Some approximation properties

We review a few approximation properties. Let m be a non-negative scalar function whose integral equals
one and whose support lies in the unit ball around the origin. Define mϵ(x) := ϵ−nm(x/ϵ). We collect
several approximation results that involve convolution with a mollifier. In what follows, convolutions of
functions defined over domains tacitly assume that these functions have been extended by zero to all of
Euclidean space.

Lemma 5.4. Let Ω ⊆ Rn be a bounded open set and let 1 ≤ p < ∞. If u ∈ Lp(Ω), then the convolution
mϵ ⋆ u → u in Lp(Ω) as ϵ → 0.

Lemma 5.5. Let Ω ⊆ Rn be a bounded open set and let 1 ≤ p < ∞. Smooth forms are dense in
W pΛk(Ω). If Ω is convex, then C∞

c Λk(Ω) is dense in W p
0Λ

k(Ω).

Proof. We notice mϵ ⋆ u ∈ C∞Λk(Rn). By the dominated convergence theorem and because u has a
weak derivative, for any v ∈ C∞

c Λn−k−1(Ω)∫
Rn

(mϵ ⋆ u) ∧ dv =

∫
Rn

∫
Rn

m(x− y) ∧ u(y) ∧ dxv(x) dx dy

=

∫
Rn

∫
Rn

dxm(x− y) ∧ u(y) ∧ v(x) dx dy

= −
∫
Rn

∫
Rn

dym(x− y) ∧ u(y) ∧ v(x) dx dy

=

∫
Rn

∫
Rn

m(x− y) ∧ dyu(y) ∧ v(x) dx dy =

∫
Rn

(mϵ ⋆ du) ∧ v.
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Hence, C∞Λk(Ω) is dense in W pΛk(Ω).
Next, suppose that Ω is convex. Without loss of generality, 0 ∈ Ω. Let u ∈ W p

0Λ
k(Ω) and extend u

trivially onto Rn. Define φt(x) = tx for t > 1. Then φ∗
tu ∈ W p

0Λ
k(t−1Ω) ⊆ W p

0Λ
k(Ω) and φ∗

tu converges
to u as t decreases towards 1. Given any t > 1, by taking the convolution with mϵ for ϵ > 0 small enough,
we approximate φ∗

tu through members of C∞
c Λk(Ω). The desired result follows.

6 Regularized potentials over convex sets

We now develop bounds for Poincaré–Friedrichs constants for the exterior derivative over convex domains.
Here, we consider two special cases: either the Lp de Rham complex without boundary conditions, or
the Lp de Rham with full boundary conditions. The corresponding linear potentials are known as the
regularized Poincaré and regularized Bogovskĭı potentials in the literature. We build upon the discussion
spearheaded by Costabel and McIntosh [19], who analyze them as pseudo-differential operators over
domains star-shaped with respect to a ball. In comparison to their extensive work, our discussion is
more modest: we study potentials merely over convex sets, and we are only interested in their operator
norms between Lebesgue spaces. However, our goal is explicit bounds for the operator norms, giving the
Poincaré–Friedrichs constants.

In the remainder of this section, Ω ⊆ Rn is a bounded convex open set with diameter δ(Ω) > 0.

6.1 Regularized Poincaré and Bogovskĭı operators

We begin by introducing the Costabel–McIntosh kernel. For any k ∈ {0, . . . , n}, we define the kernel
Gk : Rn × Rn → R by

Gk(x, y) =

∫ ∞

1

(t− 1)n−ktk−1 vol(Ω)−1χΩ (y + t(x− y)) dt, (38)

where χΩ : Ω → {0, 1} denotes the characteristic function of the domain Ω. Given a differential form
u ∈ C∞

c (Rn,Λk), where 1 ≤ k ≤ n, we then define the integral operators

Pku(x) =

∫
Ω

Gn−k+1(y, x) (x− y)⌟u(y) dy,

Bku(x) =

∫
Ω

Gk(x, y) (x− y)⌟u(y) dy.

We call Pk the Poincaré operator and Bk the Bogovskĭı operator.
We show that the integrals in the definition of Pk and Bk actually converge. In order to analyze the

properties of the potentials, we first rewrite the Costabel–McIntosh kernel Gk. Letting x, y ∈ Rn with
x ̸= y, we find

Gk(x, y) =

∫ ∞

0

tn−k(t+ 1)k−1 vol(Ω)−1χΩ (x+ t(x− y)) dt

=

∫ ∞

0

k−1∑
ℓ=0

(
k−1
ℓ

)
tn−k+ℓ vol(Ω)−1χΩ (x+ t(x− y)) dt

=

∫ ∞

0

k−1∑
ℓ=0

(
k−1

k−1−ℓ

)
tn−k+k−1−ℓ vol(Ω)−1χΩ (x+ t(x− y)) dt

=

∫ ∞

0

k−1∑
ℓ=0

(
k−1
ℓ

)
tn−ℓ−1 vol(Ω)−1χΩ (x+ t(x− y)) dt

=

k−1∑
ℓ=0

(
k−1
ℓ

) ∫ ∞

0

tn−ℓ−1 vol(Ω)−1χΩ (x+ t(x− y)) dt

= vol(Ω)−1
k−1∑
ℓ=0

(
k−1
ℓ

)
|x− y|ℓ−n

∫ ∞

0

rn−ℓ−1χΩ

(
x+ r

x− y

|x− y|

)
dr.
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If x ∈ Ω and x ̸= y, then we can restrict the inner integrals to the range 0 ≤ r ≤ δ(Ω), which gives

Gk(x, y) = vol(Ω)−1
k−1∑
ℓ=0

(
k−1
ℓ

)
|x− y|ℓ−n

∫ δ(Ω)

0

rn−ℓ−1 dr

= vol(Ω)−1
k−1∑
ℓ=0

(
k−1
ℓ

)
|x− y|ℓ−n δ(Ω)

n−ℓ

n− ℓ
.

We are now in a position to show that the potentials are bounded with respect to Lebesgue norms.

6.2 An operator norm bound with respect to the Lebesgue norm: the Poincaré
case

We begin with the Poincaré operator. Let Bδ(Ω)(0) be the n-dimensional ball centered at the origin.

Suppose that u ∈ L∞Λk(Ω) with 1 ≤ k ≤ n. We estimate Pku(x) pointwise for any x ∈ Ω by the result
of a convolution of a locally integrable function with u:

|Pku(x)| =
∣∣∣∣∫

Ω

Gn−k+1(x, y) (x− y)⌟u(y) dy

∣∣∣∣
≤
∫
Ω

vol(Ω)−1
n−k∑
ℓ=0

(
n−k
ℓ

)δ(Ω)n−ℓ

n− ℓ
|x− y|ℓ+1−nχBδ(Ω)(0)(x− y)|u(y)| dy.

We recall the radial integrals∫
Bδ(Ω)(0)

|z|ℓ+1−n dz = voln−1(S1)

∫ δ(Ω)

0

rℓ+1−nrn−1 dr

= voln−1(S1)

∫ δ(Ω)

0

rℓ dr = voln−1(S1)
δ(Ω)ℓ+1

ℓ+ 1
,

where S1 ⊆ Rn stands for the unit sphere of dimension n− 1. One computes∫
Rn

n−k∑
ℓ=0

(
n−k
ℓ

)δ(Ω)n−ℓ

n− ℓ
χBδ(Ω)(0)(z)|z|

ℓ+1−n dz

=

n−k∑
ℓ=0

(
n−k
ℓ

)δ(Ω)n−ℓ

n− ℓ

∫
Bδ(Ω)(0)

|z|ℓ+1−n dz

= voln−1(S1)

n−k∑
ℓ=0

(
n−k
ℓ

)δ(Ω)n−ℓ

n− ℓ

δ(Ω)ℓ+1

ℓ+ 1
= voln−1(S1)δ(Ω)

n+1
n−k∑
ℓ=0

(
n−k
ℓ

)
(n− ℓ)(ℓ+ 1)︸ ︷︷ ︸

=:CP(n,k)≤2n−k

.

Here we introduce the numerical constant

CP(n, k) :=

n−k∑
ℓ=0

(
n−k
ℓ

)
(n− ℓ)(ℓ+ 1)

, (39)

which depends only on n and k and which is bounded by 2n−k.
In particular, the integral Pku(x) is absolutely convergent for any choice of x ∈ Ω and its magnitude

is pointwise dominated by the convolution of |u| against an integrable function. Young’s convolution
inequality now implies:

∥Pku∥Lp(Ω) ≤ voln−1(S1)CP(n, k)
δ(Ω)n

vol(Ω)
δ(Ω)∥u∥Lp(Ω)

≤ nCP(n, k)
vol(Bδ(Ω)(0))

vol(Ω)
δ(Ω)∥u∥Lp(Ω).
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We have assumed so far that u ∈ L∞Λk(Ω). Since that space is dense in the Lebesgue spaces, a density
argument establishes the following: for any 1 ≤ p ≤ ∞ we have a bounded linear operator

Pk : LpΛk(Ω) → LpΛk−1(Rn).

Remark 6.1. As already explained in the original paper [19], the operators Pk preserve polynomial
differential forms.

6.3 An operator norm bound with respect to the Lebesgue norm: the Bo-
govskĭı case

We analyze the Bogovskĭı potential operator by similar means. Suppose that u ∈ L∞Λk(Rn) with
suppu ⊆ Ω and that x ∈ Rn. First, if x /∈ Ω, then the convexity of Ω implies that y + t(x − y) /∈ Ω for
all t > 1. Hence, Gk(x, y) = 0 and therefore Bku(x) = 0 in that case. Consider now the case x ∈ Ω. We
estimate Bku(x) pointwise by

|Bku(x)| =
∣∣∣∣∫

Ω

Gk(x, y) (x− y)⌟u(y) dy

∣∣∣∣
≤
∫
Ω

vol(Ω)−1
k−1∑
ℓ=0

(
k−1
ℓ

)δ(Ω)n−ℓ

n− ℓ
|x− y|ℓ+1−n|u(y)| dy

≤
∫
Rn

vol(Ω)−1
k−1∑
ℓ=0

(
k−1
ℓ

)δ(Ω)n−ℓ

n− ℓ
χBδ(Ω)(0)(x− y)|x− y|ℓ+1−n|u(y)| dy.

Using once more the radial integrals discussed above, we compute∫
Rn

k−1∑
ℓ=0

(
k−1
ℓ

)δ(Ω)n−ℓ

n− ℓ
χBδ(Ω)(0)(z)|z|

ℓ+1−n dz

=

k−1∑
ℓ=0

(
k−1
ℓ

)δ(Ω)n−ℓ

n− ℓ

∫
Bδ(Ω)(0)

|z|ℓ+1−n dz

= voln−1(S1)

k−1∑
ℓ=0

(
k−1
ℓ

)δ(Ω)n−ℓ

n− ℓ

δ(Ω)ℓ+1

ℓ+ 1
= voln−1(S1)δ(Ω)

n+1
k−1∑
ℓ=0

(
k−1
ℓ

)
(n− ℓ)(ℓ+ 1)︸ ︷︷ ︸

=:CB(n,k)≤2k−1

.

Here we introduce the numerical constant

CB(n, k) :=

k−1∑
ℓ=0

(
k−1
ℓ

)
(n− ℓ)(ℓ+ 1)

, (40)

which depends only on n and k and which is bounded by 2k−1. Similar as above, the integral Bku(x)
is absolutely convergent for any choice of x ∈ Rn and its magnitude is pointwise dominated by the
convolution of |u| against an integrable function. Young’s convolution inequality now implies:

∥Bku∥Lp(Ω) ≤ voln−1(S1)CB(n, k)
δ(Ω)n

vol(Ω)
δ(Ω)∥u∥Lp(Ω)

≤ nCB(n, k)
vol(Bδ(Ω)(0))

vol(Ω)
δ(Ω)∥u∥Lp(Ω).

We have assumed so far that u is essentially bounded. Since that space is dense in the Lebesgue spaces,
a density argument yields: for any 1 ≤ p ≤ ∞ we have a bounded linear operator

Bk : LpΛk(Ω) → LpΛk−1(Rn).

