
Numerical Methods for Convex Optimization and Their
Applications

Jiyue Zeng, supervised by Martin Licht and Mareike Dressler

April 2021

Preface

This thesis mainly studies some numerical methods for constrained and unconstrained minimization
problem for convex functions. Topics cover gradient descent method, conjugate gradient method,
Newton’s method, barrier method and finite element method. This thesis explains the intuition of
the design of these methods, provides detailed algorithms, and includes some examples and graphs
to illustrate the effect of each method. This thesis provides convergence analysis for some methods,
which explains why the algorithm works.

Here is a guide for readers: the first chapter lists all notations that are used frequently in this
thesis. The second chapter summarizes background knowledge about convex functions and some
good properties they have. This section introduces the object that we will be working on for the rest
of the paper. The third chapter briefly introduces the statement of a convex optimization problem
and illustrates gradient descent method, conjugate gradient method and their applications. The
fourth chapter introduce Newton’s descent direction, Newton decrement, two phases convergence
analysis and some examples, all of which are key ingredients for Newton’s method. In addition, it
talks about the application of Newton’s method to a specific kind of function, the self-concordant
function. The fifth chapter shows the effect of the barrier method(or Interior-point method) for
inequality and equality constrained convex optimization problem. Newton’s method plays an im-
portant role in the development of barrier method. The last chapter briefly talks about the finite
element method. This method cuts the domain of the function into segments and approximates the
function by linear functions.

1

Contents

0.1 Introduction . 3
0.2 Preliminaries . 4

0.2.1 Notation . 4
0.2.2 Affine Sets . 4
0.2.3 Convex Set . 5
0.2.4 Cones . 5
0.2.5 The Gradient and Hessian Matrix . 5
0.2.6 Convex function . 6
0.2.7 Affine function . 9

0.3 Convex optimization . 10
0.3.1 Introduction . 11
0.3.2 Gradient Descent Method . 12
0.3.3 Convergence Analysis of Gradient Descent Method 14
0.3.4 Conjugate Gradient Method . 17

0.4 Newton’s Method . 26
0.4.1 The descent direction . 27
0.4.2 The Newton Decrement . 28
0.4.3 Convergence Analysis of Newton’s Method 29
0.4.4 Algorithm . 33
0.4.5 Examples . 34
0.4.6 Newton’s Method for Self-concordant Functions 36

0.5 Interior-point Method . 44
0.5.1 Primal and Dual Problem . 44
0.5.2 Newton’s Method with Equality constraints 46
0.5.3 Barrier Method and Logarithmic Barrier Function 49

0.6 Finite Element Method . 53

2

0.1 Introduction

3

0.2 Preliminaries

0.2.1 Notation

0.2.2 Affine Sets

Definition 0.2.2.1. We say that a set C ⊆ Rn is affine if for every x, y ∈ C and λ ∈ R, λx +
(1− λ) y ∈ C, i.e., for some x, y ∈ C, α, β ∈ R, αx+ βy ∈ C if α + β = 1.

Lemma 0.2.2.2. More elements can be added as long as the sum of all coefficients is one. Then
we can generalize this definition as follows: if C is an affine set, then, for all x1, x2, · · · , xn ∈ C,
λ1x1 + λ2x2 + · · ·+ λnxn ∈ C if λ1 + λ2 + · · ·+ λn = 1.

Definition 0.2.2.3. The linear combination λ1x1 + λ2x2 + · · ·+ λnxn where λ1 + λ2 + · · ·+ λn = 1
is called as an affine combination.

With this definition, we know that an affine set contains all affine combinations of its elements.

Definition 0.2.2.4. A set S ⊆ Rn is defined to be an affine subspace of Rn if there exist a point
p ∈ Rn and a subspace U ⊆ Rn such that

S = p+ U = {p+ u |u ∈ U}.

Note that since a vector space is closed under addition and scalar multiplication, it is also an
affine set. Intuitively speaking, an affine set is developed by shifting the vector space along the
direction of a vector away from the origin.

Example 0.2.2.5. If A ∈ Rm×n and b ∈ Rm, then C = {x ∈ Rn|Ax = b} is an affine subset of Rn.
To see this, choose x1, x2 ∈ C. Then we know that Ax1 = b and Ax2 = b. For an arbitrary α ∈ R,

A (αx1 + (1− α)x2) = αAx1 + (1− α)Ax2 = b.

Hence, for all α ∈ R, αx1 + (1− α)x2 ∈ C, which means that C is an affine set.

Theorem 0.2.2.6. Every proper affine subspace V of Rn is in the form of {x ∈ Rn|Ax = b} for
some A ∈ Rm×n with linearly independent rows and b ∈ Rm.

Proof. Since V is an affine subspace, we know that there exists p ∈ R and a subspace U of Rn

such that V = p + U . Suppose U has a basis {u1, u2, · · · , uk}, k < n. We want to find an A such
that Ap = b and AU = 0. Now, we define a matrix W = [u1 u2 · · · uk]. Then we find a basis
{a1, a2, · · · , am} with m = n− k of the set {ai ∈ Rn|W Tai = 0}. We define A = [a1 a2 · · · am]T and
b = Ap. Finally, we get AV = A(p+ U) = b, which gives the result.

Definition 0.2.2.7. For an arbitrary set S ⊆ Rn, the affine hull, denoted aff(S), is a set con-
taining all affine combinations of elements in S:

aff(S) =

{
k∑

i=1

λixi

∣∣∣∣x1, x2, · · · , xk ∈ S, λ1, λ2, · · · , λk ∈ R,
k∑

i=1

λi = 1

}
.

The affine hull aff(S) is the smallest affine set that contains S.

4

0.2.3 Convex Set

Definition 0.2.3.1. A set S is a convex set if for every two points in S the line connecting
these two points is contained in S. Mathematically, S is a convex set if for every x1, x2 ∈ S, λx1 +
(1 − λ)x2 ∈ S for every 0 ≤ λ ≤ 1. To generalize this definition, if S is convex, then for every
x1, x2, · · · , xn ∈ S, λ1x1+λ2x2+ · · ·+λnxn ∈ S with λ1+λ2+ · · ·+λn = 1 and λ1, λ2, · · · , λn ≥ 0.

From the definition, an affine set is automatically a convex set.

Definition 0.2.3.2. The linear combination λ1x1 + λ2x2 + · · ·+ λnxn with λ1 + λ2 + · · ·+ λn = 1
and λi ≥ 0 for 1 ≤ i ≤ n is called a convex combination.

Definition 0.2.3.3. The convex hull of a set S, denoted conv(S), is the set of all convex combi-
nations of elements in S. In other words,

conv(S) =

{
n∑

i=1

λixi |
n∑

i=1

λi = 1, λi ≥ 0, xi ∈ S

}
.

The convex hull conv(S) is the smallest convex set that contains S, i.e., if S ⊆ U and U is a
convex set, then we must have conv(S) ⊆ U .

0.2.4 Cones

Definition 0.2.4.1. A set S is a cone if for every x ∈ S and every λ ≥ 0, λx ∈ S. We say a set
S is a convex cone if it is convex and is a cone, i.e., for every x1, x2 ∈ S, λ1, λ2 ≥ 0, we have
λ1x1 + λ2x2 ∈ S.

Proposition 0.2.4.2. The intersection of two convex cones in the same vector space is a convex
cone, but the union may not be.

Proof. Suppose we have two convex cones, S and U . Assume x, y ∈ S ∩ U and α, β ≥ 0. Since
S and U are two convex cones, αx + βy ∈ S as well as ∈ U , which means that αx + βy ∈ S ∩ U.
Hence, S ∩ U is a convex cone. However, the union may not be. For example, the union of two
different lines passing through the origin in R2.

0.2.5 The Gradient and Hessian Matrix

Definition 0.2.5.1. The gradient of a scalar-valued differentiable function f : Rn → R is defined
as ∇f : Rn → Rn,

∇f(x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .

To write the gradient as a linear combination of standard basis ei, we get

∇f(x) =
∂f

∂x1

(x)e1 +
∂f

∂x2

(x)e2 + · · ·+ ∂f

∂xn

(x)en.

It measures how fast the function changes with respect to each standard basis vector ei.

5

Theorem 0.2.5.2. A differentiable function f increases the fastest along the direction of the gra-
dient.

Proof. Let u be a unit vector. The dot product ∇f(x) · u is the directional derivative of f at x
along u, which measures the rate of change of f along u. Since ∇f(x) · u = |∇f(x)||u|cos(θ),
we choose u to be the unit vector along the direction of the gradient, that is u = ∇f(x)

|∇f(x)| . Then

∇f(x) · ∇f(x)
|∇f(x)| reaches its maximum |∇f(x)| since cos(θ) = 1. Hence, ∇f(x) is the direction that

makes the function increases the most.

Definition 0.2.5.3. Suppose we have a function f : Rn → R whose second partial derivatives are
defined and continuous all over the domain. The Hessian matrix Hf of f is defined to be

Hf =


∂2f

∂x1∂x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

. . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn∂xn

 .

The Hessian matrix is symmetric because all second partial derivatives are continuous, and Hf

can also be denoted as ∇2f .

Definition 0.2.5.4. Suppose we have a function f : Rn → Rm whose first derivatives all exist. The
Jacobian matrix of f is a m×n matrix defined as

J =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 .

The gradient is the Jacobian matrix of a scalar-valued function. The Hessian matrix is the
Jacobian matrix of the gradient of f , i.e., Hf = J(∇f).

0.2.6 Convex function

Definition 0.2.6.1. Suppose we have a convex set S ⊆ Rn and a function f : S → R. The function
f is convex if for all λ ∈ [0, 1] and for all x,y ∈ S, we have f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).

Note that a function is concave if it satisfies the opposite, i.e., if f(λx + (1 − λ)y) ≥ λf(x) +
(1− λ)f(y), then f is concave.

Theorem 0.2.6.2. A local minimum of a convex function f : Rn → R is also a global minimum.