Moreover, suppBku ⊆ Ω, that is, the reconstructed potential has support contained within Ω.
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6.4 Rewriting the potentials operators

More properties of these operators become apparent after a change of variables. We write down the full
definition of these operators and perform two substitutions. For the Poincaré operator, we substitute
a = x+ t(y − x), and then we substitute s = (t− 1)/t, leading to

Pku(x) = vol(Ω)−1

∫
Ω

∫ ∞

1

(t− 1)k−1tn−kχΩ (x+ t(y − x)) (x− y)⌟u(y) dt dy

= vol(Ω)−1

∫
Rn

χΩ(a) (x− a)⌟
∫ 1

0

tk−1u (a+ t(x− a)) dt da.

For the Bogovskĭı operator, we first substitute a = y + t(x − y), and then we substitute s = t/(t − 1),
leading to

Bku(x) = vol(Ω)−1

∫
Ω

∫ ∞

1

(t− 1)n−ktk−1χΩ (y + t(x− y)) (x− y)⌟u(y) dt dy

= − vol(Ω)−1

∫
Rn

χΩ(a) (x− a)⌟
∫ ∞

1

tk−1u (a+ t(x− a)) dt da.

Given a ∈ Ω, we introduce the potentials

Pk,au(x) := (x− a)⌟
∫ 1

0

tk−1u (a+ t(x− a)) dt,

Bk,au(x) := −(x− a)⌟
∫ ∞

1

tk−1u (a+ t(x− a)) dt.

By definition,

Pku(x) = vol(Ω)−1

∫
Ω

Pk,au(x) da, Bku(x) = vol(Ω)−1

∫
Ω

Bk,au(x) da.

6.5 Interaction of potentials with the exterior derivative

We study the interaction of the Poincaré and Bogovskĭı operators with the exterior derivative in more
detail. The main arguments are well-known and establish the exactness of several de Rham complexes.
We recapitulate these arguments since our variants of the regularized potential operators are not yet
included in the published literature.

We make use of the following notation [47]: for any mapping σ ∈ Σ(k, n), we let [σ] := {σ(1), . . . , σ(k)}
be its image. When p ∈ [σ], then the member of Σ(k − 1, n) with image [σ] \ {p} is written σ − p.

Suppose that u ∈ C∞Λk(Rn). We rewrite the Poincaré potential,

Pk,au(x) = (x− a)⌟
∫ 1

0

tk−1u (a+ t(x− a)) dt

= (x− a)⌟
∑

σ∈Σ(k,n)

∫ 1

0

tk−1uσ (a+ t(x− a)) dxσ dt

=
∑

σ∈Σ(k,n)

k∑
i=1

∫ 1

0

tk−1uσ (a+ t(x− a)) (−1)i−1(x− a)σ(i) dx
σ−σ(i) dt,

and compute its exterior derivative:

dPk,au(x) =
∑

σ∈Σ(k,n)

∫ 1

0

ktk−1uσ (a+ t(x− a)) dxσ dt

+
∑

σ∈Σ(k,n), 1≤i≤k
1≤j≤n, j /∈[σ−σ(i)]

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) (−1)i−1(x− a)σ(i) dx

j ∧ dxσ−σ(i) dt.
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We write the exterior derivative of u as

du(x) =
∑

σ∈Σ(k,n)

n∑
j=1

∂u

∂xj
(x) dxj ∧ dxσ =

∑
σ∈Σ(k,n)

1≤j≤n, j /∈[σ]

∂u

∂xj
(x) dxj ∧ dxσ, (41)

and apply the Poincaré potential operator to this result, which gives

Pk+1,adu(x) = (x− a)⌟
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) dt dxj ∧ dxσ

=
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) dt(x− a)j dx

σ

−
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

1≤i≤k

(−1)i−1

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) dt (x− a)σ(i) dx

j ∧ dxσ−σ(i).

Next, we add the exterior derivative of the potential and the potential of the exterior derivative. Taking
into account cancellations, this gives the identity

dPk,au(x) + Pk+1,adu(x)

=
∑

σ∈Σ(k,n)

∫ 1

0

ktk−1uσ (a+ t(x− a)) dxσ−σ(i) dt

+
∑

σ∈Σ(k,n), 1≤i≤k
1≤j≤n, j /∈[σ−σ(i)]

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) (−1)i−1(x− a)σ(i) dx

j ∧ dxσ−σ(i) dt

+
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) dt (x− a)j dx

σ

−
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

1≤i≤k

(−1)i−1

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) dt (x− a)σ(i) dx

j ∧ dxσ−σ(i)

=
∑

σ∈Σ(k,n)

∫ 1

0

ktk−1uσ (a+ t(x− a)) dxσ−σ(i) dt

+
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

∫ 1

0

tk
∂uσ

∂xj
(a+ t(x− a)) (x− a)j dt dx

σ

+
∑

σ∈Σ(k,n),
1≤i≤k

∫ 1

0

tk
∂uσ

∂xσ(i)
(a+ t(x− a)) (−1)i−1(x− a)σ(i) dx

σ(i) ∧ dxσ−σ(i) dt

=
∑

σ∈Σ(k,n)

∫ 1

0

∂

∂t

(
tkuσ (a+ t(x− a))

)
dt dxσ =

∑
σ∈Σ(k,n)

(
uσ(x)− 0kuσ(a)

)
dxσ.

We conclude that,

u(x) = P1,adu(x)− u(a), k = 0,

u(x) = dPk,au(x) + Pk+1,adu(x), 1 ≤ k ≤ n.
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In summary, after taking the average over a ∈ Ω:

u(x) = P1du(x)− vol(Ω)−1

∫
Ω

u(a) da, k = 0, (42)

u(x) = dPku(x) + Pk+1du(x), 1 ≤ k ≤ n. (43)

Even though the discussion for the Bogovskĭı operator is large analogous, some modifications are
needed. Suppose that u ∈ C∞Λk(Rn) with suppu ⊆ Ω. We rewrite the Bogovskĭı potential,

−Bk,au(x) = (x− a)⌟
∫ ∞

1

tk−1u (a+ t(x− a)) dt

= (x− a)⌟
∑

σ∈Σ(k,n)

∫ ∞

1

tk−1uσ (a+ t(x− a)) dxσ dt

=
∑

σ∈Σ(k,n)

k∑
i=1

∫ ∞

1

tk−1uσ (a+ t(x− a)) (−1)i−1 (x− a)σ(i) dx
σ−σ(i) dt.

We want to take its exterior derivative, but we can generally only do that in the distributional sense.
Away from the pivot point a, the form Bk,au(x) is differentiable in x, and so we compute its exterior
derivative over Ω \ {a}:

−dBk,au(x) =
∑

σ∈Σ(k,n)

∫ ∞

1

ktk−1uσ (a+ t(x− a)) dxσ dt

+
∑

σ∈Σ(k,n), 1≤i≤k
1≤j≤n, j /∈[σ−σ(i)]

∫ ∞

1

tk
∂uσ

∂xj
(a+ t(x− a)) (−1)i−1(x− a)σ(i) dx

j ∧ dxσ−σ(i) dt.

The derivative of Bk,au over the whole domain, which is what we need, can only be taken in the sense
of distributions. Let ϕ ∈ C∞Λn−k(Ω) be smooth and compactly supported over Ω. We let ϵ > 0 and
calculate

(−1)n(k−1)

∫
Ω\Bϵ(a)

Bk,au(x) ∧ dϕ =

∫
Sϵ(a)

trSϵ(a) Bk,au(x) ∧ ϕ−
∫
Ω\Bϵ(a)

dBk,au(x) ∧ ϕ,

where trSϵ(a) denotes the trace onto the sphere Sϵ(a). In the limit as ϵ goes to zero, the two integrals
over Ω \Bϵ(a) in the above equation converge to the integrals of the respective integrands over Ω \ {a}.
To understand the derivative of Bk,au over the domain Ω, we study the remaining surface integral. We
apply several substitutions:∫

Sϵ(a)

trSϵ(a) Bk,au(x) ∧ ϕ(x)

= ϵn−1

∫
S1(a)

trS1(a) Bk,au(ϵx+ a− ϵa) ∧ ϕ(ϵx+ a− ϵa)

= ϵn−1

∫
S1(a)

∫ ∞

1

trS1(a) ϵt
k−1(x− a)⌟u (a+ ϵt(x− a)) ∧ ϕ(ϵ(x− a) + a) dt

= ϵn−1

∫
S1(a)

∫ ∞

ϵ

trS1(a) ϵ
−k+1sk−1(x− a)⌟u (a+ s(x− a)) ∧ ϕ(ϵ(x− a) + a) ds

= ϵn−k

∫
S1(a)

∫ ∞

ϵ

trS1(a) s
k−1(x− a)⌟u (a+ s(x− a)) ∧ ϕ(ϵ(x− a) + a) ds.

We make a case distinction. When k < n, then the double integral itself is bounded uniformly in ϵ > 0
and so the last expression vanishes as ϵ goes to zero. When instead k = n, then the last expression equals∫

S1(a)

∫ ∞

ϵ

trS1(a) s
n−1(x− a)⌟u (a+ s(x− a)) ∧ ϕ(ϵ(x− a) + a) ds

=

∫
Rn\Bϵ(0)

u (y) ∧ ϕ

(
ϵ

y − a

∥y − a∥
+ a

)
dy.
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The limit of this is ϕ(a)
∫
Ω
u(x) as ϵ goes to zero. To complete the discussion, we write the exterior

derivative of u as in (41), and apply the Bogovskĭı potential operator to this result, which gives

−Bk+1,adu(x) = (x− a)⌟
∑

σ∈Σ(k,n)

n∑
j=1

∫ ∞

1

tk
∂uσ

∂xj
(a+ t(x− a)) dt dxj ∧ dxσ

=
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

∫ ∞

1

tk
∂uσ

∂xj
(a+ t(x− a)) dt (x− a)j dx

σ

−
∑

σ∈Σ(k,n)
1≤j≤n, j /∈[σ]

1≤i≤k

(−1)i−1

∫ ∞

1

tk
∂uσ

∂xj
(a+ t(x− a)) dt(x− a)σ(i) dx

j ∧ dxσ−σ(i).

We add the (distributional) exterior derivative of the potential and the potential of the exterior deriva-
tive. In a manner that fully analogous to the discussion of the averaged Poincaré operator save for the
modification when k = n, we come to the conclusion that

u(x) = dBk,au(x) + Bk+1,adu(x), 0 ≤ k ≤ n− 1,

u(x) = dBn,au(x)−
(∫

Ω

u(a)

)
δa, k = n.

Here, δa denotes the Dirac delta at a. In summary, after taking the average over a ∈ Ω:

u(x) = dBku(x) + Bk+1du(x), 0 ≤ k ≤ n− 1, (44)

u(x) = dBnu(x)−
(
vol(Ω)−1

∫
Ω

u(a)

)
χΩ, k = n. (45)

6.6 Operator norms as bounds for the Poincaré–Friedrichs constants

We are now ready to state the main results of this section. Recall that δ(Ω) > 0 is the diameter of
Ω and that Bδ(Ω)(0) is the n-dimensional ball centered at the origin. The following upper bounds for
the Poincaré–Friedrichs constants are proportional to the domain diameter and are independent of the
Lebesgue exponent 1 ≤ p ≤ ∞. However, the space dimension n and the form degree k enter the
estimates, namely through definitions (39) and (40) of respectively CP(n, k) and CB(n, k).

Theorem 6.2. Let Ω ⊆ Rn be a bounded convex open set and let 1 ≤ p ≤ ∞. We have bounded operators

Pk : LpΛk(Ω) → W pΛk−1(Ω), Bk : LpΛk(Ω) → W p
0 Λ

k−1(Ω).

They satisfy the operator norm bounds

∥Pku∥Lp(Ω) ≤ CPF,P,k,Ω,p∥u∥Lp(Ω),

∥Bku∥Lp(Ω) ≤ CPF,B,k,Ω,p∥u∥Lp(Ω),

where

CPF,P,k,Ω,p := CP(n, k) voln−1(S1(0))
δ(Ω)n

vol(Ω)
δ(Ω), (46)

CPF,B,k,Ω,p := CB(n, k) voln−1(S1(0))
δ(Ω)n

vol(Ω)
δ(Ω). (47)

For any u ∈ W pΛk(Ω) it holds for a.e. x ∈ Ω that

u(x) = P1du(x)− vol(Ω)−1

∫
Ω

u(a) da, k = 0, (48)

u(x) = dPku(x) + Pk+1du(x), 1 ≤ k ≤ n. (49)
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In particular, if u ∈ W pΛk(Ω) with 0 ≤ k ≤ n− 1, then w = Pkdu satisfies dw = du.
For any u ∈ W p

0 Λ
k(Ω) it holds for a.e. x ∈ Ω that

u(x) = dBku(x) + Bk+1du(x), 0 ≤ k ≤ n− 1, (50)

u(x) = dBnu(x)−
(
vol(Ω)−1

∫
Ω

u(a)

)
χΩ, k = n. (51)

In particular, if u ∈ W p
0Λ

k(Ω) with 0 ≤ k ≤ n− 1, then w = Bkdu satisfies dw = du.

Proof. Consider the case 1 ≤ p < ∞. Because the domain is bounded, the subspaces C∞
c Λk(Ω) are dense

in LpΛk(Ω), and so the stated operator norm bounds follow by an approximation argument. Taking the
limit on both sides of equation then implies the inequality with p = ∞ because the L∞ norm is the limit
of the Lebesgue norms as p goes to infinity.

Consider now u ∈ W pΛk(Ω) with 1 ≤ k ≤ n. We write ζ := Pku. There exists a sequence
ui ∈ C∞Λk(Ω) that converges to u in W pΛk(Ω). For any test form v ∈ C∞

c Λn−k−1(Ω), we verify∫
Ω

v ∧ ui =

∫
Ω

v ∧ Pk+1dui +

∫
Ω

v ∧ dPkui

=

∫
Ω

v ∧ Pk+1dui + (−1)k(n−k)+1

∫
Ω

dv ∧ Pkui.

By the continuity of bounded linear functionals, we find∫
Ω

v ∧ u−
∫
Ω

v ∧ Pk+1du = (−1)k(n−k)+1

∫
Ω

dv ∧ Pku.

Hence, by definition, ζ ∈ W pΛk−1(Ω) with dζ = u − Pk+1du. This shows (49), and (48) follows by an
approximation argument.

Analogously, suppose that u ∈ W p
0Λ

k(Ω) with 0 ≤ k ≤ n − 1. We write ζ := Bku. There exists a
sequence ui ∈ C∞

c Λk(Ω) that converges to u in W pΛk(Ω). For any test form v ∈ C∞Λn−k−1(Ω), which
is the restriction of some member of C∞Λn−k−1(Rn), it holds that∫

Ω

v ∧ ui =

∫
Ω

v ∧ Bk+1dui +

∫
Ω

v ∧ dBkui

=

∫
Ω

v ∧ Bk+1dui + (−1)k(n−k)+1

∫
Ω

dv ∧ Bkui.

By the continuity of bounded linear functionals, we find∫
Ω

v ∧ u−
∫
Ω

v ∧ Bk+1du = (−1)k(n−k)+1

∫
Ω

dv ∧ Bku.

By definition, ζ ∈ W p
0Λ

k−1(Ω) with dζ = u− Bk+1du. This shows (50), and (51) follows by an approxi-
mation argument.

Everything else is now apparent, and the proof is complete.

These constants are generally not optimal. For example, when p = 2 and when only the divergence
is considered, we have the following improved estimate.

Lemma 6.3. Let Ω ⊆ Rn be a bounded open set. For each u ∈ W 2(div,Ω) there exists w ∈ W 2(div,Ω)
with divw = divu and

∥w∥L2(Ω) ≤ δ(Ω)∥ divu∥L2(Ω).

Proof. This is a reduction to the Friedrichs inequality. The space W 1,2
0 (Ω) is the closure of the smooth

functions with support in Ω in the Hilbert space W 1,2(Ω). Then ∇ : W 1,2
0 (Ω) ⊆ L2(Ω) → L2(Ω)

is a closed densely-defined linear operator whose smallest singular value is bounded from below by
δ(Ω)−1, according to the Friedrichs inequality. The adjoint is the closed densely-defined linear operator
−div : W 2(div,Ω) ⊆ L2(Ω) → L2(Ω), which has the same smallest singular value.
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Remark 6.4. The classical Poincaré operator is known for its role in proving the exactness of the smooth
de Rham complex over star-shaped domains [44]. The Bogovskĭı-type operators were first studied for the
divergence operator and are a staple in the mathematics of hydrodynamics [9]. Costabel and McIntosh [19]
regularize the potentials by averaging over pivot points within an interior ball using a smooth compactly
supported weight function, which is why they can study domains star-shaped with respect to a ball. Their
operators are pseudo-differential operators of negative order, because their averaging uses a smooth weight;
this proves that the operators are bounded between a variety of function spaces. Explicit bounds for the
higher-order seminorms of these pseudo-differential operators have been recently contributed by Guzman
and Salgado [37]. Instead, we average over the entire domain, which requires a convex geometry, and we
are interested in boundedness in the Lebesgue p-norms. We establish computable bounds on the Poincaré–
Friedrichs constants, which had not been established yet, to the best of our knowledge.

7 Shellable triangulations of manifolds

We return to the theory of triangulations, as our main objective requires some further concepts. We
are interested in simplicial complexes that triangulate domains and which are shellable. Such simplicial
complexes are constructed by successively adding simplices in a well-structured manner. Local patches
(stars) within triangulations of dimension two or three are examples of such shellable complexes. The
monographs by Kozlov [40] and Ziegler [66] are our main references for this section. We also refer to
Lee’s monograph [43] for any further background on manifolds.

Figure 3: Left: manifold triangulation of an annulus. Right: not a manifold triangulation.

7.1 Triangulations of manifolds

Our discussion requires some notions and results concerning triangulated manifolds. We define an n-
dimensional simplicial complex to be amanifold triangulation if the underlying set |T | is an n-dimensional
manifold with boundary. We recall that this means that for every x ∈ |T | there exists an open neighbor-
hood U(x) ⊆ |T | and an embedding ϕ : U(x) → Rn such that ϕ(0) = 0 and ϕ is an isomorphism either
onto the open unit ball B = {x ∈ Rn | |x| < 1} or onto the half-ball {x ∈ B | x1 ≥ 0}. In the former
case, x is called an interior point, and in the latter case x is called a boundary point. Any simplicial
complex that triangulates an n-dimensional manifold must be n-dimensional. An example of a manifold
triangulation and an example which is not a manifold triangulation are given in Figure 3.

The following special cases receive particular interest: an n-ball triangulation is any triangulation of a
topological (closed) n-ball, and we sometimes call this an n-disk triangulation. An n-sphere triangulation
is any triangulation of a topological n-sphere.

We know that any manifold M has got a topological boundary ∂M, possibly empty. If M is n-
dimensional, then the ∂M is a topological manifold without boundary of dimension n − 1. We gather
a few helpful observations on how these notions relate to triangulations. While the reader might deem
them obvious, we nevertheless include proofs.

Lemma 7.1. Let T be a finite n-dimensional simplicial complex whose underlying set is a manifold M.
Then the simplices contained in the boundary constitute a triangulation of the boundary. Moreover, if
F ∈ T is a face (i.e, F has dimension n− 1), then

• F is not contained in the boundary if and only if it is contained in exactly two n-simplices.
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• F is contained in the boundary if and only if it is contained in exactly one n-simplex.

Proof. We prove these statements in several steps.

1. Let M̊ := M\ ∂M denote the interior of the manifold. We will use the following fact:5 if S ∈ T
has an inner point that lies on ∂M, then all inner points of S are on ∂M. Since the boundary ∂M
is closed, every S ∈ T is either a subset of the boundary or all its inner points lie in the interior
M̊ of the manifold.

2. We recall an auxiliary result. Suppose that Y is a topological space homeomorphic to a sphere of
dimension m and that X ⊆ Y is homeomorphic to a sphere of dimension m − 1, where m ≥ 1.
As a consequence of the Jordan–Brouwer separation theorem [53, Corollary IV.5.24] [51, Corollary
VIII.6.4], we know that Y \X has got two connected components.

3. Let now F ∈ S↓
n−1(T ) be a face and let zF ∈ F be its barycenter. Since T is finite, we let B̊F be an

open neighborhood around zF homeomorphic to an n-dimensional ball so small that its closure BF

only intersects those n-simplices of T that already contain zF and no faces other than F . Suppose
there are distinct n-simplices T1, T2, . . . , TK that contain zF . The intersection of any two of them
is F , but their interiors are disjoint because otherwise they would coincide.

If zF is an interior point of M, then it follows by our assumptions that B̊F is homeomorphic to an
open n-ball and ∂B̊F is homeomorphic to a sphere of dimension n − 1. Consider X = F ∩ ∂B̊F .
If n = 1, then X is empty and ∂B̊F has K distinct connected components. If n > 1, then X
is homeomorphic to a sphere of dimension n − 2 and again ∂B̊F \ X has K distinct connected
components. But by the auxiliary result above, K = 2. We conclude that F is contained in two
n-simplices of T .

Consider the case that zF lies on the boundary of M and suppose that F is contained in K distinct
n-simplices of T . By adding at least one dimension, we can double6 the manifold M along the
boundary and obtain the doubled manifold M′. Similarly, we can construct a doubling of the
triangulation T ′ such that F is contained in exactly 2K distinct n-simplices of T ′. We know that
M′ is a manifold without boundary, and hence F is an interior simplex of T ′. This implies K = 1.
So any boundary face can only be contained in one single n-simplex.

4. Clearly, the simplices of T contained in the boundary constitute a simplicial complex. Every
x ∈ M is an inner point of some simplex S ∈ T . If x ∈ ∂M is a boundary point, then S must be
a boundary simplex, so the boundary simplices triangulate all of ∂M.

All desired results are thus proven.

Suppose that T is an n-dimensional simplicial complex that triangulates a manifold. Those simplices
of the manifold triangulation that are subsets of the boundary of the underlying manifold are called
boundary simplices. All other simplices of the manifold triangulation are called inner simplices. We have
seen that the boundary simplices of a manifold triangulation constitute a triangulation of the manifold’s
boundary. We call this simplicial complex the boundary complex. It has dimension n− 1.

We continue with a few more observations about the topology of local patches (stars) of manifold
triangulations. This topic is surprisingly non-trivial. We only gather some results that are hard to find
in the literature.

Lemma 7.2. Let T be a finite n-dimensional simplicial complex whose underlying space is a manifold
M. Suppose that 1 ≤ n ≤ 3. Then the following holds:

• If S ∈ T is an inner simplex, then stT (S) is a simplicial n-ball with S as an inner simplex and ∂stT (S)
is a simplicial (n− 1)-sphere.

• If S ∈ T is a boundary subsimplex, then stT (S) is a simplicial n-ball with S as a boundary simplex,
and ∂stT (S) is a simplicial (n− 1)-ball.

5To see this, one easily constructs a continuous deformation of M into itself to move any chosen point on S to any other
chosen point on S.

6The reader is referred to Lee’s textbook [44] for more background and the technicalities.
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Proof. The lemma is obvious if n = 1, so we assume n ≥ 2 in what follows. We prove these statements
in several steps. The reader is assumed to have some background in topology.

1. Let S be any simplex with vertices v0, v1, . . . , vk, with barycenter zS , and dimension k. Let S :=
stT (S) be its star. Each l-dimensional simplex T ∈ S that contains S has vertices v0, v1, . . . ,
vk, v

S
k+1, . . . , v

S
l . For any such simplex, we introduce a decomposition T0, . . . , Tk, where each Ti

has vertices v0, . . . , vi−1, zS , vi+1, . . . , vk, v
S
k+1, . . . , v

S
l . The collection S∗ of these simplices

and their subsimplices constitute a simplicial complex that triangulates the same underlying set
as S. Moreover, S∗ = stS∗(zS). In particular, zS is a boundary vertex of S∗ if and only if S is a
boundary simplex of S. So it remains to study the topology of vertex stars.