Proof. Suppose we have a convex function f : Rn → R and its local minimum x∗. Then there exists
an open ball Br(x

∗) centered at x∗ with radius r and for all x ∈ Br(x
∗), f(x∗) ≤ f(x). We choose

an arbitrary point y ̸= x from the domain of f . Then we choose a constant α ∈ (0, 1) such that
αx∗ + (1− α)y ∈ Br(x

∗), which means the following:

∥αx∗ + (1− α)y − x∗∥ ≤ r

=⇒ (1− α) ∥y − x∗∥ ≤ r

=⇒ α ≥ 1− r

∥y − x∗∥
.

6

Hence, α ∈ (0, 1)
⋂[

1− r

∥y − x∗∥
,+∞

]
. It is easy to see that there exists a possible α. Since f is

convex, we know that
f(x∗) ≤ f(αx∗ + (1− α)y)

=⇒ f(x∗) ≤ αf(x∗) + (1− α)f(y)

=⇒ (1− α)f(x∗) ≤ (1− α)f(y)

=⇒ f(x∗) ≤ f(y).

Hence, for any y ∈ dom (f), f(x∗) ≤ f(y), which tells us that f(x∗) is a global minimum.

If the function is strictly convex, then it has a unique global minimum. Now we give another
way to determine the convexity of a function.

Theorem 0.2.6.3. A function f : Rn → R is convex if and only if f is convex along every line,
i.e., g : R → R, defined by g(t) = f(x+ tv), is convex for all x ∈ dom (f),v ∈ Rn.

Proof. (⇒) Since f is convex over Rn, f is also convex on a line x + tv. Hence, g is a convex
function.
(⇐) For any two points x,y ∈ Rn, we can find a vector v ∈ Rn and t ∈ R such that y = x + tv.
Since g is convex, f is also convex.

Theorem 0.2.6.4. Suppose f : Rn → R is differentiable. The function f is convex if and only if
for all x,y ∈ Rn, f(x) ≥ f(y) +∇f(y)(x− y).

Proof. (⇒) We choose arbitrary x,y ∈ Rn. Let z = λx + (1 − λ)y for some λ ∈ [0, 1]. Since f is
convex, we know that

f(z) = f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Subtracting f(y) on both sides and then simplifying the equation, we get

f(y + λ(x− y))− f(y) ≤ λf(x) + (1− λ)f(y)− f(y),

f(y + λ(x− y))− f(y) ≤ λ(f(x)− f(y)),

f(y + λ(x− y))− f(y)

λ
≤ f(x)− f(y), forλ ∈ (0, 1].

Taking the limit as λ goes to 0, we get

lim
λ→0

f(y + λ(x− y))− f(y)

λ
= ∇f(y) · (x− y),

This computes the directional derivative of f at y in the direction of vector x − y. Since the
inequality holds for all λ ∈ (0, 1], we get for all x,y ∈ Rn, f(x) ≥ f(y) +∇f(y)(x− y).
(⇐) We choose arbitrary x,y ∈ Rn and λ ∈ [0, 1]. Let z = λx + (1 − λ)y. We know that
f(x) ≥ f(z)+∇f(z)(x− z) and f(y) ≥ f(z)+∇f(z)(y− z). We multiply λ to the first inequality
and 1− λ to the second inequality and then get

λf(x) ≥ λf(z) + λ(1− λ)(x− y)

(1− λ)f(y) ≥ (1− λ)f(z) + λ(1− λ)(y − x)

7

Adding up these two inequalities, we get

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

Hence, f is convex.

Theorem 0.2.6.5. Suppose f : Rn → R is twice continuously differentiable. The function f is
convex if and only if the Hassian matrix of f is positive semi-definite.

Proof. (⇒) Since f is convex, from Theorem 1.5.4 we know that

∀x,y ∈ Rn, f(x) ≥ f(y) +∇f(y)(x− y).

Therefore,
f(y) +∇f(y)(x− y) ≤ f(x) ≤ f(y) +∇f(x)(x− y)

∇f(y)(x− y) ≤ f(x)− f(y) ≤ ∇f(x)(x− y)

(∇f(x)−∇f(y))(x− y) ≥ 0.

Since this inequality holds for all x,y ∈ Rn, we choose x,x + h ∈ Rn for an arbitrary h ∈ Rn and
we have,

(∇f(x+ h)−∇f(x))h ≥ 0.

Since f is twice continuously differentiable, we have for all t > 0,

∇f(x+ th)−∇f(x) = ∇2f(x)th+ r(th),

and

lim
t→0

|r(th)|
|th|

= 0.

Then,
hT (∇f(x+ th)−∇f(x)) = hT∇2f(x)th+ hT r(th) ≥ 0,

for all h ∈ Rn and t > 0. Taking the limit as t goes to 0, we have

lim
t→0

hT (∇f(x+ th)−∇f(x))

t
= lim

t→0
hT∇2f(x)h+

hT r(th)

t

= hT∇2f(x)h+ lim
t→0

hT r(th)

t
= hT∇2f(x)h ≥ 0.

This tells us that ∇2f(x) ⪰ 0, which is the notation for a matrix to be positive semi-definite.
(⇐) According to the second-order Taylor polynomial for f , we have that ∀y ∈ Rn,

f(x) = f(y) +∇f(x)(y − x) +
1

2
(y − x)T∇2f(z)(y − x),

for some z between x and y. Since ∇2f is positive semi-definite, we know that

1

2
(y − x)T∇2f(z)(y − x) ≥ 0,

which implies that
f(x) ≥ f(y) +∇f(x)(y − x).

Theorem 1.5.4 tells us that f is a convex function.

8

0.2.7 Affine function

Definition 0.2.7.1. A function f : Rn → Rm is affine if there exist a linear function h : Rn → Rm

and a constant vector b ∈ Rm such that f(x) = h(x) + b.

From the definition, an affine function is a linear function plus a constant vector. An affine
function is both concave and convex:

f(λx+ (1− λ)y) = h(λx+ (1− λ)y) + b

= λh(x) + (1− λ)h(y) + λb+ (1− λ)b

= λf(x) + (1− λ)f(y).

9

0.3 Convex optimization

In this section, we introduce what a convex optimization problem is and provides two numerical
methods, Gradient descent method and Conjugate gradient method. Gradient descent method is
generated to iteratively find the minimum point of a convex and twice continuously differentiable
function by using the negative gradient as the descent direction. Conjugate gradient method is an
efficient way in solving large systems of linear equations.

10

0.3.1 Introduction

Definition 0.3.1.1. Suppose we have a convex function f0 : Rn → R, several other convex functions
fi : Rn → R for 1 ≤ i ≤ m, and an affine function h : Rn → Rm.

A convex optimization problem has the following form,

min f0(x)

subject to fi(x) ≤ 0, for 1 ≤ i ≤ m

h(x) = 0.

We define the feasible set of this convex optimization problem, denoted by X, to be

X =

{
x ∈

(
p⋂

i=0

dom (fi)

)⋂
dom (h)

∣∣∣ fi(x) ≤ 0, for 1 ≤ i ≤ p, and h(x) = 0

}
,

where dom (f) is the notation for the domain of the function f . The optimal point of this standard
convex optimization problem is

x∗ = inf {f0(x) |x ∈ X}.
The problem becomes an unconstrained convex optimization problem if there is no fi ≤ 0 and h = 0
constraints.

Note that h(x) = 0 can usually be written in the form of Ax = b, or ai · x = bi, where ai is the
i-th row of A and bi denotes the i-th entry of b.

Since h is affine and f0, fi are convex, we know that the whole system is convex, which imme-
diately tells that the a local minimum is the optimal solution to this convex problem.

On top of that, we know that the feasible set X must also be convex since it is an intersection
of convex domains.

Theorem 0.3.1.2. Suppose f0 is differentiable. The point x is optimal if and only if for all y in
the feasible set X, ∇f0(x)(y− x) ≥ 0.

Proof. (⇐) Since ∇f0(x)(y − x) ≥ 0 and f0 is convex, we know that for all y ∈ X, f0(y) ≥
f0(x) +∇f0(x)(y− x) ≥ f0(x). Hence, x is optimal.

(⇒) We prove by contradiction. Suppose x is optimal and there exists y ∈ X such that
∇f0(x)(y− x) < 0. Let z = (1− t)x+ ty. Then

lim
t→0

f0(z)− f0(x)

t
= lim

t→0

f0(x+ t(y− x))− f0(x)

t
= ∇f0(x)(y− x) < 0.

Hence, for a very small t, we can find z very close to x such that f0(z) < f0(x), which contradicts
with the fact that x is optimal.

Corollary 0.3.1.3. If there is no inequality or equality constraint, i.e., the problem is an uncon-
strained convex optimization problem, then x is optimal if ∇f0(x) = 0.

Proof. If x is optimal, from Theorem 2.1.2, we know that for all y ∈ X, which denotes the feasible
set, ∇f0(x)(y − x) ≥ 0. Choose λ > 0 small enough such that y = x − λ∇f0(x) ∈ X. Then we
know that

∇f0(x)(x− λ∇f0(x)− x) = −λ||∇f0(x)||2 ≥ 0.

Hence, ∇f0(x) = 0.

11

This corollary gives a stopping criterion, that is ∥∇f(x)∥ ≤ ϵ. Now we first consider the
unconstrained convex optimization problem.

0.3.2 Gradient Descent Method

Suppose we have a convex function f : Rn → R that is twice continuously differentiable and has a
compact domain. We know that f must attain its minimum in the domain. Then how do we find
the x that obtains the minimum?

We start from an arbitrary point on the graph and want to find a path that leads us to min f .
We can denote this searching path by a sequence of xi in the domain. We define the path by the
following equation,

xi+1 = xi + ti∆xi for i ≥ 1,

where xi is the current step, xi+1 is the next step, and ti∆xi is the step size. The step size consists
of a vector ∆xi that indicates the direction and a constant ti that decides how much it moves along
the direction. The following graph is an example of such an xi path.

Figure 1: gradient descent with exact line search

The gradient descent method suggests that we should use the negative gradient, −∇f(xi), as
the direction, i.e., ∆xi = −∇f(xi). This choice makes sense because Theorem 1.4.2 says that f
increases the fastest along ∇f , which implies that f decreases the fastest along −∇f . The fact that
f is convex tells that

∇f(xi)(xi+1 − xi) ≥ 0 ⇒ f(xi+1) ≥ f(xi).

Therefore, the precondition for obtaining a decreasing sequence is that

∇f(xi)(xi+1 − xi) ≤ 0. (1)

After replacing (xi+1 − xi) by the step size, we have

∇f(xi)(−t∇f(xi)) ≤ 0

12

and then simplify it,
−t ∥∇f(xi)∥2 ≤ 0,

which is always true if t ≥ 0. Hence, the precondition for obtaining a decreasing sequence is
guaranteed when we use negative gradient. Notice that −∇f(xi) changes at each step depending
on which xi we plug in.

With the direction already defined, what is left is to find ti for the step size. There are two ways
to find the constant ti.

1st Way 0.3.2.1. Exact Line Search
Define t = {t ≥ 0 | t minimizes f(xi − t∇f(xi))}. This guarantees that f(xi − t∇f(xi)) ≤ f(xi)

because t minimizes the function value. To find t, we take the derivative of f(xi − t∇f(xi)) with
respect to t,

d

dt
f(xi − t∇f(xi)) = ∇f(xi − t∇f(xi))

d

dt
(xi − t∇f(xi))

= −∇f(xi+1)
T∇f(xi)

= 0.

(2)

Since ∇f(xi) is the i-th direction and ∇f(xi+1) is the i+1-th direction, the fact that their dot product
is 0 implies that these two directions are orthogonal. Therefore, by using exact line search, we get
a zigzag searching path.

The exact line search works when the function has such a nice formula for its gradient that we
can solve for t explicitly. When the cost of computation is very expensive, we should switch to the
backtracking line search.

Algorithm 1: Gradient Descent Method With Exact Line Search

graDesExact (f, x0, ϵ, max iter);
Input : x0, ϵ, max iter
Output: x∗

xi = x0;
t = 0;
count = 0;
while ∥∇f(xi)∥ > ϵ & count ≤ max iter do

count = count+ 1;

update t by solving d
dt
f(xi − t∇f(xi)) = 0;

xi = xi − t∇f(xi);

return xi;

2nd Way 0.3.2.2. Backtracking Line Search

Algorithm 2: Backtracking Line Search

initialization: xi, xi+1 = xi − t∇f(xi), t = t0 > 0, γ ∈ (0, 1), α ∈ (0, 1
2
);

while f(xi)− f(xi+1) < αt ∥∇f(xi)∥2 , do
t = γt, xi+1 = xi − t∇f(xi);

end

13

The while loop will quit after finite iterations because of the following.
By the second order Taylor’s expansion of the function,

f(xi+1) = f(xi)− t ∥∇f(xi)∥2 +
1

2
t2∇f(xi)

T∇2f(y)∇f(xi),

for some y between xi and xi+1. When t is very small, we know that the last term is of O(t2) and
can be ignored. Then, we know for α < 1

2
,

f(xi)− f(xi+1) = t ∥∇f(xi)∥2 > αt ∥∇f(xi)∥2 .

We know that t can be arbitrarily small within finite iterations because γ < 0.
To be more precise about the possible range of t, we assume one more condition. Suppose the

largest eigenvalue of ∇2f is bounded by M , i.e., ∇2f ⪯ M I. The stopping criterion of the while
loop can be rewritten as

t ∥∇f(xi)∥2 −
1

2
t2∇f(xi)

T∇2f(y)∇f(xi) ≥ αt ∥∇f(xi)∥2 .

After simplifying the inequality, we get

(1− α)t ∥∇f(xi)∥2 ≥
1

2
t2∇f(xi)

T∇2f(y)∇f(xi).

With the upper bound on ∇2f , we know that

1

2
t2∇f(xi)

T∇2f(y)∇f(xi) ≤
1

2
t2 ∥∇f(xi)∥2M.

(1− α)t ∥∇f(xi)∥2 ≥
1

2
t2 ∥∇f(xi)∥2M,

t ≤ 2(1− α)

M
. (3)

Therefore, the while loop must end when t ∈ (0,min{2(1−α)
M

, t0}), which implies that t ≥ 2(1−α)γ
M

.
The algorithm guarantees that there is a decent amount of decrease in f and the step size is not too
big.

0.3.3 Convergence Analysis of Gradient Descent Method

Assume the function f : Rn → R is strongly convex, which means that we can bound its Hessian
matrix, mI ⪯ ∇2f ⪯ M I. As before, we let f(x∗) denote the minimum of f . By the second order
Taylor’s expansion, we have for all x, y ∈ dom(f),

f(y) = f(x) +∇f(x)(y − x) +
1

2
(y − x)T∇2f(x)(y − x)

≥ f(x) +∇f(x)(y − x) +
1

2
m ∥y − x∥2 .

14

Algorithm 3: Gradient Descent Method With Backtracking Line Search

graDesBack (f, x0, ϵ, max iter);
Input : x0, ϵ, max iter
Output: x∗

xi = x0;
xi+1 = xi − t∇f(xi);
t = 1;
count = 0;
α = 0.25;
γ = 0.5;
while ∥∇f(xi)∥ > ϵ & count ≤ max iter do

count = count+ 1;

while f(xi)− f(xi+1) < αt ∥∇f(xi)∥2 , do
t = γt;
xi+1 = xi − t∇f(xi);

xi = xi − t∇f(xi);

return xi;

Consider the righthand side as a quadratic function with variable y − x. It reaches the minimum
when y − x = 1

m
∇f(x). After taking the minimum on both sides, we get

f(x∗) ≥ f(x) +∇f(x)(
1

m
∇f(x)) +

m

2

∥∥∥∥ 1

m
∇f(x)

∥∥∥∥2
= f(x)− 1

2m
∥∇f(x)∥2.

Therefore,
∥∇f(x)∥2 ≥ 2m(f(x)− f(x∗)) (4)

From the second order Taylor’s expansion, we get

f(xi − t∇f(xi)) = f(xi)− t ∥∇f(xi)∥2 +
1

2
t2∇f(xi)

T∇2f(xi)∇f(xi). (5)

Applying the upper bound M I on (5),

f(xi − t∇f(xi)) ≤ f(xi)− t ∥∇f(xi)∥2 +
1

2
t2M ∥∇f(xi)∥2 . (6)

Consider both sides as functions of t. Then the righthand side is simply a real-valued single variable
quadratic function whose minimum is obtained at t = 1

M
. The minimum of the lefthand side via

exact line search is just f(xi+1). Hence, after minimizing both sizes over the variable t and applying
(3), we have

f(xi + 1) ≤ f(xi)−
1

2M
∥∇f(xi)∥2

≤ f(xi)−
m

M
(f(xi)− f(x∗)).

15

Then subtract f(x∗) on both sides,

f(xi + 1)− f(x∗) ≤
(
1− m

M

)
(f(xi)− f(x∗)). (7)

Since m/M < 1, we know that the sequence {f(xi) − f(x∗)}∞i=1 converges to 0. By recursively
applying (7), we get

f(xi)− f(x∗) ≤
(
1− m

M

)i
(f(x0)− f(x∗)).

Things are sightly different when the backtracking line search is used. Based on the while
condition from the algorithm of backtracking line search, we know that

f(xi)− f(xi+1) ≥ αt ∥∇f(xi)∥2 .

We can replace t by 2(1−α)γ
M

from (3),

f(xi)− f(xi+1) ≥
2α(1− α)γ

M
∥∇f(xi)∥2

≥ 4mα(1− α)γ

M
(f(xi)− f(x∗)).

Substracting f(x∗) on both sides,

f(xi)− f(x∗) ≥ f(xi+1)− f(x∗) +
4mα(1− α)γ

M
(f(xi)− f(x∗)),(

1− 4mα(1− α)γ

M

)
(f(xi)− f(x∗)) ≥ f(xi+1)− f(x∗). (8)

We know that 4mα(1−α)γ
M

< 1 because α(1 − α) ≤ 1
4
and m

M
, γ < 1. Hence, after applying (8)

recursively, we get

f(xi)− f(x∗) ≤
(
1− 4mα(1− α)γ

M

)i

(f(x0)− f(x∗)).

Now, we apply the gradient descent method to a quadratic function with exact line search and
backtracking line search respectively.

Example 0.3.3.1. Suppose we have a convex quadratic function f(x) = xTAx + bx + c where

A =

[
2 1
5 7

]
, b =

[
4
6

]
, c = 5. The optimal point x∗ that gives the minimum value of f is x∗ =

[
−1
0

]
.

We fix a starting point x0 =

[
1
1

]
. Figure 1, 2 are graphs of gradient descent method with exact line

search and backtracking line search respectively. The blue lines on the graph represent the path of
xi starting from [1, 1], ending at [0,−1]. Figure 3, 4 are the projections of Figure 1, 2 onto the x, y
plane.

16

Figure 2: gradient descent with exact
line search

Figure 3: gradient descent with back-
tracking line search

Figure 4: The searching path with exact
line search

Figure 5: The searching path with back-
tracking line search

From Figure 1, 3, we see that the searching path of the exact line search has a zigzag shape.
Comparing Figure 3, 4, we also see that exact line search takes much fewer steps than backtracking
line search. This is because on each step, exact line search finds the best xi+1 that minimize the
function value while backtracking line search takes a small range of xi+1 that provides some decrease.

0.3.4 Conjugate Gradient Method

We narrow down the problem from minimizing a twice continuously differentiable convex function
to minimizing a quadratic function, f(x) = 1

2
xTAx + bx + c. Before presenting the conjugate

gradient method, we introduce the concept of A-conjugacy.

17

Definition 0.3.4.1. Suppose we have a positive definite square matrix A ∈ Rn×n. Two nonzero
vectors u, v ∈ Rn are A-conjugate if uTAv = 0.