2. Suppose that 2 ≤ n ≤ 3 and that M is a manifold without boundary. Under these assumptions, as
explained in the proof of Theorem 1 in [58], the set ∂st(V ) is a triangulation of a sphere of dimension
n− 1 for any inner vertex V . There exists a homeomorphism from the closed cone of |∂st(V )| onto
the local star |stT (V )|. But then that closed cone and hence |stT (V )| are homeomorphic to an
n-dimensional ball.

3. If 2 ≤ n ≤ 3 and M has a non-empty boundary, then we use an approach as in the proof
of Lemma 7.1: we let M′ denote the doubling of the manifold and T ′ be the doubling of the
triangulation T . Let V ∈ T be a vertex. If V is an inner vertex of T , then ∂st(V ) ⊆ T ⊆ T ′

triangulates a sphere of dimension n−1 and stT (V ) ⊆ T ⊆ T ′ triangulates a ball of dimension n, as
discussed above. If V is a boundary vertex of T , then it is an inner vertex of T ′, and so ∂stT (V ) ⊆
T ′ triangulates a sphere of dimension n − 1 and stT (V ) ⊆ T ′ triangulates a ball of dimension n.
We also know that ∂st∂T (V ) ⊆ ∂T triangulates a sphere of dimension n − 2 and st∂T (V ) ⊆ ∂T
triangulates a ball of dimension n− 1. The embedding of ∂st∂T (V ) ⊆ ∂T is homeomorphic to the
standard embedding of the (n−2)-dimensional unit sphere into the (n−1)-dimensional unit sphere,
by the topological Schoenflies theorem [54] It follows that ∂stT (V ) triangulates a topological ball
of dimension n − 1. Since the closed cone of |∂st(V )| is homeomorphic to the star |stT (V )|, we
conclude that stT (V ) triangulates an n-dimensional ball.

All relevant results are proven.

Lemma 7.3. Let T be a finite n-dimensional simplicial complex whose underlying space is a manifold
M. If the underlying space of T is connected, then T is face-connected.

Proof. We first show that each vertex star is face-connected via a short induction argument. Clearly,
any simplicial 1-ball and simplicial 1-sphere are face-connected. Now, if n ≥ 1 and V ∈ T , then the
n-simplices in stT (V ) are in correspondence to the (n − 1)-simplices in ∂stT (V ). Hence, stT (V ), a
triangulation of dimension n− 1, is face-connected if and only if ∂stT (V ), a triangulation of dimension
n− 1, is face-connected. The induction argument implies that each vertex star in T is face-connected.

We assume that the underlying space |T | is connected, and hence path-connected. Given n-simplices
S, S′ ∈ T , there exists a path γ : [0, 1] → |T | from the barycenter of S to the barycenter of S′. We
can choose a sequence of n-simplices S = Ŝ0, Ŝ1, . . . , Ŝm = S′ ∈ T without repetitions that cover the
path and whose intersections with the path are homeomorphic to [0, 1]. For any index 1 ≤ i ≤ m,
the intersection γ([0, 1]) ∩ Si and γ([0, 1]) ∩ Si+1 intersect at one point lying in a common subsimplex
of Si and Si+1. We deduce that each two consecutive simplices in the sequence Ŝ0, Ŝ1, . . . , Ŝm will
have at least one vertex in common. As each vertex star is face-connected, there exists a sequence
S = S0, S1, . . . , Sm = S′ ∈ T where Si ∩ Si−1 is a face of both Si and Si−1 for all 1 ≤ i ≤ m. This just
means that T is face-connected.

Remark 7.4. Triangulations with the property that all vertex stars are homeomorphic to a ball are also
called combinatorial [7, Section 1]. All manifolds of dimension up to three admit smooth structures and
smooth manifolds admit combinatorial triangulations. There are triangulations of manifolds in more
than three dimensions where not every vertex star is homeomorphic to a ball.

Not every simplicial complex is the triangulation of some (embedded) topological manifold with or
without boundary. When the dimension is at least five, then there are manifolds for which no computer
algorithm, given a finite simplicial complex as input, decides whether the input is the triangulation of that
manifold [17]. Going further, it has been shown that deciding whether a simplicial complex triangulates
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any manifold cannot be decided by any computer algorithm [56]. We therefore are not in pursuit of
any easy combinatorial property that indicates whether a simplicial complex (without any further specific
assumptions) triangulates a manifold.

Conversely, not all topological manifolds, even if compact, can be described as a triangulation. Such
manifolds, some even compact and simply-connected, appear in dimension four and higher [2].

7.2 Shellable simplicial complexes

The notions of shelling and shellable triangulation have been discussed widely in combinatorial topology
and polytopal theory. Formally, a triangulation is shellable if its full-dimensional simplices can be
enumerated such that each simplex intersects the union of the previously listed simplices in a codimension
one triangulation of a manifold. This forces the intermediate triangulations to be particularly well-
shaped. We build upon the notion of shelling as introduced in [66, Definition 8.1], where our definition
of shelling is equivalent to the notion of the shellings of simplicial complexes, see also [66, Remark 8.3].

Suppose that T is an n-dimensional simplicial complex and that we have an enumeration of the
n-simplices T0, T1, T2, · · · ∈ S↓

n(T ). For any enumeration, we call

Γm :=
(
T0 ∪ T1 ∪ · · · ∪ Tm

)
∩ Tm+1

the m-th interface set. We call the enumeration a shelling if each interface set Γm is a triangulated
manifold of dimension n− 1.

The reason of our interest in shellable simplicial complexes is that they can be constructed via
successive adhesion of simplices. The resulting succession of simplicial complexes consists of simplicial
balls or spheres.

Lemma 7.5. Let T be an n-dimensional simplicial complex with a shelling T0, T1, T2, . . . , TM , such that
each simplex of dimension n− 1 is contained in at most two simplices. Then

Xm := T0 ∪ T1 ∪ · · · ∪ Tm

is a triangulated manifold with boundary for all 0 ≤ m ≤ M . In particular, Xm is a topological n-ball
when m < M , and XM is either a topological n-ball or topological n-sphere.

Proof. We prove this claim by induction. Certainly, if T contains only one single n-simplex, then it is a
shellable triangulation of a topological n-ball. Next, let 1 ≤ m ≤ M and suppose that

Xm−1 := T0 ∪ T1 ∪ · · · ∪ Tm−1

is already known to be a topological n-ball. Let Tm be the next n-simplex in the shelling. By definition,
Γm := Xm−1 ∩ Tm is a submanifold of ∂Tm, triangulated by some faces of Tm and their subsimplices.

Let F be such a face. By assumption, F must be contained in exactly one n-simplex of T0, T1, . . . , Tm−1,
and F is in the boundary of Xm−1. We conclude that Γm triangulates a submanifold of the boundary
of Xm−1.

On the one hand, if Γm is the entire boundary of Tm, then it is a topological sphere of dimension
n − 1. Since Γm is a submanifold of the boundary of Xm−1, which by induction assumption is also a
topological sphere of dimension n − 1, we conclude that Γm is the whole boundary of Xm. By basic
geometric topology, Xm is a topological n-sphere, and Tm can only be the last simplex in the shelling,
m = M . On the other hand, if Γm is a proper subset of the entire boundary of Tm, then Xm−1 ∪ Tm is
still a topological n-ball.

Remark 7.6. We interpret a shelling as the construction of a triangulation by successively attaching
simplices such that the intermediate triangulations are well-behaved. Conversely, the reverse enumeration
describes a successive decomposition of the triangulation, hence the name “shelling”.

Remark 7.7. Whether a simplicial complex is shellable can be checked, in principle, simply by trying
out all the possible enumerations. That we cannot do much better than this is captured in the result
that testing for shellability is NP-complete [32]: this complexity result is even true if we merely consider
simplicial complexes of dimension two embedded in some Euclidean space.
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We now collect important examples of shellable triangulations. Essentially, in two space dimensions,
interesting triangulations are shellable, but starting from three space dimensions, non-shellable situations
can arise. Our main interest are local patches (stars) within triangulations: these are shellable up to
three space dimensions, but not necessarily beyond.

Example 7.8. Any simplex T (trivially) has a shelling, consisting only of T itself. The boundary complex
∂T (T ) has a shelling: any enumeration of the boundary faces of T constitutes a shelling; see Example
8.2.(iii) in [66].

Example 7.9. The standard triangulation of the 3-dimensional cube by six tetrahedra, the Kuhn trian-
gulation [41], is shellable, as are its higher-dimensional generalizations.7

Example 7.10. There exists a non-shellable triangulation of a tetrahedron and of a cube in n = 3,
see [66, Example 8.9].

Lemma 7.11. Any simplicial 2-ball is shellable. Any simplicial 2-sphere is shellable.

Proof. First, let S be any triangulation of a 2-sphere. By removing any triangle S ∈ S, we obtain a
triangulation T of a 2-ball. Any shelling of that triangulation T can be extended to a shelling of S by
re-inserting the first triangle S. So it remains to show that any triangulation T of a two-dimensional
ball is shellable. We will construct the shelling in reverse.

Write M = |T |. There is nothing to show if T contains only one triangle. We call a triangle T ∈ T
good in T if it intersects the boundary ∂M in a non-empty union of edges. Hence, a triangle is good in
T if its intersection with ∂M is either one, two, or three edges, and a triangle is not good in T if that
intersection is either empty, only some of its vertices, or a vertex and the opposite edge. We show by
an induction argument over the number of triangles that every triangulation of a 2-ball that contains at
least two triangles also contains at least two good triangles.

Clearly, this is the case if the triangulation of the 2-ball contains two triangles. Now suppose the
induction claim is true when the triangulation includes at most N triangles, and assume that T includes
N + 1 triangles. As we travel along the boundary, we traverse along edges of at least two simplices, and
therefore there are at least two triangles with an edge on the boundary. Suppose that T does not have
at least two triangles that are good in T . Then there exists a triangle T ′ that intersects ∂M in one edge
and its opposite vertex. Removing T ′ splits the manifold into two face-connected components, each of
which is a topological 2-ball. By the induction assumption, each of those components contains at least
two triangles that are good in the respective component. So each component has at least one triangle
that is also good in T . Hence, T contains two good triangles, which completes the induction step.

We conclude that whenever T triangulates a 2-ball, it contains a good triangle T . If T has three
edges in the boundary, then T = M and we are trivially done. If T intersects with the boundary in
exactly one or two edges, then M \ T is still a topological 2-ball. The triangulation T ′ that is obtained
by removing T is a triangulation of some 2-ball that intersects T only at either two or one edges. Any
shelling of T ′ can in this way be extended to a shelling of T , and the proof is complete.

Lemma 7.12. Let T be a 3-dimensional manifold triangulation and S ∈ T . Then stT (S) is shellable.

Proof. The statement is trivially true if S is a tetrahedron. The statement is clear if S is an inner or
boundary face of T , where we only need to enumerate either one or two tetrahedra. The statement is
still easily verified if S is an inner or boundary edge of T : one chooses a starting tetrahedron (with
a boundary face if S is a boundary edge) and rotates around the edge in a fixed direction to create a
suitable enumeration. When S is an inner vertex, then the faces (triangles) of stT (S) that do not contain
V constitute a simplicial 2-sphere. Similarly, when S is a boundary vertex, then the faces (triangles)
of stT (S) that do not contain V constitute a simplicial 2-ball. Both these 2-dimensional complexes are
shellable by Lemma 7.11, and any such shelling immediately yields a shelling of stT (S) since there is a
one-to-one correspondence between the tetrahedra in T and the triangles.8

Lemma 7.13. Let T be an n-dimensional shellable triangulation and V ∈ V(T ) be a vertex. Then
stT (V ) is shellable.

7We remark that Kuhn attributes this triangulation to Lefschetz [45].
8For S an inner vertex, [22, Lemma B.1] also yields the claim.
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Proof. This is Lemma 8.7 in [66].

Remark 7.14. Not all triangulable sets admit a triangulation that is shellable. Moreover, even if
a set admits a shellable triangulation, not all of its triangulations are shellable. For example, if we
extend the non-shellable triangulation of the tetrahedron from [66, Example 8.9] to a triangulation of a
hypertetrahedron by suspending it from a new point v⋆, then the resulting new triangulation is non-
shellable and coincides with the patch around v⋆. This demonstrates that patches around boundary
simplices are not necessarily shellable when the space dimension n is larger than three.

Remark 7.15. Not all triangulable sets admit a triangulation that is also shellable. Moreover, even if
a set admits a shellable triangulation, not all of its triangulations might be shellable. We refer to [66,
Example 8.9] for an example of non-shellable triangulations of cubes and tetrahedra in three dimensions.

A major structural feature of shellable simplicial complexes is that each time an n-simplex is added,
stars around lower-dimensional simplices gets completed.

Lemma 7.16. Suppose that an n-dimensional manifold triangulation T has a shelling T0, T1, T2, . . . , TM .
For 0 ≤ m ≤ M , write

Xm := T0 ∪ T1 ∪ · · · ∪ Tm.

For 1 ≤ m ≤ M , write
Γm := Xm−1 ∩ Tm.

Then Γm is a union of ℓ different faces of Tm, 1 ≤ ℓ ≤ n+ 1. If m < M , then the intersection of those
faces is an interior simplex Sm ∈ T of dimension n− ℓ that satisfies

stXm
(Sm) = stT (Sm).

Proof. We know Γm is a triangulated submanifold of the boundary of Tm, and so it must be a collection
of ℓ faces of T , 1 ≤ ℓ ≤ n + 1. Note that ℓ = n + 1 can only happen for the last enumerated simplex,
m = M , if T triangulates an n-sphere. Γm also constitutes a local patch (star) of (n − 1)-dimensional
simplices around some simplex Sm of dimension n− ℓ in Γm. By definition, Sm is a boundary simplex of
Xm, and it is an interior simplex of Xm+1. But then Sm cannot be a subsimplex of any of the simplices
Tm+1, . . . , TM , which means that stXm+1

(Sm) = stT (Sm).

8 Reflections and Deformations on shellable stars

This section is devoted to geometric operations that are crucial for our main result in Section 9 below.
Consider the situation where we have an n-dimensional local patch (star) around some simplex S and
some n-dimensional simplex T within that local star. We construct a homeomorphism going from the
simplex T onto its complement within the local star around S, similar to the two- and three-color maps
in [22, Sections 5.3 and 6.3] and the symmetrization maps in [16, Section 7.6] This homeomorphism,
which we interpret as a nonlinear reflection, is required to preserve the interface. We ensure that the
homeomorphism is bi-Lipschitz, and we are particularly interested in the norms of its Jacobian. This
nonlinear reflection will be used subsequently in generalizing the discussion in Section 4 to the setting
of differential forms. Additionally, this endeavor produces another geometric tool: we construct a bi-
Lipschitz deformation which contracts the entire star into the complement of the newly completed star.
This deformation will enable additional estimates of Poincaré–Friedrichs constants.

We will use the following observation, which we state without proof, that controls the volume and
some heights when a simplex is partitioned via barycentric subdivision.

Lemma 8.1. Let T be an n-dimensional simplex with an ℓ-dimensional subsimplex S and let zS be the
barycenter of S. Let T ′ be one of the n-dimensional simplices obtained by splitting T in accordance with
the barycentric subdivision of S at zS.

• vol(T ′) = vol(T )/(ℓ+ 1).

• The height vector of v ∈ V(T ) \ V(S) in T ′ is the height vector v in T .
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Figure 4: Illustration of Lemma 8.1. Left: the triangle T = [v0, v1, v2] is bisected at the edge S = [v0, v1],
leading to two new triangles. The height vector to v2 in all three triangles remains the same. The height
vector to zS in the new triangle [zS , v1, v2] is one half of the height vector to v0 in the original triangle.
Right: the triangle T is trisected, leading to three new triangles. The height vector to zT from the
opposite edge in any triangle is one third of the original height vector of that edge.

v2

v0 v1zS

v2

v0 v1

zT

Figure 5: Sketch of the geometric situation in the proof of Proposition 8.2. The triangle T completes the
star around an interior vertex. A is the complement of the triangle within the star. Γ1 is the interface
between the two sets, and left invariant by the reflection. Γ2 is left invariant by the deformation. Ξ1

maps T into A while preserving the interface Γ1, and Ξ2 maps the whole patch into A while preserving
the boundary Γ2.

A

T

Γ1

Γ2

• The height vector of zS in T ′ is the height vector of the single vertex v ∈ V(T ) \ V(T ′) in T , scaled by
(ℓ+ 1)−1.

We now provide the desired bi-Lipschitz transformation: on the one hand, the nonlinear reflection
across the interface between the selected simplex and the remainder of the local star, and on the other
hand, the bi-Lipschitz contraction from the local star onto the complement of the selected simplex. We
give detailed estimates for the singular values of their Jacobians.

Proposition 8.2. Let T be a triangulation of an n-dimensional domain. Let S ∈ T be an inner simplex
of dimension ℓ < n, let T ∈ stT (S) be of dimension n, and let

A := |stT (S)| \ T , Γ1 := A ∩ T, Γ2 := ∂T \ ∂A.

The following holds, where the constants on the right-hand sides are as stated in the proof.

1. There exists a bi-Lipschitz piecewise affine mapping

Ξ1 : T → Ξ1(T ) ⊆ A

which is the identity along Γ1 = T ∩ A. At any point, the singular values σ1 ≥ · · · ≥ σn of its
Jacobian satisfy

σ1 ≤ C5,n,ℓ(T ), σ2, . . . , σn ≤ C ′
5,n,ℓ(T ), |detJΞ1| ≤ Cdet

5,n,ℓ(T ),

σ−1
n ≤ C6,n,ℓ(T ), σ−1

1 , . . . , σ−1
n−1 ≤ C ′

6,n,ℓ(T ), |detJΞ−1
1 | ≤ Cdet

6,n,ℓ(T ).

Moreover, for any 0 ≤ k ≤ n and p ∈ [1,∞],

σ1 · · ·σk|detJΞ1|−
1
p ≤ C5,n,k,ℓ,p(T ), σ−1

n · · ·σ−1
n−k+1|detJΞ1|

1
p ≤ C6,n,k,ℓ,p(T ).
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2. There exists a bi-Lipschitz piecewise affine mapping

Ξ2 : |stT (S)| → Ξ2(|stT (S)|) ⊆ A

which is the identity along ∂A\∂T . At any point, the singular values σ1 ≥ · · · ≥ σn of its Jacobian
satisfy

σ1 ≤ C7,n,ℓ(T ), σ2, . . . , σn ≤ C ′
7,n,ℓ(T ), |detJΞ2| ≤ Cdet

7,n,ℓ(T ),

σ−1
n ≤ C8,n,ℓ(T ), σ−1

1 , . . . , σ−1
n−1 ≤ C ′

8,n,ℓ(T ), |detJΞ−1
2 | ≤ Cdet

8,n,ℓ(T ).

Moreover, for any 0 ≤ k ≤ n and p ∈ [1,∞],

σ1 · · ·σk|detJΞ2|−
1
p ≤ C7,n,k,ℓ,p(T ), σ−1

n · · ·σ−1
n−k+1|detJΞ2|

1
p ≤ C8,n,k,ℓ,p(T ).

Proof. We derive the estimate in several steps. In what follows, we use the notation ẑ for the normal-
ization of any vector z ∈ Rn.

• Without loss of generality, after shifting the coordinate system, the barycenter zS of S is the origin.

We fix the subsimplex S′ ⊆ T that is complementary to S within the simplex T . Note that Γ2 ⊆ ∂T
is the union of exactly those faces of T that contain S′, whereas Γ1 = A ∩ T is the union of exactly
those faces of T that contain S. We let zS′ be the midpoint of S′.

We apply barycentric refinement to the simplex S and then the complementary simplex S′. This
produces a triangulation G of |T | whose n-dimensional simplices contain the vertices zS = 0 and zS′ .

• There exists ϱ > 0 such that stT (S) is star-shaped with respect to the closed ball Bϱ(zS). We show
that, if we let K denote the simplicial complex obtained by barycentric refinement of S, then the
minimum height of zS in any n-simplex K ∈ K is a possible choice of ϱ. Given any n-simplex K ∈ K,
the face F ⊆ K opposite to zS is some boundary face of stT (S). The height of F in K is the height
of F in the original simplex T ∈ stT (S) with K ⊆ T scaled by (ℓ+ 1)−1.

Assuming that ϱ > 0 is at most the minimum height of zS in any n-simplex K ∈ K, suppose that
z ∈ Bϱ(zS). Let x ∈ stT (S) be in the interior of the local patch. Suppose that the line segment I from
z to x is not wholly contained in stT (S). Then I intersects with a boundary face F ⊆ K of the local
patch. The straight line segment from zS to x lies within one open half-space defined by the affine hull
of F . Since I intersects with F , this open-half space cannot contain z, but it must contain Bϱ(zS).
That is a contradiction. Hence, the straight line segment from z to x bust lie within the interior of
the local patch. We deduce that stT (S) is star-shaped with respect to Bϱ(zS).

• Let ρ ∈ (0, 1], yet to be determined. We define y = −ρzS′ as vector in the opposite direction of zS′

and with length ρ∥zS′∥. Henceforth, we assume ρ ≤ ϱ/∥zS′∥ so that y ∈ Bϱ(zS). By construction, the

closed line segment from zS to y is contained in Bϱ(zS), and we conclude that the convex closure of T
and y must lie in stT (S).

We define another triangulation Gc as follows: given any n-simplex G ∈ G, we replace its vertex z′S
by the vertex y at the opposite position, thus obtaining a new n-simplex Gc. Indeed, that Gc is a
simplicial complex follows easily from D being a simplicial complex.

We let the simplicial complex G∗ be the union of G and Gc. By construction, all its n-simplices contain
zS as a subsimplex, which is an inner vertex of that triangulation. In particular, D∗ is its own star
around zS .

• We introduce a new mapping Θ : |G| → |Gc| between the underlying sets as follows. Let G ∈ G be
an n-simplex and Gc ∈ Gc be constructed from G. We let AG : ∆n → G and AGc : ∆n → Gc be
affine reference transformations that agree on the vertices common to G and Gc. We then define the
piecewise affine mapping

Θ|G := AGc ◦A−1
G .
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It follows that

|det(JΘ|G)| =
vol(Gc)

vol(G)
.

We want to further characterize the singular values of this transform. Let hz ∈ Rn be the height vector
of zS′ inside the simplex G, that is, the vector pointing to zS′ and standing orthogonally on the affine
hull of the face G that opposes zS′ We verify that

Θ|G(x) = x− (1 + ρ)
⟨ĥz, x⟩
⟨ĥz, ẑS′⟩

ẑS′ .

Indeed, the right-hand side equals x whenever x lies in the plane orthogonal to hz, and when x = zS′ ,
then

Θ|G (zS′) = zS′ − (1 + ρ)ẑS′
⟨ĥz, zS′⟩
⟨ĥz, ẑS′⟩

= zS′ − (1 + ρ)ẑS′∥zS′∥ = zS′ − (1 + ρ)zS′ = −ρzS′ = y.

If we orthogonally decompose zS′ = hz + bz for some bz ∈ Rn, then

Θ|G(hz) = hz − (1 + ρ)
⟨hz, hz⟩
⟨hz, zS′⟩

zS′

= hz − (1 + ρ)
⟨hz, zS′⟩
⟨hz, zS′⟩

zS′ = hz − (1 + ρ)zS′ = −ρhz − (1 + ρ)bz.

Evidently, the transformation Θ|G equals the identity on the orthogonal complement of the span of
hz and bz. Let β be the angle between zS′ and hz. Then ∥hz∥ = cos(β)∥zS′∥ and ∥bz∥ = sin(β)∥zS′∥.
We study the singular values of the matrix

MΘ,G :=

(
−ρ 0

−(1 + ρ)∥bz∥/∥hz∥ 1

)
=

(
−ρ 0

−(1 + ρ) tan(β) 1

)
.