See Figure 6 for geometric explanations.

Theorem 0.3.4.2. Suppose A is a positive definite n×n square matrix. If u, v are nonzero vectors
that are mutually A-conjugate, then u, v are linearly independent.

Proof. In order to show linear independence, it suffice to show that c1u + c2v = 0 implies c1 = 0,
c2 = 0. Multiplying Av on both sides, we get c1u

TAv + c2v
TAv = 0. Since A is positive definite,

v is not a zero vector, we get vTAv > 0. Since u,v are A-conjugate, uTAv = 0. Hence, c2 = 0 and
then c1 = 0.

If A is the identity matrix, then A-conjugacy is the same as orthogonality. If the matrix A
is instead a symmetric positive definite n × n square matrix and if we have a set of n mutually
A-conjugate vectors {ui}ni=1 ∈ Rn with respect to A, then {ui}ni=1 form a basis of Rn. Any vector
x ∈ Rn can be written as x =

∑n
i=1 αiui, αi ∈ R.

Theorem 0.3.4.3. Gram-Schmidt Algorithm
Suppose A is a symmetric positive definite n × n square matrix. If we start with a sequence

of linearly independent vectors {vi}ni=1 ∈ Rn, we can generate a sequence of mutually A-conjugate
vectors {uk}nk=1 ∈ Rn from it.

Proof. Set u1 = v1. Let u2 = v2 + γ2u1, for some γ ∈ R. Since we want u2,u1 to be mutually
A-conjugate, we multiply Au1 on both sides:

uT
2Au1 = vT

2Au1 + γ2u
T
1Au1

0 = vT
2Au1 + γ2u

T
1Au1

γ = −vT
2Au1

uT
1Au1

.

To finish the induction precess, let uk = vk +
∑k−1

j=1 γjuj. We multiply Aum, for some m ∈
{1, 2, · · · , k − 1}, on both sides of the equation:

uT
kAum = vT

kAum +
k−1∑
j=1

γju
T
j Aum.

We want uk to be A-conjugate to all previous ui, i ∈ {1, 2, · · · , k−1} and ui,uj are already mutually
A-conjugate. Therefore, we obtain

0 = vT
kAum + γmu

T
mAum.

γm = −vT
kAum

uT
mAum

. (9)

We can get all coefficients γm,m ∈ {1, 2, · · · , k − 1} by doing the same algebra. Hence, we have
created a sequence of mutually A-conjugate vectors {uk}nk=1.

18

Now, we explain the main idea of the conjugate gradient descent method Suppose we want to
minimize a quadratic function f(x) = 1

2
xTAx + bx + c, where A is a symmetric positive definite

n× n square matrix. Here we use the same notations x∗, xi, x0 as in the last section. We generate
a set of n mutually A-conjugate vectors {uk}nk=1 ∈ Rn via Gram-Schmidt Algorithm. We define the
error ei = xi − x0. We can write ei as a linear combination of {uk}nk=1, i.e., ei =

∑n
k=1 αkuk.

The conjugate gradient method says that we just need to remove the error in one direction uk

at each step, that is

x0 = x∗ + e0 = x∗ +
n∑

k=1

αkuk,

x1 = x∗ + e1 = x∗ +
n∑

k=2

αkuk

...

xn−1 = x∗ + en−1 = x∗ + αnun

xn = x∗.

After n steps, we get all errors removed since we travesed through all directions uk. One question
left to be discussed is: Why is orthogonal basis not a good choice? The reason is that in order to
compute coefficients αk, we need A-conjugacy.

Suppose instead we have a set of orthogonal basis {b1,b2, · · · ,bn},bi · bj = 0, for any i ̸= j.
Now, e0 can be written as a linear combination of this set, i.e., e0 =

∑n
i=1 βibi. To compute one

coefficient βi, we multiply bT
i on both sides:

bT
i e0 =

n∑
i=1

βib
T
i bi,

βi = −bT
i e0

bT
i bi

.

Here, the problem is that we have no idea what e0 is. If we know it, x0 − e0 already gives the
optimal solution x∗. Using A-conjugacy solves this problem

Now, we can ask a new question. From which set of linear independent vectors should we
generate {uk}nk=1? The conjugate gradient method suggests using gradients:

Bn−1 = {∇f(x0),∇f(x1), · · · ,∇f(xn−1)}.

The gradient can be written in several forms: for some 1 ≤ i ≤ n− 1,

∇f(xi) = Axi + b = Axi − Ax∗ = A(xi − x∗) = Aei. (10)

We will explain how to generate the A-conjugate basis from Bn−1 via (15). We first explain the
mechanism of this method.

19

At each step, we choose one direction and minimize f along that direction. The iteration formula
for xi is xi+1 = xi + βi+1ui+1. To minimize, we set

d

dβi+1

f(xi+1) = ∇f(xi+1)
Tui+1

= ui+1
T∇f(xi + βi+1ui+1)

= ui+1
T (A(xi + βi+1ui+1 − x∗))

= ui+1
T∇f(xi) + βi+1ui+1

TAui+1

= 0.

(11)

βi+1 = −ui+1
T∇f(xi)

ui+1
TAui+1

. (12)

Since ei =
∑n

k=1 αkuk, we multiply ui+1
TA on both side,

ui+1
TAei =

n∑
k=1

αkui+1
TAuk

=⇒ ui+1
TAei = αi+1ui+1

TAui+1

=⇒ ui+1
TAei = αi+1ui+1

TAui+1

=⇒ αi+1 =
ui+1

TAei
ui+1

TAui+1

=
ui+1

T∇f(xi)

ui+1
TAui+1

. (13)

From (12) and (13), we see that αi+1 = −βi+1. This guarantees that once we minimize the function
along one direction, we remove the error in that direction completely. Hence, if we set αi =
ui

T∇f(xi−1)
ui

TAui
, we can finish the minimization process in at most n steps.

Some Properties

Claim 0.3.4.4. ∇f(xi) is orthogonal to uj for all j ≤ i, i ∈ {0, 1, . . . , n− 1}, j ∈ {1, . . . , i}.

Proof. We know that ei =
∑n

k=i+1 αkuk, i ∈ {0, 1, . . . , n − 1}. We multiply uj
TA, for some j ≤ i,

on both sides,

uj
T∇f(xi) = uj

TAei =
n∑

k=i+1

αkuj
TAuk = 0.

Claim 0.3.4.5. Let Bi−1 = {∇f(x0),∇f(x1), · · · ,∇f(xi−1)}, Di = {u1,u2, · · · ,ui}, for any i ∈
{1, 2, · · · , n}. Then, span{Bi−1} = span{Di}

Proof. First, we prove that {u1,u2, . . . ,ui} ⊆ span {∇f(x0),∇f(x1), . . . ,∇f(xi−1)}.

u1 = ∇f(x0) ∈ span{B0},

u2 = ∇f(x1) + γ1u1 = ∇f(x1) + γ1∇f(x0) ∈ span{B1},

20

...

ui = ∇f(xi−1) +
i−1∑
k=1

γkuk ∈ span{Bi−1}.

By definition, ui is a linear combination of ∇f(xi) and u1,u2, . . . ,ui−1. By recursion each ui ∈
span{Bi−1}. Hence, forward direction is proved.

Next, we prove that {∇f(x0),∇f(x1), . . . ,∇f(xi−1)} ⊆ span{u1,u2, . . . ,ui}. This direction is
obvious if we move some terms and express ∇f(xi) as a linear combination of ui:

∇f(x0) = u1 ∈ span{u1},

∇f(x1) = u2 − γ1u1 ∈ span{u1,u2},
...

∇f(xi−1) = ui −
i−1∑
k=1

γkuk ∈ span{u1, . . . ,ui}.

From claim 0.3.4.4 and claim 0.3.4.5, we know that ∇f(xi) is orthogonal to Bi−1.

Claim 0.3.4.6. Let Ei−1 = {∇f(x0), A∇f(x0), . . . , A
i−1∇f(x0)}. Then span{Ei−1} = span{Bi−1},

for any i ∈ {1, 2, . . . , n}.

Proof. From (15), we get that

∇f(xi) = A(xi − x∗)

= A(xi−1 + βiui − x∗)

= ∇f(xi−1) + βiAui

(14)

From (0.3.4.5), we know that

∇f(xi) = ∇f(xi−1) + βiA

i−1∑
k=0

∇f(xk)

We just need to prove the base cases:

∇f(x0) = u1 ∈ span{E0},

∇f(x1) = ∇f(x0) + β1Au1 = ∇f(x0) + β1A∇f(x0) ∈ span{E1}.

Using recursion, finishes the proof.

From claim 0.3.4.5 and claim 0.3.4.6, we get the result that span{Ei−1} = span{Di} and span{A∗
Di} ⊆ span{Ei} = span{Bi}. Therefore,∇f(xi+1) is orthogonal to span{A∗Di} for i ∈ {1, 2, . . . , n−
2}.

21

Next, we have proved a key fact that will be very helpful when we generate {uk}nk=1. By using
claim 0.3.4.3 and claim 0.3.4.6, we know that ∇f(xk)

TAum = 0 for all m ∈ {1, 2, . . . , k − 1}.
Therefore, we can determine all coefficients in Gram-Schmidt Algorithm:

γ1 = γ2 = · · · = γk−1 = 0,

γk = −∇f(xk)
TAuk

uT
kAuk

,

uk+1 = ∇f(xk) + γkuk. (15)

Now we present the algorithm of conjugate gradient method. The following algorithm is written
with respect to the function f(x) = 1

2
xTAx+ bx+ c.

Algorithm 4: Conjugate Gradient Method

conjugateGradient (A, b, x0, max iter);
Input : A, b, x0, max iter
Output: x∗

β = 0;
γ = 0;
count = 0;
n = size(A);
x = x0;
∇f(x) = Ax+ b;
u = Ax+ b;
while count ≤ n− 1 and count ≤ max iter do

count = count+ 1;

β = −uT∇f(x)
uTAu

;
x = x+ βu;
∇f(x) = Ax+ b;

γ = −∇f(x)TAu
uTAu

;
u = ∇f(x) + γu;

return x;

Simplification of the Algorithm

We can simplify the coefficients β and γ by modifying the following equations:

xi+1 = xi + βi+1ui+1

Axi+1 + b = Axi + b+ βi+1Aui+1

∇f(xi+1) = ∇f(xi) + βi+1Aui+1

Multiplying ∇f(xi+1) and ∇f(xi) to the equation yields,

∥∇f(xi+1)∥2 = βi+1∇f(xi+1)
TAui+1

∥∇f(xi)∥2 = −βi+1∇f(xi)
TAui+1

(16)

22

From (15), we know that ∇f(xi) = ui+1 + γiui. Since ui+1 is A-conjugate to ui, we combine (15)
and (16):

∥∇f(xi)∥2 = −βi+1ui+1
TAui+1.

The variable γ used in the algorithm can be computed by:

γ =
∥∇f(xi)∥2

∥∇f(xi−1)∥2
.

From claim 0.3.4.4 we know that ∇f(xi−1) is orthogonal to ui−1 and from (15), we get ui =
∇f(xi−1) − γiui−1. Then the variable β used in the algorithm can be computed in the following
way:

β = −∇f(xi−1)
T (∇f(xi−1)− γiui−1)

uT
i Aui

= −∥∇f(xi−1)∥2

ui
TAui

.

Notice that we can not change the denominator into ∥∇f(xi)∥2 because by the time we compute
β, xi has not been updated yet. i.e., we still do not know the value of ∥∇f(xi)∥2.

Hence, we can simplify the above algorithm by replacing β, γ by what we just computed. Since
all the setup of function and variables remain the same, we only present the new version of the
while loop:

Algorithm 5: Conjugate Gradient Method’s While Loop

while count ≤ n− 1 and count ≤ max iter do
count = count+ 1;

β = −∥∇f(x)∥2
uTAu

;
x = x+ βu;
∇f(x)pre = ∇f(x);
∇f(x) = Ax+ b;

γ = ∥∇f(x)∥2

∥∇f(x)pre∥2
;

u = ∇f(x) + γu;

return x;

Next, we give two example of applying conjugate gradient method.

Example 0.3.4.7. In the first example, we use conjugate gradient method to find the minimum point
of a quadratic function with a symmetric positive definite matrix. Suppose f(x) = 1

2
xTAx+ bx+ c,

where A =

[
3 2
2 6

]
, b =

[
−2
5

]
, c = 3. ∇f(x) = Ax+b. The optimal point x∗ that gives the minimum

value of f is x∗ =

[
−11
7
19
14

]
. We choose a initial starting point x =

[
−3
5

]
.

23

Figure 6: The conjuagte gradient de-
scent method

Figure 7: The conjugate gradient de-
scent method search path

The graph shows that conjugate gradient method only takes 2 steps because the matrix A is a 2
matrix. Figure 6 shows a search path with 2 directions. If we imagine two unit vectors in these two
directions, the Figure 6 shows the geometric explanation of A-conjugacy. Notice these two directions
would be orthogonal to each other if A = I.

Example 0.3.4.8. In the second example, we use a higher dimensional matrix A. The following
graph shows an example of using conjugate gradient method to solve the minimum value of the
function f(x) = 1

2
xTAx+ bx+ c.

Figure 8: The conjugate gradient descent method in a higher dimension

Suppose we have an arbitrary 100×100 symmetric positive definite matrix A. We can construct

24

a random vector b with 100 entries and an arbitrary starting point x0 as a vector of 100 entries.
Figure 9 is the graph of the change of ei with respect to each iteration step xi. It shows that if we
have a matrix with good eigenvalues, then conjugate gradient method takes much fewer steps than
the maximum number of iterations, i.e, the number of dimension of the matrix.

Here is a brief explanation of how the above matrix is designed. We first create a random
matrix A with size 100 × 100. Create a new symmetric matrix B by adding A with AT . Do
eigendecomposition on B to get its eigenvalue matrix D and eigenvector matrix V . Apply absolute
value to the eigenvalue matrix and add one, which guarantees that all eigenvalues are positive. We
denote the new eigenvalue matrix as D

′
Finally, we can get a random symmetric positive definite

matrix by multiplying ATD
′
A.

Algorithm 6: Create a random symmetric positive definite matrix

while count ≤ n− 1 and count ≤ max iter do
A = rand(100, 100);
B = A+ AT ;
[D, V] = eig(B);

D
′
= abs(D) + 1;

B
′
= ATD

′
A;

In summary, we make a conclusion on several advantages of conjugate gradient method:

• The update formula of the conjugate gradient method is simple.

• For quadratic functions, the conjugate gradient method always converges in a finite number
of iterations.

• When the matrix has a very high dimension n but its eigenvalues are clustered, then the
method converges much faster than n steps.

• The algorithm need no storage of the matrix A, hence, memory efficient.

25

0.4 Newton’s Method

From the previous two sections, we learned the Gradient Descent Method, which uses linear ap-
proximation or the gradient as the descent direction to minimize the function, and the Conjugate
Gradient Method, which solves large systems of linear equations. In this section, we are going to
present Newton’s Method which minimizes the function by minimizing a quadratic approximation
with the help of both the gradient and the Hessian matrix. We are going to introduce Newton’s
descent direction, Newton decrement, two phases convergence analysis and some examples. Then
we are going to take a look at the application of Newton’s method to a specific kind of function,
the self-concordant function.

26

0.4.1 The descent direction

Suppose the objective function f(x) : Rn → R is twice continuously differentiable and its Hessian
matrix is positive definite. Notice that second order differentiability guarantees the symmetry of its
Hessian matrix and positive definiteness guarantees the invertibility of the matrix. The second-order
Taylor approximation of this function at x is

f(x+ ϵ) = f(x) +∇f(x)T ϵ+
1

2
ϵT∇2f(x)ϵ+O(∥ϵ∥3), ϵ > 0.

We assume the approximation is local and ϵ is not too big. Therefore, we can ignore the last term
that contains a large power of ϵ. Since ∇2f(x) is positive definite, we can view the approximate
function as a convex and quadratic function of the variable ϵ. To achieve its minimum, we choose
ϵ = −∇2f(x)−1∇f(x). The intuitive idea is that we try to minimize the approximate function that
satisfies the first and second order derivative of the objective function and the minimizer is good
enough to serve as the descent direction for the objective function. For future notation, we denote
this quadratic approximation function as f̂(a+x) := f(a)+∇f(a)Tx+ 1

2
xT∇2f(a)x, for some fixed

point a.
Here is a picture illustrating the second order Taylor approximation of the objective function

f(x, y) = x2 + y2 + ex
2+y2 at the origin. In this case, the minimum of the quadratic approximation

function is the same as the minimum of the objective function.

Figure 9: 2nd order Taylor Approximation

Another intuition for Newton’s Method is the linear approximation of the gradient. The function
reaches its minimum specifically when ∇f(x) = 0. By linear approximation, ∇f(x+ ϵ) ≈ ∇f(x) +
∇2f(x)ϵ = 0. This suggests the same idea: ϵ = −∇2f(x)−1∇f(x).

The above explanation implies the idea of Newton’s Method. The descent direction for New-
ton’s Method is ∆x = −∇2f(x)−1∇f(x). The iteration step is xi+1 = xi + t∆xi, where ∆xi =
−∇2f(x)−1∇f(x). As before, t is a variable that determines the step size.

27

Theorem 0.4.1.1. Suppose we have a twice continuously differentiable function f whose Hessian
matrix is positive definite. Assume we have xi. By using Newton’s Method Newton’s descent direc-
tion, we can find xi+1 = xi − t∇2f(x)−1∇f(x) with appropriate t such that f(xi+1) < f(xi).

Proof. Denote y = −∇2f(x)−1∇f(x). Define a function g(t) = f(xi + ty). The derivative of this
function is g′(t) = ∇f(xi + ty) · y. Plug in t = 0:

g′(0) = ∇f(xi) · y = −∇f(xi)
T∇2f(x)−1∇f(x).

Since ∇2f(x) is positive definite, we know that its inverse is also positive definite, which means that
g′(0) < 0. Then in a small neighborhood (−ϵ, ϵ), we know the function g is decreasing. There exists
t ∈ (−ϵ, ϵ) such that g(t) < g(0), which is the same as saying f(xi) < f(xi − t∇2f(x)−1∇f(x)).
This guarantees that with a proper value of t, the Newton’s iteration step gives a sequence of points
with decreasing function value.

0.4.2 The Newton Decrement

The Newton decrement of f at x is defined to be

λ(x) = (∇f(x)T∇2f(x)−1∇f(x))
1
2 = (−∇f(x)T∆x)

1
2 .

The λ(xi) is obtained by computing the difference between f(xi) and its quadratic approximation:

f(xi)− inf
ϵ
f̂(x+ ϵ) = f(xi)− f̂(xi +∆xi)

= f(xi)− (f(xi) +∇f(xi)
T∆xi +

1

2
∆xT

i ∇2f(xi)∆xi)

= −∇f(xi)
T∆xi −

1

2
∆xT

i ∇2f(xi)∆xi

= λ(xi)
2 − 1

2
λ(xi)

2

=
1

2
λ(xi)

2

(17)

Therefore, λ(x) measures the difference between the objective function and the minimum of the
quadratic approximation at each x. Even though the minimum of the quadratic approximation is
not exactly the minimum of f , it is a good approximation. When x is close enough to the optimal
point x∗, the difference between inf f and inf f̂ should be fairly small, which is just saying that
λ(x∗) is very small. Hence, λ(x) is a good stopping criterion for Newton’s Method. As λ(x) gets
small enough, we can say that x is very close to x∗.

On top of that, the Newton decrement will be used in the Backtracking Line Search. Recallthat
the while condition of the Backtracking Line Search is

f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x, (18)

where ∇f(x)T∆x = −λ(x)2.