Its two singular values are:

σmax(Θ, G) :=
1

2

√
(1 + ρ)

2
+ (1 + ρ)2 tan(β)2 +

1

2

√
(1− ρ)

2
+ (1 + ρ)2 tan(β)2, (52)

σmin(Θ, G) :=
1

2

√
(1 + ρ)

2
+ (1 + ρ)2 tan(β)2 − 1

2

√
(1− ρ)

2
+ (1 + ρ)2 tan(β)2. (53)

All other singular values of JΘ|G equal 1. The singular values σmax(Θ, G) ≥ 1 and σmin(Θ, G) ≤ 1
is monotonically increasing and decreasing, respectively, in tan(β). Hence, they must the extremal
maximal singular values of JΘ|G. It is evident that ρ = vol(Gc)/ vol(G).

We develop explicit bounds for these singular values. The definition of the tangent and the decompo-
sition zS′ = hz + bz imply that tan(β) = ∥bz∥/∥hz∥.
Recall that G ∈ G is obtained from T via barycentric subdivisions: first at zS , leading to some
intermediate n-simplex T ′, and then at zS′ , leading to G ⊆ T ′. Let Fz ⊆ G be the face opposite to
the vertex zS′ , which is some face of T ′. Now, the height of Fz in G is (n− ℓ)-th of the height of Fz in
T ′ since S′ has dimension n− ℓ− 1. The height of the face Fz in T ′ is just the height of its opposing
vertex, which lies in S′, and which equals the height of that vertex in T . Thus,

∥bz∥
∥hz∥

=
∥bz∥

(n− ℓ)−1∥(n− ℓ)hz∥
=

∥zS′∥
(n− ℓ)−1∥(n− ℓ)hz∥

≤ (n− ℓ)κA(T ).

We abbreviate

µT,ℓ :=
1

2

√
(1 + ρ)

2
+ (1 + ρ)2(n− ℓ)2κA(T )2 +

1

2

√
(1− ρ)

2
+ (1 + ρ)2(n− ℓ)2κA(T )2. (54)

This establishes bounds on the singular values of the transformation. In summary, the singular values
of the Jacobian of Θ at almost every x satisfy

σ1(Θ, x) ≤ µT,ℓ, σ2(Θ, x) = · · · = σn−1(Θ) = 1, σn(Θ, x)−1 =
σ1(Θ, x)∣∣detJΘ|G

∣∣ ≤ µT,ℓ/ρ. (55)
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• We introduce another mapping Φ : |G∗| → |Gc| as follows. Consider any n-simplex G ∈ G and let
Gc ∈ Gc be its image under Θ. We construct a bi-Lipschitz mapping

ΦG : G ∪Gc → Gc.

The construction will be such that the union of ΦG for all n-simplices G ∈ G will define the desired
bi-Lipschitz mapping Φ : |G∗| → |Gc|, which will be the identity along ∂ |G∗| \ ∂ |G|.
Once again, hz denotes the height of zS′ within G. Here, we let Q ⊆ G ∩Gc be the subsimplex that
is complementary to the line segment from the origin to zS′ in G. Equivalently, Q is complementary
to the line segment from the origin to y in Gc. From the definition of simplices, we now conclude that
any x ∈ G ∪Gc has a unique representation

x = λzS′ + µxQ, λ ∈ [−ρ, 1], µ ∈ [0, 1], |λ|+ µ ≤ 1, xQ ∈ Q.

Since µxQ lies in the hyperplane spanned by the origin and Q, we have

λ = λ(x) :=
⟨hz, x⟩
⟨hz, zS′⟩

.

Based on that observation, we define

ΦG(x) := µxQ +
ρ

ρ+ 1
(λ(x)− 1) zS′

= µxQ +
ρ

ρ+ 1
λ(x)zS′ − ρ

ρ+ 1
zS′

= x− ρ+ 1

ρ+ 1
λ(x)zS′ +

ρ

ρ+ 1
λ(x)zS′ − ρ

ρ+ 1
zS′

= x− 1

ρ+ 1
λ(x)zS′ − ρ

ρ+ 1
zS′

= x− 1

ρ+ 1

⟨hz, x⟩
⟨hz, zS′⟩

zS′ − ρ

ρ+ 1
zS′ .

We readily verify that this transformation is a bi-Lipschitz mapping from G∪Gc onto Gc that satisfies
the desired mapping properties. It remains to analyze its Jacobian and get explicit estimates for its
singular values.

We once more introduce an orthogonal decomposition hz + bz = zS′ for some bz ∈ Rn. With that,

JΦG(x) = Id− 1

1 + ρ

zS′ ⊗ ht
z

⟨hz, zS′⟩

= Id− 1

1 + ρ

zS′ ⊗ ht
z

⟨hz, hz⟩

= Id− 1

1 + ρ

hz ⊗ ht
z

⟨hz, hz⟩
− 1

1 + ρ

bz ⊗ ht
z

⟨hz, hz⟩

= Id− 1

1 + ρ
ĥz ⊗ ĥt

z −
∥bz∥/∥hz∥

1 + ρ
b̂z ⊗ ĥt

z.

The Jacobian acts as the identity over the orthogonal complement of the span of hz and zs′ . We write
β for the angle between hz and zS′ . Hence, tan(β) = ∥bz∥/∥hz∥. Direct computation shows

JΦG(x) · b̂z = b̂z, JΦG(x) · ĥz =
ρ

1 + ρ
ĥz −

∥bz∥/∥hz∥
1 + ρ

b̂z. (56)

It remains to study the singular values of the matrix

MΦ,G =

(
ρ

1+ρ 0

− tan(β)
1+ρ 1

)
.
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Computing the eigenvalues of the symmetric matrix M t
Φ,GMΦ,G, we obtain the singular values

σmax(Φ, G) =
1

2(1 + ρ)

√
(2ρ+ 1)2 + tan(β)2 +

1

2(1 + ρ)

√
1 + tan(β)2,

σmin(Φ, G) =
1

2(1 + ρ)

√
(2ρ+ 1)2 + tan(β)2 − 1

2(1 + ρ)

√
1 + tan(β)2.

These are monotonically increasing from 1 and decreasing from 0.5, respectively, in tan(β). Hence,
these are also the maximal and minimal singular values of the Jacobian JΦG, the remaining singular
values being equal to 1. Notice that

detJΦ = σmax(Φ, G)σmin(Φ, G) =
ρ(1 + ρ)

(1 + ρ)2
=

ρ

1 + ρ
.

We now recall that the height of hz in G ∈ G equals (ℓ + 1)−1 multiplied with the height of some
vertex of S within T . Similar as above, we use the upper bound

tan(β) =
∥bz∥
∥hz∥

≤ (ℓ+ 1)κA(T ).

We conclude that the singular values of the Jacobian of Φ at almost every x satisfy

σ1(Φ, x) ≤
1

2(1 + ρ)

√
(2ρ+ 1)2 + (ℓ+ 1)2κA(T )2 +

1

2(1 + ρ)

√
1 + (ℓ+ 1)2κA(T )2, (57)

σ2(Φ, x) = · · · = σn−1(Φ, x) = 1, (58)

σn(Φ, x)
−1 =

σ1(Φ, x)

|detJΦ|
≤ 1

2ρ

√
(2ρ+ 1)2 + (ℓ+ 1)2κA(T )2 +

1

2ρ

√
1 + (ℓ+ 1)2κA(T )2. (59)

This finishes the discussion of the transformation Φ.

Having shown all the desired estimates, and the proof is complete.

Remark 8.3. We notice that the mappings Ξ1 and Ξ2 above are not only bi-Lipschitz, but in fact also
piecewise affine, where piecewise refers to an essentially non-overlapping decomposition of their respective
domains into convex polytopes. While the reflection and deformation mappings in Proposition 8.2 serve
our purpose, it might be possible to improve the analysis or construction and lower the Jacobian estimates.

Remark 8.4. The estimates in Proposition 8.2 should be considered as proof-of-concept but not as
optimal in any sense. Some improvements are immediately possible if ℓ = n−1. Then the reflection Ξ in
Lemma 3.4 satisfies the same properties as the mapping Ξ1, mapping the simplex T bijectively onto the A
and being the identity along the common face S. However, at any point, the singular values σ1 ≥ · · · ≥ σn

of the Jacobian of Ξ satisfy

|detJΞ| ≤ Cρ(T ),

σ1, σ
−1
n ≤ 1

2

√
(Cθ(T )κA(T ) + 1)

2
+ κA(T )2 +

1

2

√
(Cθ(T )κA(T )− 1)

2
+ κA(T )2,

σ2, . . . , σn−1, σn ≤ 1.

In particular,

σ1 · · ·σk|detJΞ2|−
1
p ≤

(
1

2

√
(Cθ(T )κA(T ) + 1)

2
+ κA(T )2 +

1

2

√
(Cθ(T )κA(T )− 1)

2
+ κA(T )2

)
Cρ(T )

1
p .

These estimates improve over the ones in Proposition 8.2 when the reflection is over a single face. We
believe that better estimates can be computed from the geometric data also in the other cases.
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9 Constructive estimates of Poincaré–Friedrichs constants

We are now in the position to develop Poincaré–Friedrichs constants for the exterior derivative over
domains with shellable triangulations; this includes the curl and divergence operators in three dimensions.
These results use local Poincaré–Friedrichs constants over simplices, with or without boundary conditions,
as subcomponents.

The analysis of the Poincaré potential operators in Section 6 has produced Poincaré–Friedrichs con-
stants for convex domains and their analogues for the case of full boundary conditions. We also need a
Poincaré–Friedrichs inequality for differential forms over a simplex but subject to homogeneous boundary
conditions along a collection of faces.

Lemma 9.1. Let T be an n-simplex and let Γ = F0 ∪ · · · ∪ Fℓ be the union of ℓ+ 1 different faces of T .
Suppose that u ∈ W pΛk(T ) such that trT,Γ u = 0. Then there exists w ∈ W pΛk(T ) such that trT,Γ w = 0
and

dw = du, ∥w∥Lp(Ω) ≤ CPF,Γ,ℓ,k,p(T )∥du∥Lp(Ω).

Here, CPF,Γ,ℓ,k,p(T ) > 0 is a constant such that

CPF,Γ,ℓ,k,p(T ) ≤ n! · 2ℓ+1CB(n, k + 1) voln−1(S1(0)) · κM(T )k−1C1,n(T )δ(T ).

Proof. There exists an affine bijection φ : ∆n → T that maps the convex closure of the n unit vectors
onto the face F0. We can also assume that the face of ∆n orthogonal to the i-th coordinate axis is
mapped onto the face Fi. In what follows, we let Ã be the convex set obtained from reflecting ∆n along
the coordinate axes ℓ+ 1 through n. We see that vol(Ã) = 2n−ℓ vol(∆n) = 2n−ℓ/(n!)

We let û := φ∗u ∈ W pΛk(∆n) and define ĝ ∈ LpΛk+1(∆n) via ĝ := dφ∗u. Then dû = ĝ. We let ũ ∈
W pΛk(Ã) be the extension of û onto Ã by reflection across the coordinate axes, and let g̃ ∈ LpΛk+1(Ã)

is the extension of ĝ onto Ã by reflection across the coordinate axes. By construction, ũ ∈ W p
0Λ

k(Ã)
with g̃ = dũ. We observe

∥g̃∥Lp(Ã) ≤ 2
n−ℓ
p ∥ĝ∥Lp(∆n).

By the analysis for the Bogovskĭı potential operators, Theorem 6.2, there exists ẘ ∈ W p
0Λ

k(Ã) with
dẘ = dũ satisfying the bounds

∥ẘ∥Lp(Ã) ≤ CPF,B,k,Ã,p∥g̃∥Lp(Ã). (60)

Here,

CPF,B,k,Ã,p = CB(n, k + 1) voln−1(S1(0))
δ(Ã)n

vol(Ã)
δ(Ã)

= CB(n, k + 1) voln−1(S1(0))
2n

2n−ℓ/n!
2 = CB(n, k + 1) voln−1(S1(0)) · n!2ℓ+1.