28

However, why is the Exact Line Search not a good approach? Remember that for the Exact
Line Search we have to compute t such that d

dt
f(xi + t∆xi) = 0. Therefore, we nee

d

dt
f(xi + t∆xi) = ∇f(xi + t∆xi)

T∆xi

= −∇f(xi + t∆xi)
T∇2f(x)−1∇f(x) = 0

Since both ∇2f(x)−1 and ∇f(x) cannot be zero. Therefore, we have ∇f(xi + t∆xi) = 0. Solving
this equation exactly is difficult unless you have a nice formula for ∇f.

Next, we talk a little bit about the affine invariation of Newton descent direction.
Suppose A ∈ Rn×n is a nonsingular matrix. Suppose we have a function f(x) : Rn → R. Define

a new function f1(y) = f(Ay), such that x = Ay. Then

∇f1(y) = AT∇f(x),∇2f1(y) = AT∇2f(x)A. (19)

Then Newton’s step for this new function f1 is

∆y = −∇2f1(y)
−1∇f1(y)

= −(AT∇2f(x)A)−1AT∇f(x)

= −A−1∇2f(x)
−1∇f(x)

= A−1∆x.

(20)

Hence, A∆y = ∆x. The descent directions of f1 and f follow the same affine transformation. For
Newton steps,

x+ t∆x = A(y + t′∆y).

0.4.3 Convergence Analysis of Newton’s Method

We assume a few conditions for the objective function f :

• f is twice continuously differentiable.

• ∇2f(x) ⪰ mI,m > 0, the smallest eigenvalue of ∇2f(x) is at least m.

• ∇2f(x) ⪯ M I,M > 0, the largest eigenvalue of ∇2f(x) is at most M .

• ∇2f(x) is a Lipschitz function with constant L, i.e., ∥∇2f(x)−∇2f(y)∥2 ≤ L ∥x− y∥2 for
any x, y ∈ dom(f).

The Lipschitz condition provides a bound on the third derivative of f . When the function is
quadratic, we have ∥∇2f(x)−∇2f(y)∥2 = 0 and L can be chosen to be 0. So when L is small or
close to zero, the function can be well approximated by a quadratic function. As we will show in
the next section, if f is a quadratic function, Newton’s Method takes only one step to reach the
optimal point x∗. Therefore, Newton’s Method works well for functions that have small Lipchitz
constant L.

Choose a number η ∈ (0, 3(1− 2α)m
2

L
) where α is the coefficient used in the Backtracking Line

Search as written in (18), m and L are defined above. Since α is an arbitrary number less than 1
2
,

29

we assume α is not too small, α ∈ (1
3
, 1
2
).We know that 3(1− 2α)m

2

L
is greater than 0 because α is

chosen to be less than 1
2
and m,L are both positive.

There are two phases for the convergence of Newton’s Method. The first phase is called the
Damped Newton Phase where ∥∇f(x)∥2 ≥ η. The second phase is called the Quadratically
Convergent Phase where ∥∇f(x)∥2 < η.

Damped Newton Phase

In this phase, Newton’s Method uses the Backtracking Line Search to determine the step size t. We
are going to show that there exists a number γ such that each iteration step results in a decrease
of at least γ in the objective function. We assume that ∥∇2f(x)∥ ≥ η. By the Taylor’s expansion
theorem,

f(x+ t∆x) = f(x) + t∇f(x)T∆x+
1

2
t2∆xT∇2f(y)∆x, (21)

for some y between x and x+ t∆x. Since ∇2f(x) ⪯ M I, we get

f(x+ t∆x) ≤ f(x) + t∇f(x)T∆x+
1

2
t2M∥∆x∥22. (22)

By definition, ∇f(x)T∆x = −λ(x)2 and

λ(x)2 = ∆xT∇2f(x)∆x ≥ m∥∆x∥22. (23)

Therefore, (22) can be simplified into:

f(x+ t∆x) ≤ f(x)− tλ(x)2 +
t2M

2

λ(x)2

m
(24)

Since (24) holds for all t, we choose t̃ = m
M

which is the minimizer of the right hand side.

f(x+
m

M
∆x) ≤ f(x)− m

M
λ(x)2 +

m

2M
λ(x)2

= f(x)− m

2M
λ(x)2

= f(x)− α
m

M
λ(x)2

(25)

Thus, t̃ = m
M

satisfies the exit condition of the while loop in the Backtracking Line Search. We
know that the Backtracking Line Search returns a step size t ≥ γ m

M
. Recall that γ is a variable

used to shrink t at each iteration.
Notice that by definition,

λ(x)2 = ∇f(x)T∇2f(x)−1∇f(x) ≥ 1

M
∥∇f(x)∥22

Hence, plugging in t ≥ γ m
M

and reorganizing (25) yield:

f(xi)− f(xi+1) ≥ αγ
m

M
λ(x)2

≥ αγ
m

M2
∥∇f(x)∥22

≥ αγ
m

M2
η2.

(26)

30

Therefore, at each iteration step, the amount of decrease is at least αγ m
M2η

2. The total number of
iterations will be bounded by

f(x0)− f(x∗)

αγ m
M2η2

,

where x0 is the starting point and x∗ is the optimal point.

Quadratically Convergent Phase

In the Quadratically Convergent Phase, Newton’s Method needs no Backtracking Line Search be-
cause we are going to prove that t = 1 satisfies the quit condition for the while loop. More
importantly, in this phase, f decreases quadratically at each step.

Remember we have two assumptions: η ≤ 3(1 − 2α)m
2

L
and ∥∇f(x)∥2 < η. We have not used

the Lipschitz condition in the Damped Newton Phase and we will use it here.
By the Lipschitz condition,∥∥∇2f(x+ t∆x)−∇2f(x)

∥∥
2
≤ L ∥t∆x∥2 . (27)

Define a new function f̃(t) = f(x + t∆x). Then f̃ ′′(t) = ∆xT∇2f(x + t∆x)∆x. This suggests
that we can multiply ∆x on both sides of (27) and get an inequality involving the second derivative
of f̃ :

|∆xT [∇2f(x+ t∆x)−∇2f(x)]∆x| ≤ tL ∥∆x∥32
|∆xT∇2f(x+ t∆x)∆x−∆xT∇2f(x)∆x| ≤ tL ∥∆x∥32

|f̃ ′′(t)− f̃ ′′(0)| ≤ tL ∥∆x∥32

|f̃ ′′(t)− f̃ ′′(0)| ≤ tL
λ(x)3

m
3
2

,

(28)

where the last inequality follows by (23).
We can get an upper bound on f̃ by computing the integral twice. We know that

f̃ ′′(0) = ∆xT∇2f(x)∆x = λ(x)2,

and
f̃ ′(0) = ∇f(x)T∆x = −λ(x)2, f̃(0) = f(x),

which are conditions for determining constants in the indefinite integral. Then with the help of (23)
and above conditions, we integrate (28) one time and get:

f̃ ′′(t) ≤ f̃ ′′(0) + tL ∥∆x∥32

f̃ ′(t) ≤ tf̃ ′′(0) +
t2L

2m
3
2

λ(x)3 − λ(x)2,
(29)

where f̃ ′(0) = −λ(x)2 and m
3
2 comes from λ(x)2 ≥ m∥∆x∥22.

f̃(t) ≤ t2

2
λ(x)2 +

t3L

6m
3
2

λ(x)3 − λ(x)2t+ f(x)

= −t2

2
λ(x)2 +

t3L

6m
3
2

λ(x)3 + f(x)

= −(
t2

2
− t3Lλ(x)

6m
3
2

)λ(x)2 + f(x).

(30)

31

Notice the above inequality looks similar to the while condition in the Backtracking Line Search
except that the coefficient is more complicated than α. Now, we need to use our two assumptions.

λ(x) ≤ 1√
m

∥∇f(x)∥2 ≤ 3(1− 2α)
m

3
2

L
,

and

α ≤ 1

2
− Lλ(x)

6m
3
2

.

Therefore, when t = 1,

f(x+∆x) ≤ −(
1

2
− Lλ(x)

6m
3
2

)λ(x)2 + f(x)

≤ −αλ(x)2 + f(x).

This means that the step size t = 1 satisfies the Backtracking Line Search exit condition. Next, we
prove that the rate of convergence is quadratic. Assume t = 1.

Theorem 0.4.3.1. If g is differentiable and ∇g is a Lipschitz function with constant L, i.e.,
∥∇f(x)−∇f(y)∥2 ≤ L ∥x− y∥2 . Then∥∥g(x+ y)− g(x)−∇g(x)Ty

∥∥
2
≤ L

2
∥y∥22 .

Proof. Change the left hand side into an integral,

g(x+ y)− g(x)−∇g(x)Ty =

∫ 1

0

(∇g(x+ ty)−∇g(x))y dt

≤
∫ 1

0

L ∥y∥22 t dt =
L

2
∥y∥22 .

By using the above theorem with g = ∇f , y = ∆x, we get

∥∇f(x+∆x)∥2 =
∥∥∇f(x+∆x)−∇f(x)−∇2f(x)T∆x

∥∥
2

≤ L

2
∥∆x∥22

≤ L

2m2
∥∇f(x)∥22 .

(31)

Therefore, we get the desired result, ∥∇f(xi+1)∥2 ≤
L

2m2 ∥∇f(xi)∥22.
When ∥∇f(xi)∥2 < η,

∥∇f(xi+1)∥2 ≤
L

2m2
η2 ≤ 3(1− 2α)

m2

L

L

2m2
η ≤ 1

2
η,

where the last inequality comes from the fact that α ∈ (1
3
, 1
2
) implies 3(1− 2α) < 1.

Therefore, once the condition ∥∇f(xi)∥2 < η holds for some xi, it is going to be true for all
steps afterwards. This means that after xi the method moves into Quadratically convergent phase
and t = 1 is always satisfied.

32

Recall from the Gradient Descent Method, we get an inequality (4):

∥∇f(x)∥2 ≥ 2m(f(x)− f(x∗)).

Here, we can reuse this inequality because the objective function f satisfies all the conditions to
derive this inequality. Readers can refer to the previous section to see the proof.

Suppose that starting from xi the method gets into the quadratically convergent phase. Then
by applying (31) recursively, we get

f(xk)− f(x∗) ≤ 1

2m
∥∇f(xk)∥22

∥∇f(xk)∥2 ≤
L

2m2
∥∇f(xk−1)∥22 ≤ (

L

2m2
∥∇f(xi)∥)2

k−i

2

(32)

We can simplify this even further:

L

2m2
∥∇f(xi)∥ ≤ L

2m2
3(1− 2α)

m2

L
≤ 1

2
,

∥∇f(xk)∥22 ≤
(
1

2

)2k−i

.

Therefore, we finally get

f(xk)− f(x∗) ≤ 1

2m

(
1

2

)2k−i

.

Suppose we want to obtain xk such that f(xk)− f(x∗) ≤ ϵ. We just need to make the upper bound
less than ϵ :

1

2m

(
1

2

)2k−i

≤ ϵ

2k−i ≤ log2 (2mϵ)−1

k − i ≤ log2 log2 (2mϵ)−1.

In practice, we only need 5 or 6 steps because
(
1
2

)26
is already 5.42 ∗ 10−20. Therefore, combining

two phases, the total number of iterations are bounded by

f(x0)− f(x∗)

αγ m
M2η2

+ 6.

0.4.4 Algorithm

The following algorithm uses the Backtracking Line Search to determine each iteration step size.

33

Algorithm 7: Newton’s Method

NewtonMethod (f, x0, ϵ, α, γ);
Compute the initial λ2 and ∆x for x0;

while λ2

2
≥ ϵ do

xi+1 = xi +∆x;
while f(xi)− f(xi+1) < −αt∇f(xi)

T∆x, do
t = γt;
xi+1 = xi + t∆x;

xi = xi+1;
∆xi = −∇2f(xi)

−1∇f(xi);
λ2 = ∇f(xi)

T∇2f(xi)
−1∇f(xi);

return xi;

0.4.5 Examples

Quadratic function

Consider a quadratic function f(x) = 1
2
xTAx + bx + c where A is symmetric and invertible. We

know that ∆x = −A−1(Ax+ b) = −x− A−1b and ∇f(x) = Ax+ b. Thus,

x1 = x0 +∆x0

= x0 − x0 − A−1b

= −A−1b,

which gives the minimum value for f . Hence, for any quadratic function, Newton’s Method con-
verges in one step.

Exponential Function in R2

Consider a convex function

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1.

We can compute its gradient and Hessian matrix directly:

∇f = ex1+3x2−0.1

[
1
3

]
+ ex1−3x2−0.1

[
1
−3

]
+ e−x1−0.1

[
−1
0

]
and

∇2f = ex1+3x2−0.1

[
1 3
3 9

]
+ ex1−3x2−0.1

[
1 −3
−3 9

]
+ e−x1−0.1

[
1 0
0 0

]
.

Therefore, we know ∆x and λ. By using Newton’s Method with a starting point x0 =

[
−5
−5

]
, we

get the following two graphs:

34

Figure 10: Newton’s Method Search
Path

Figure 11: Damped Phase and
Quadratically Convergent Phase

Figure 10 shows how f(xi)− f(x∗) decreases at each step. Here we see that Newton’s Method
gives a convergent sequence of points which leads to x∗. In Figure 11, the vertical axis represents
g(i) = f(xi)−f(x∗)

f(xi+1)−f(x∗)
. Once the algorithm gets into the quadratically convergent phase(starting from

index 9), its error decreases quadratically, from approximately 3 to 9 to 49. This means that
(f(xi)− f(x∗))2 ≈ f(xi+1)− f(x∗) and g(i)2 ≈ g(i+1). From the graph, we see that at step i = 10
and i = 11, g(10)2 ≈ g(11). This matches our convergence analysis.

In summary, once the iteration step moves into the Quadratically Convergent Phase, Newton’s
Method converges rapidly within 5 or 6 steps with high precision. However, storing the Hessian
matrix for each iteration is space inefficient and the cost of matrix and vector multiplication is high
if the function has large dimensions.

In practice, we usually do not have precise estimates for constants, m,M,L, which are used to

35

set up a range for η and separate two convergence phases. However, that is a theoretically correct
analysis. Next, we are going to introduce a new type of function, called self-concordant function,
whose convergence analysis is independent from these constants.

0.4.6 Newton’s Method for Self-concordant Functions

Definition 0.4.6.1. A function f(x) : R → R that has a third derivative and satisfies for all
x ∈ dom(f),

|f ′′′(x)| ≤ 2f ′′(x)
3
2

is called a self-concordant function.

From the definition, a self-concordant function f is convex because f ′′(x) ≥ 0.

Affine Invariant Property

Theorem 0.4.6.2. Suppose we have a self-concordant function f(x) : R → R. Define a new
function f̃(x) = f(ax+ b) for some constant a ̸= 0 and b. Then f̃(x) is also self-concordant.

Proof. Since f̃ is an affine transformation of f , f̃ is also convex and has its third derivative. f̃ ′′′ =
a3f ′′′(ax+ b) and f̃ ′′ = a2f ′′(ax+ b). Since f is self-concordant and ax+ b ∈ dom(f), we get

|a3f ′′′(ax+ b)| ≤ 2(a2f ′′(x))
3
2 ,

|f̃ ′′′(x)| ≤ 2f̃ ′′(x)
3
2 .

Therefore, f̃ is also self-concordant.

Theorem 0.4.6.3. Self-concordance is preserved under scalar multiplication if the constant c ≥ 1
and addition.

Proof. The first part is straightforward. If c ≥ 1, then c
3
2 ≥ c. So c|f ′′′(x)| ≤ 2(cf ′′(x))

3
2 . Next,

suppose we have two self-concordant functions f1, f2 : R → R. By definition and triangle inequality,
we have

|f ′′′
1 (x) + f ′′′

2 (x)| ≤ |f ′′′
1 (x)|+ |f ′′′

2 (x)|
≤ 2(f1

′′(x)
3
2 + f2

′′(x)
3
2)

≤ 2(f1
′′(x) + f2

′′(x))
3
2 .

Definition 0.4.6.4. A function f(x) : Rn → R is self-concordant if it is self-concordant along every
line in the domain, i.e., f̂(t) = f(x+ tv) is a self-concordant function of t for all directions v and
for all x ∈ dom(f). In other words, f(x) : Rn → R satisfies

d

dt
∇2f(x+ tv)

∣∣∣∣∣
t=0

⪯ 2
√

vT∇2f(x)v∇2f(x).

36

In higher dimension cases, the affine invariant property becomes the following:
Suppose we have a self-concordant function f(x) : Rn → R. Let A ∈ Rn×m,b ∈ Rn. Then

f(Ax+ b) is also self-concordant.

Example 0.4.6.5. Consider the negative logarithm.
Let f(x) = − log(x), dom(f) = {x > 0}. Second derivative f ′′(x) = 1

x2 . Third derivative f ′′′(x) =
− 1

x3 . Obviously, f ′′′(x) ≤ 2f ′′(x). From here, we know that functions f(x) =
∑n

k=1 − log(bk −
akx) are all self-concordant because self-concordance is preserved under affine transformation and
addition. We can then generalize to functions of higher dimensions f(x) =

∑n
k=1− log(bk −ak

Tx).

Example 0.4.6.6. Consider another function f(x) = x log(x)− log(x).
The domain of the function is dom(f) = {x > 0}. Second derivative f ′′(x) = x+1

x2 > 0. Third
derivative f ′′′(x) = −x+2

x3 . Then∣∣∣∣∣ f ′′′(x)

2f ′′(x)
3
2

∣∣∣∣∣ = x+ 2

x3
∗ x3

2(x+ 1)
3
2

=
x+ 2

2(x+ 1)
3
2

=
1

2

(
1

(x+ 1)
1
2

+
1

(x+ 1)
3
2

)
,

which reaches it maximum at x = 0. Therefore,∣∣∣∣∣ f ′′′(x)

2f ′′(x)
3
2

∣∣∣∣∣ = 1

and f is self-concordant.

We know that if the Hessian matrix of a function f is positive definite, then the function is
strictly convex. However, the converse is not true. For example, f(x) = x4. The second derivative
at 0 is f ′′(0) = 0, which is not positive definite. It can be proved that the Hessian matrix of a
strictly convex self-concordant function is positive definite everywhere. Readers who are interested
can refer to ***.

Recall from the previous section that the Newton decrement is

λ(x) = (∇f(x)T∇2f(x)
−1∇f(x))

1
2

Here, we are going to prove another way to express the Newton decrement.

Theorem 0.4.6.7. Let v be a descent direction. From (1), we know that v satisfies vT∇f ≤ 0. The
Newton decrement can be written as

λ(x) = sup
v ̸=0

−vT∇f(x)

(vT∇2f(x)v)
1
2

.

Proof. We know that ∇2f(x) is positive definite. Define w = (∇2f(x))
1
2v, then v = (∇2f(x))−

1
2w

and (∥w∥2)2 = vT∇2f(x)v. Then

sup
vT∇2f(x)v=1

−vT∇f(x) = sup
∥w∥2=1

−wT (∇2f(x))−
1
2∇f(x)

=
∥∥∥(∇2f(x))−

1
2∇f(x)

∥∥∥
2

= (∇f(x)T∇2f(x)
−1∇f(x))

1
2

= λ(x).

37

The second line comes from

w =
−(∇2f(x))−

1
2∇f(x)∥∥∥(∇2f(x))−

1
2∇f(x)

∥∥∥
2

.

Since w can be any unit vector, to get the supremum of the right hand side, we let w point in the
direction of ∇2f(x))−

1
2∇f(x). Therefore,

λ(x) = sup
vT∇2f(x)v=1

−vT∇f(x) = sup
v ̸=0

−vT∇f(x)

(vT∇2f(x)v)
1
2

.