We let w̃ ∈ W pΛk(Ã) be defined by averaging the 2n−ℓ reflections of ẘ along the coordinate axes ℓ+ 1
through n. Thus,

∥w̃∥Lp(∆n) = 2−
n−ℓ
p ∥w̃∥Lp(Ã), ∥w̃∥Lp(Ã) ≤ ∥ẘ∥Lp(Ã).

Since g̃ has got the same symmetries, dw̃ = g̃.
We let w ∈ W pΛk(T ) be defined by w := φ−∗(w̃|∆n). By construction, dw = du, and w has vanishing

trace along F0 ∪ · · · ∪ Fℓ.
To complete the discussion, we recall by Proposition 5.3 that

∥w∥Lp(T ) ≤ |det(Jφ)|
1
p ∥Jφ−1∥k2∥w̃∥Lp(∆n),

∥ĝ∥Lp(∆n) ≤ |det(Jφ−1)|
1
p ∥Jφ∥k+1

2 ∥du∥Lp(T ).

It remains to use Lemma 3.3, and the desired inequality is shown.
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Remark 9.2. Under the assumptions of Lemma 9.1, the special case p = 2 allows improving the preceding
lemma. Specifically, we use a better estimate for the auxiliary constant in (60). This follows from the
results in [48] as simplices are Lipschitz domains. The complete inequality then reads: there exists
w ∈ W 2Λk(T ) such that trT,Γ w = 0 and

dw = du, ∥w∥Lp(Ω) ≤ CPF,Γ,ℓ,k,2(T )∥du∥Lp(Ω),

where

CPF,Γ,ℓ,k,p(T ) ≤
2

π
κM(T )k−1C1,n(T )δ(T ).

We conjecture that the constant can be improved further, to be independent of the tetrahedron’s eccen-
tricity, and that the result can be extended to Lebesgue exponents 1 ≤ p ≤ ∞.

We prepare some further notation for our two main results. Whenever T is an n-dimensional trian-
gulation, we use the abbreviation

CPF,Γ,k,p(T ) := max
T∈T

dim(T )=n
0≤l≤n

CPF,Γ,l,k,p(T ).

Suppose that T is an n-dimensional triangulation and has a shelling T0, T1, . . . , TM . For each 0 ≤ m ≤ M ,
we write

Xm := T0 ∪ T1 ∪ · · · ∪ Tm,

which is by Lemma 7.5 a triangulated n-dimensional submanifold with boundary. For each 1 ≤ m ≤ M ,
the interface of the new simplex to the previous intermediate triangulation is

Γm := Tm ∩Xm−1.

According to Lemma 7.16, there exists an interior simplex Sm ∈ T such that Tm is the last n-simplex in
the shelling that belongs to Tm ∈ stT (Sm). In particular, already stT (Sm) ⊆ Xm.

In addition to that, we introduce

Am−1 := stT (Sm) \ Tm

for the complement Am−1 ⊆ Xm−1 of the simplex Tm in the star stT (Sm).
The two main results of this manuscript for shellable triangulations of domains, not necessarily convex

or even star-shaped, is the following theorems. The first one is inspired by the recursive construction of
gradient potentials in Theorem 4.4. The second one is specific to the fact that shellable triangulations
are contractible.

Theorem 9.3. Let T be a shellable n-dimensional triangulation, and let the domain Ω ⊆ Rn be the
interior of the underlying set of T . Let T0, T1, . . . , TM be a shelling of T . Then for any u ∈ W pΛk(Ω),
where 1 ≤ p ≤ ∞, there exists w ∈ W pΛk(Ω) with dw = du and such that the following estimates hold:

∥w∥Lp(T0) ≤ CPF,k,T0,p∥du∥Lp(T0),

and for each Tm ∈ T , 1 ≤ m ≤ M we have the recursive estimate

∥w∥Lp(Tm) ≤ CPF,Tm,Γm,k,p(T )
(
∥du∥Lp(Tm) + C5,n,k+1,ℓ,p(T )∥du∥Lp(Am−1)

)
+ C5,n,k,ℓ,p(T )∥w∥Lp(Am−1),

where 0 ≤ ℓ < n is such that Tm has n− ℓ faces in common with the previous simplices.

Proof. Let u ∈ W pΛk(Ω). First, there exists w0 ∈ W pΛk(T0) satisfying dw0 = du over T0 together with

∥w0∥Lp(T0) ≤ CPF,k,T0,p∥du∥Lp(T0).

Suppose that 0 < m ≤ M such that there exists wm−1 ∈ W pΛk(Xm−1) with dwm−1 = du over Xm−1.
This is already true for m = 1. By assumption, Tm and Xm−1 share the interface Γm, which is a
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collection of faces of Tm. In accordance to Lemma 7.16, adding Tm completes a star in T around some
simplex Sm, and we let Am−1 ⊆ Xm−1 be the complement of Tm in that newly completed star. Write ℓ
for the dimension of Sm.

We now define, as in [22, Equations (5.12) and (5.14)] or [16, Equations (6.7) and (6.9)], the field
w̃m ∈ W pΛk(Tm) via

w̃m := u|Tm
+ Ξ∗

1

(
(wm−1 − u)|Am−1

)
. (61)

One verifies that

trF w̃m = trF u|Tm
+ trF Ξ∗

1wm−1|Am−1
− trF Ξ∗

1u|Am−1

= trF u|Tm
+ trF Ξ∗

1wm−1|Am−1
− trF Ξ∗

1u|Am−1

= trF Ξ∗
1wm−1|Am−1

= trF wm−1|Am−1
.

Moreover,

dw̃m = du|Tm
+ dΞ∗

1wm−1|Am−1
− dΞ∗

1u|Am−1

= du|Tm
+ Ξ∗

1dwm−1|Am−1
− Ξ∗

1du|Am−1
= du|Tm

.

Setting wm := wm−1 over Xm−1 and wm := w̃m + w′′
m over Tm, we thus verify wm ∈ W pΛk(Xm) with

dwm = du over Xm.
We want to estimate norms. By construction,

∥w∥Lp(Tm) ≤ ∥Ξ∗
1w|Am−1

∥Lp(Tm) + ∥u− Ξ∗
1u|Am−1

∥Lp(Tm).

Due to Lemma 9.1, which applies since trΓm

(
u|Tm

− Ξ∗
1u|Am−1

)
= 0, we have

∥u− Ξ∗
1u|Am−1

∥Lp(Tm) ≤ CPF,Tm,Γm−1,k,p

(
∥du∥Lp(Tm) + ∥dΞ∗

1u|Am−1
∥Lp(Tm)

)
≤ CPF,Tm,Γm−1,k,p

(
∥du∥Lp(Tm) + ∥Ξ∗

1du|Am−1
∥Lp(Tm)

)
.

Proposition 5.3 and Proposition 8.2 now show

∥Ξ∗
1w|Am−1

∥Lp(Tm) ≤ C5,n,k,ℓ,p(T )∥wm−1∥Lp(Am−1),

∥Ξ∗
1du|Am−1

∥Lp(Tm) ≤ C5,n,k+1,ℓ,p(T )∥dwm−1∥Lp(Am−1).

We have assumed that dwm−1 = du|Xm−1
. The existence of w ∈ W pΛk(Ω) satisfying the recursive

estimate follows.

We derive an estimate for the Poincaré–Friedrichs constant, in analogy to Theorem 4.5, though
the generalization to the exterior derivative faces a more complicated recursive structure. For ease
of discussion, we choose to present the result for a general class of recursive estimates. Of course,
implementations should make use of the simplifications warranted by the specific recursive structure,
such as the recursion presented in Theorem 9.3.

Theorem 9.4. Let T be a shellable n-dimensional triangulation, and let the domain Ω ⊆ Rn be the
interior of the underlying set of T . Let T0, T1, . . . , TM be a shelling of T . Suppose that u,w ∈ W pΛk(Ω),
where 1 ≤ p ≤ ∞, such that dw = du and the following recursive estimate holds:

∥w∥Lp(T0) ≤ A0,0∥du∥Lp(T0),

and for each Tm ∈ T , 1 ≤ m ≤ M we have the recursive estimate

∥w∥Lp(Tm) ≤
m∑
ℓ=0

Am,ℓ∥du∥Lp(Tℓ) +

m−1∑
ℓ=0

Bm,ℓ∥w∥Lp(Tℓ).
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Then we have an inequality of the form

∥w∥Lp(Ω) ≤

 M∑
m=0

(
M∑
ℓ=0

Cq
m,ℓ

) p
q


1
p

∥du∥Lp(Ω),

where q ∈ [1,∞] satisfies 1 = 1/p+ 1/q and with obvious modifications if p = 1 or p = ∞. Here,

Cm,ℓ =
∑

m=iL>···>i1≥ℓ

BiL,iL−1
· · ·Bi2,i1Ai1,ℓ.

Proof. Unwrapping the recursion, we obtain an estimate of the form

∥w∥Lp(Tm) ≤
m∑
ℓ=0

 ∑
m=iL>···>i1≥ℓ

BiL,iL−1
· · ·Bi2,i1Ai1,ℓ


︸ ︷︷ ︸

=:Cm,ℓ

∥du∥Lp(Tℓ)

Here, Cm,ℓ denotes the coefficient of ∥du∥Lp(Tℓ), possibly zero, as it appears in the unwrapped recur-
sive estimate of ∥w∥Lp(Tm). Once again, The global Poincaré–Friedrichs inequality follows via Hölder’s
inequality:

∥w∥pLp(Ω) ≤
M∑

m=0

∥w∥pLp(Tm) ≤
M∑

m=0

(
M∑
ℓ=0

Cq
m,ℓ

) p
q M∑
ℓ′=0

∥du∥pLp(Tℓ′ )
≤

 M∑
m=0

(
M∑
ℓ=0

Cq
m,ℓ

) p
q

 ∥du∥pLp(Ω),

where q ∈ [1,∞] is as described above. The proof is complete.

Remark 9.5. While our main interest in this manuscript, we point out an alternative application of
Proposition 8.2, using the second class of transformations. Those transformations are a sequence of
contractions. Here, we take inspiration from the topological observation that domains with shellable
triangulations are contractible. More specifically, we have seen that every shellable triangulation can
be transformed into a single simplex along a sequence of local bi-Lipschitz deformations, and their bi-
Lipschitz constants are controlled by the shape regularity of the triangulation.

Using successive pullbacks along those contractions, the original problem of finding a potential over the
domain is reduced to finding a potential for some right-hand side over the first simplex of the shelling. The
potential over that first simplex is then extended along successive reverse pullbacks to the whole domain.
Using the Poincaré–Friedrichs constant over the first simplex and pullback estimates (Proposition 5.3),
one obtains the following estimate.

Let T be a shellable n-dimensional triangulation, and let the domain Ω ⊆ Rn be the interior of the
underlying set of T . Let T0, T1, . . . , TM be a shelling of T and let 0 ≤ ℓm < n, for 1 ≤ m ≤ M , be such
that Tm has n − ℓm faces in common with the previous simplices. Then for any u ∈ W pΛk(Ω), where
1 ≤ p ≤ ∞, there exists w ∈ W pΛk(Ω) with dw = du such that

∥w∥Lp(Ω) ≤

(
M∏

m=1

C8,n,k+1,ℓm,p(T )C7,n,k,ℓm,p(T )

)
CPF,k,T0,p∥du∥Lp(Ω).

However, in our numerical examples (see Section 10), the estimate performs significantly worse than the
estimate derived in Theorem 9.3, which is why we choose to not deploy this method in our computations.

10 Numerical examples

We wish to assess the practical quality of our upper bounds, with exclusive focus on the Hilbert space
case p = 2. To that end, we compare our estimates for the Poincaré–Friedrichs constants with the exact
constants of a few examples domains in dimension 2 and 3. In lieu of the exact values, finite element
eigenvalue computations on a refined mesh provide reference values as a proxy for the exact value. We
study the
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Theorem 9.3 estimates the gradient, curl and divergence Poincaré–Friedrichs constants. In addition,
Theorem 4.4 provides another upper bound for the Poincaré constant. We remark that the Poincaré–
Friedrichs constant for the divergence can always be estimated by less than the diameter of the domain
(see Lemma 4.1), so our recursive estimates are of no practical interest in that case.

10.1 Software and algorithms

All computations have been implemented with an in-house C++ code developed specifically for imple-
menting finite element exterior calculus. The reference Poincaré constants are the inverse square roots
of reference eigenvalues, the latter computed as solutions of finite element eigenvalue problems in mixed
formulation over sufficiently refined meshes.

Computing the upper bound for the Poincaré constant of Theorem 4.5 requires computing paths
between simplices. One quickly sees that a spanning tree of the face-connection graph provides paths
that minimize the estimate. We choose a depth-first search that attempts to minimize the resulting
constant. While this does not take much time for small two-dimensional examples, the computation
takes considerably longer for our three-dimensional examples.

We require a shelling to apply Theorem 4.5 and estimate the upper bound for the Poincaré–Friedrichs
constant. Finding a shelling that optimizes a geometric target quantity is a challenging problem in
computational geometry and theoretical computer science. While a brute-force enumeration of shellings
is still feasible for small two-dimensional triangulations, it becomes practically infeasible in dimension
three due to the combinatorial explosion of the number of possible shellings. Instead, we perform a
backtracking search guided by a greedy strategy: Starting with a single simplex, we successively add
simplices to the partial shellings until a complete shelling is found. In choosing among the possible
candidates for the next simplex, our practical heuristic prefers those that introduce the smallest possible
geometric constants, and we further prioritize the completion of face stars because then the induced
constants are easier to control via Lemma 3.4. We repeat this backtracking approach for all possible
initial simplices, producing up to 10 shellings each time, and pick the optimal shelling among those found.
We have observed in our computations that the Poincaré–Friedrichs estimates depend on the shelling
and may differ by orders of magnitudes; the method might not necessarily produce the global optimum.

In order to ensure tight estimates, we compute the relevant geometric parameters, such as heights,
individually for each simplex and use individualized estimates for each local star. These estimates
are numerically tighter than the ones stated in Theorems 4.4 and 9.3, as we directly implement the
calculations used in the proofs.

10.2 Estimates for partial boundary conditions

The Poincaré–Friedrichs constants over simplices enter our estimates. They are subject to boundary
conditions that hold along a few faces. Since those constants appear so frequently, we prefer to have
tight upper estimates for them.

We first assess the Poincaré–Friedrichs constant over the reference simplex where boundary conditions
hold along a few faces because that constant appears repeatedly within our main result.

Whenever T is a simplex, the Poincaré–Friedrichs constants have upper bounds of the form Cδ(T ) for
some numerical constant C > 0. Lemma 9.1 and the subsequent remark (using p = 2) have established
that C = 2/π ≈ 0.45015815807. In the special case of the gradient potential, where the Poincaré constant
can be characterized variationally, the Poincaré constant without boundary conditions is already an
upper bound for the Poincaré constant with boundary conditions, and one can choose C = 1/π ≈
0.31830988618. This conforms to the well-known fact that the eigenvalues of the scalar Laplacian with
mixed boundary conditions are between the Neumann and Dirichlet eigenvalues. Finally, the factor 1/π
in the previous two estimates has a known improvement when the simplex is a triangle: then we can
replace the factor 1/π by 1/j1,1 ≈ 0.2609803592, where j1,1 is the zero of a Bessel function; see [42].

For the purpose of comparison, we compute reference Poincaré–Friedrichs constants over the reference
tetrahedron via a higher-order finite element method over a mesh after three iterations of uniform
refinement. These data are tabulated in Table 1.

With an overestimate by a factor of at most six, the estimate seems within practical range, at least
on simplices with good shape regularity. However, the results indicate room for improvement, and we
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Table 1: Reference L2 Poincaré–Friedrichs constants for the gradient, curl, and divergence operators
over the reference tetrahedron, where boundary conditions are imposed along the boundary part Γ,
computed via lowest-order finite element methods on a refined mesh. Notably, the top-left should and
the bottom-right should asymptotically coincide, as should the bottom-left and the top-right. Lemma 9.1
and Remark 9.2 give the upper bound 2/π · δ(∆3) ≈ 0.90031631615.

grad curl div
Γ = F0 ∪ F1 ∪ F2 ∪ F3 0.0862501765 0.1453729386 0.2601720480
Γ = F1 ∪ F2 ∪ F3 0.1093817645 0.1829680131 0.3493931507
Γ = F2 ∪ F3 0.1450219664 0.2428248005 0.1845090722
Γ = F3 0.2057601732 0.1527746636 0.1223402289
Γ = ∅ 0.2631059409 0.1458215887 0.0874066554

expect the overestimate to worsen as the eccentricity of the tetrahedron increases. Future estimates
should tighten the gap towards the practically observed values, including for ill-shaped simplices.

10.3 Two-dimensional examples

We consider the following example domains in two dimensions: the unit square ΩQ, the L-shaped domain
ΩL, and the slit domain ΩS :

ΩQ = (0, 1)2, ΩL = (−1, 1)2 \ (0, 1)2,
ΩS = (−1, 1)2 \ ([0, 1)× {0}).

We consider the triangulations:

• TQ: square triangulation with two triangles

• TL: L-shaped domain triangulation with four triangles

• TS : Slit domain triangulation, five triangles

• TS′ : Slit domain triangulation, 8 triangles, all of which touch the origin.

• TS′′ : Slit domain triangulation, 8 triangles, four of which touch the origin.

Only two differential operators appear in the two-dimensional de Rham complexes, and their Poincaré–
Friedrichs constants are the inverse square roots of the smallest non-zero Dirichlet and Neumann Lapla-
cians. Standard finite element eigenvalue computations on a sufficiently refined mesh (four steps of
uniform refinement) provide reference values for these.

We compare the reference Poincaré constants with the gradient potential estimate in Theorem 4.4.
Moreover, we compare the reference Poincaré–Friedrichs constants with the bounds computed in Theo-
rem 9.3. Here, we take into account Lemma 3.4 and Theorem 8.2.

The shelling-based estimate for the Poincaré constant of the gradient potential outperforms the
estimate in Section 4 in our examples where the triangles are not all congruent to each other (TL and
TS,5). That is a result of our implementation, where the face-based reflections are not necessarily onto,
which allows for some improved estimates.

10.4 Three-dimensional examples

We consider the following example domains in two dimensions: the unit cube ΩC , the Fichera corner
domain ΩF , and the crossed bricks domain ΩB :

ΩC = (0, 1)3, ΩF = (−1, 1)3 \ [0, 1)3,
ΩB = ((−1, 0)× (−1, 0)× (−1, 1))

∪ ((−1, 0)× (−1, 1)× (−1, 0))

∪ ((−1, 1)× (−1, 0)× (−1, 0)) .

We consider the triangulations:
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Table 2: Estimates for L2 Poincaré–Friedrichs constants over various triangulated 2D domains. Refer-
ence values for the gradient and divergence (2nd and 7th column) computed with finite element methods
together with estimates and ratios: Theorem 4.4 (3rd and 4th column), using Theorem 9.3 with k = 0
(5th and 6th column), and using Theorem 9.3 with k = 0 (8th and 9th column). Note that the divergence
constant can always be estimated using Lemma 4.1.

grad ref grad est grad ratio grad est grad ratio div ref div est div ratio
TQ 0.318 0.904 2.842 0.904 2.842 0.225 1.339 5.953
TL 0.822 2.381 2.896 1.421 1.729 0.322 2.505 7.781
TL′ 0.822 2.391 2.909 2.391 2.909 0.322 4.053 12.587
TS,5 0.978 2.752 2.814 1.779 1.819 0.346 3.717 10.744
TS′ 0.978 3.131 3.202 3.131 3.202 0.346 5.453 15.762
TS′′ 0.978 2.761 2.824 2.761 2.824 0.346 4.662 13.476

Table 3: Estimates for L2 Poincaré–Friedrichs constants of the gradient over various triangulated 3D
domains. Reference values for the gradient (2nd column) computed with finite element methods together
with estimates and ratios: Theorem 4.4 (3rd and 4th column), and using Theorem 9.3 with k = 0 (5th
and 6th column).

grad ref grad est grad ratio grad est grad ratio
TC,5 0.317 4.317 13.581 3.246 10.214
TC,K 0.317 3.571 11.23 11.034 34.722
TB,5 1.022 7.698 7.5285 25.972 25.397
TB,K 1.022 10.106 9.8824 53.763 52.573
TF 0.711 10.622 14.927 268.071 377.033

• TC,5: cube triangulation with five tetrahedra

• TC,K : Kuhn triangulation of the cube, consisting of six tetrahedra

• TB,5: crossed bricks, four copies of TC,5

• TB,K : crossed bricks, four copies of TC,K

• TF : Fichera corner, 24 simplices

The reference Poincaré–Friedrichs constants for the gradient, curl, and divergence operators are found
via standard finite element eigenvalue computations, using the lowest-order finite element de Rham
complex over a sufficiently refined mesh (four steps of uniform refinement). Again, we compare these
reference values with estimates obtained Theorem 9.3, and in the special case of the gradient, with
Theorem 4.4.

11 Outlook

The primary contribution of this manuscript is the derivation of upper bounds of Poincaré–Friedrichs
constants for the curl and divergence operators over local patches in low dimensions (i.e., n = 2 or
n = 3). However, we believe there are ample opportunities to refine our estimates of Poincaré–Friedrichs
constants, both conceptually and algorithmically, and extend the technique to further applications.

We use local Poincaré–Friedrichs inequalities over single simplices, subject to boundary conditions
along some faces. We believe that tighter estimates of these are achievable. In particular, we conjecture
that the improvements for triangles [42] have analogs for tetrahedra.

The gradient Poincaré–Friedrichs constant already dominates the Poincaré–Friedrichs constants of
the L2 de Rham complex without boundary conditions (or with full boundary conditions) over convex
domains [36, 48]. We believe that this relationship extends to the entire range of Lebesgue exponents
1 ≤ p ≤ ∞, improving on the Poincaré–Friedrichs constants derived via the regularized Poincaré and
Bogovskĭı operators.
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Table 4: Estimates for L2 Poincaré–Friedrichs constants over various triangulated 3D domains. Ref-
erence values for the curl and divergence (2nd and 5th column) computed with finite element methods
together with estimates and ratios that rely on Theorem 9.3 with k = 1 (3rd and 4th column) and
with k = 2 (5th and 6th column). Note that the divergence constant can always be estimated using
Lemma 4.1.

curl ref curl est curl ratio div ref div est div ratio
TC,5 0.225 141.148 627.310 0.183 3.391 18.453
TC,K 0.225 12.157 54.030 0.183 25.899 140.920
TB,5 0.331 113.084 341.056 0.233 152.886 655.993
TB,K 0.331 162.687 490.655 0.233 512.273 2198.026
TF 0.554 25752.342 46403.302 0.310 8958.467 28835.266

Our method hinges on extending differential forms onto a simplex from the complement of that
simplex within a local star. Whilst the present manuscript realizes this extension via pullback along a
bi-Lipschitz mapping, better estimates might be possible via different techniques, e.g., carefully analyzing
trace and extension theorems.

On the algorithmic part, even though merely checking whether a general triangulation has a shelling
is known to be computationally infeasible [32], there might be more efficient algorithms for constructing
shellings for practically relevant triangulations while optimizing geometric target heuristics.

We anticipate the present results to generalize to shellable polytopal complexes. Apart from the
intrinsic interest in polytopal simplicial complexes, such extensions are already relevant for simplicial tri-
angulation: As a rule of thumb, the estimates deteriorate as the number of simplices increases. Lumping
simplices into a few polytopal subdomains for which the Poincaré–Friedrichs constants are controllable
could improve the estimates. For example, the crossed bricks domain easily partitions into four quadri-
laterals.

Lastly, estimating Poincaré–Friedrichs constants over domains and manifolds with shellable triangu-
lations is fundamentally restricted to topological balls and spheres. However, we expect our estimates
over local patches to serve as subcomponents in estimating Poincaré–Friedrichs constants of general
n-dimensional triangulated manifolds.
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