The last equality is obvious because vT∇2f(x)v = 1.

From the previous theorem, we immediately get an inequality

λ(x) ≥ vT∇f(x)

(vT∇2f(x)v)
1
2

(33)

since λ(x) is the supremum. The equality is obtained when v = −∆x = ∇2f(x)−1∇f(x).

Theorem 0.4.6.8. Suppose f is a strictly convex self-concordant function. Then the self-concordance
inequality can be rewritten as ∣∣∣∣∣ ddt (f ′′(t))

− 1
2

∣∣∣∣∣ ≤ 1,

for all t ∈ dom(f).

Proof. The proof is very easy. The main point of this proof is to develop the upper and lower
bounds on f ′′(t). ∣∣∣∣∣ ddt (f ′′(t))

− 1
2

∣∣∣∣∣ =
∣∣∣∣∣− 1

2
(f ′′(t))

− 3
2 f ′′′(t)

∣∣∣∣∣ ≤ 1,

which is just another way of saying |f ′′′(x)| ≤ 2f ′′(x)
3
2 . Assume t ≥ 0 and the interval [0, t] is

contained in dom(f).. Then we can integrate the derivative between 0 and t:∫ t

0

d

dx
(f ′′(x))

− 1
2 dx = f ′′(t)−

1
2 − f ′′(0)−

1
2 ∈ [−t, t].

Hence, we get
−t ≤ f ′′(t)−

1
2 − f ′′(0)−

1
2 ≤ t

We can isolate f ′′(t) to get:

f ′′(0)−
1
2 − t ≤ f ′′(t)−

1
2 ≤ t+ f ′′(0)−

1
2 ,

f ′′(0)

(1 + t
√

f ′′(0))2
≤ f ′′(t) ≤ f ′′(0)

(1− t
√
f ′′(0))2

.
(34)

The right hand side inequality is valid when f ′′(0)−
1
2 − t ≥ 0, that is 0 ≤ t ≤ f ′′(0)−

1
2 .

38

Bound on f(x)− f(x∗)

Assume the function f(x) : Rn → R is a strictly convex self-concordant function and v is a descent
direction but does not need to be the Newton direction. Let f̃(t) : R → R be f̃(t) = f(x + tv),
which is also strictly convex and self-concordant.

By using the lower bound of (34), we can integrate to get that

f̃ ′(t)− f̃ ′(0) =

∫ t

0

f̃ ′′(x)dx

≥
∫ t

0

f̃ ′′(0)

(1 + x
√
f̃ ′′(0))2

dx

= −

√
f̃ ′′(0)

1 + x
√

f̃ ′′(0)

∣∣∣∣∣
t

0

=

√
f̃ ′′(0)−

√
f̃ ′′(0)

1 + t
√
f̃ ′′(0)

.

f̃ ′(t) ≥ f̃ ′(0) +

√
f̃ ′′(0)−

√
f̃ ′′(0)

1 + t
√

f̃ ′′(0)
. (35)

We integrate (39) again and get

f̃(t) ≥ f̃(0) + tf̃ ′(0) + t

√
f̃ ′′(0)− log

(
1 + t

√
f̃ ′′(0)

)
. (36)

Notice that the right hand side is a convex function of t. Then we can find t∗ that reaches its
minimum. We need to solve for t when its derivative is 0. We get

t∗ =
−f̃ ′(0)

f̃ ′′(0) +
√
f̃ ′′(0)f̃ ′(0)

.

39

Since (39) is always true for t ≥ 0, we can plug in t∗ and get:

inf
t≥0

f̃(t) ≥ f̃(0) + t∗f̃ ′(0) + t∗
√

f̃ ′′(0)− log

(
1 + t∗

√
f̃ ′′(0)

)
= f̃(0) +

(
f̃ ′(0) +

√
f̃ ′′(0)

)
−f̃ ′(0)

f̃ ′′(0) +
√
f̃ ′′(0)f̃ ′(0)

− log

1− f̃ ′(0)

f̃ ′′(0) +
√

f̃ ′′(0)f̃ ′(0)

√
f̃ ′′(0)


= f̃(0) +

−f̃ ′(0)√
f̃ ′′(0)

− log

 f̃ ′′(0)

f̃ ′′(0) +
√
f̃ ′′(0)f̃ ′(0)


= f̃(0)− f̃ ′(0)√

f̃ ′′(0)
+ log

1 +
−f̃ ′(0)√
f̃ ′′(0)



(37)

We did all these calculations because now we can treat f̃ ′(0)√
f̃ ′′(0)

as a variable. Notice that f̃ ′(0) =

vT∇f(x) and f̃ ′′(0) = vT∇2f(x)v. Recall the inequality we got for the Newton decrement. Here,
(33) can be rewritten as

λ(x) ≥ f̃ ′(0)√
f̃ ′′(0)

.

Consider the function g(x) = x + log(1 − x), (log is of base e). We know that g(0) = 0 and
g′(x) = −x

1−x
, which is negative on (0, 1). So the function g is decreasing on (0, 1). Then the following

inequality is true for any descent direction v provided that λ(x) < 1,

− f̃ ′(0)√
f̃ ′′(0)

+ log

1 +
−f̃ ′(0)√
f̃ ′′(0)

 ≥ λ(x) + log(1− λ(x)), (38)

f(x∗) = inf
t≥0

f̃(t) ≥ f̃(0) + λ(x) + log(1− λ(x)). (39)

On the last line, f(x∗) = inf
t≥0

f̃(t) is because we can choose v to be any descent direction. Notice

that λ(x) + log(1− λ(x)) ≥ −λ(x)2 on the interval (0, 0.68). Then (39) can be simplified into

f(x∗) ≥ f(x)− λ(x)2, λ(x)2 ≥ f(x)− f(x∗), (40)

provided that λ(x) < 0.68. Here we get the desired result.

Remember the termination condition for the general Newton’s method is λ(x)2

2
≤ ϵ. If the

objective function we are dealing with is self-concordant, then we can double the value still gives
us a valid upper bound. In conclusion, the termination condition of Newton’s method for self-
concordant functions become λ(x)2 < ϵ where ϵ < 0.682.

40

Convergence Analysis of Newton’s Method for Self-concordant Functions

Assume the objective function is strictly convex and self-concordant. Now we need neither upper
or lower bound on ∇2f(x) nor the Lipschitz condition. Instead, we only use the assumption:
self-concordance and the Newton decrement will replace ∥∇f(x)∥2. Similar to the classic analysis
of the Newton method, there are two phases: Damped Newton Phase where λ(xk) > η and
Quadratically Convergent Phase where λ(xk) ≤ η, η ∈ (0, 1/4).

Damped Newton Phase

Define f̃(t) = f(x+ t∆x). So far, we have not used the upper bound (34) for the second derivative
of self-concordant functions. We are going to use it now. Similar idea as before, we integrating the
upper bound of (34):

f̃ ′(t)− f̃ ′(0) =

∫ t

0

f̃ ′′(x)dx

≤
∫ t

0

f̃ ′′(0)

(1− x
√
f̃ ′′(0))2

dx

=

√
f̃ ′′(0)

1− x
√
f̃ ′′(0)

∣∣∣∣∣
t

0

=

√
f̃ ′′(0)

1− t
√

f̃ ′′(0)
−
√

f̃ ′′(0).

f̃ ′(t) ≤ f̃ ′(0) +

√
f̃ ′′(0)

1− t
√
f̃ ′′(0)

−
√

f̃ ′′(0). (41)

We integrate (41) again and get

f̃(t) ≤ f̃(0) + tf̃ ′(0)− t

√
f̃ ′′(0)− log

(
1− t

√
f̃ ′′(0)

)
.

Plugging in f̃ ′(0) = −λ(x)2 and f̃ ′′(0) = λ(x)2, we get

f̃(t) ≤ f̃(0)− tλ(x)2 − tλ(x)− log (1− tλ(x)) . (42)

Remember the above inequality is valid when 0 ≤ t ≤ f ′′(0)−
1
2 = 1

λ(x)
.

Claim 0.4.6.9. The Backtracking Line Search always ends up with a step size

t ≥ γ

1 + λ(x)
.

41

Proof. First of all, γ
1+λ(x)

< 1
λ(x)

because γ < 1, which is within the possible range for t. Let

t̃ = 1
1+λ(x)

. Plugging in t̃ to (42), we get

f̃(t̃) ≤ f̃(0)− t̃λ(x)2 − t̃λ(x)− log
(
1− t̃λ(x)

)
= f̃(0)− λ(x) + log(1 + λ(x)).

Now consider the function h(x) = −x+ log(1 + x) + x2

2(x+1)
. We know that for x > −1,

h(0) = 0, h′(x) =
−x2

2(1 + x)2
≤ 0.

Since the derivative is always less than 0, we know h is a monotonically decreasing function. Since
h(0) = 0, we know that

h(x) = −x+ log(1 + x) +
x2

2(x+ 1)
≤ 0.

Replace x by λ(x), we get that

h(x) = −λ(x) + log(1 + λ(x)) +
λ(x)2

2(λ(x) + 1)
≤ 0,

−λ(x) + log(1 + λ(x)) ≤ −λ(x)2

2(λ(x) + 1)

≤ −αλ(x)2

(λ(x) + 1)

=
−αλ(x)2

t̃
.

(43)

Therefore, f(x)− f(x+) = f̃(0)− f̃(t̃) ≥ −αλ(x)2

t̃
, where f(x+) denotes the next step.

In conclusion, at the end of the Backtracking Line Search, we have t ≥ γ
1+λ(x)

. At each iteration
step of the Damped Newton Phase, the function value decreases at least

αγ
λ(x)2

1 + λ(x)
≥ αγ

η2

1 + η

since x2

1+x
is an increasing function for x ≥ 0.

Quadratically Convergent Phase

In order to show that the unit step size is always valid for the Backtracking Line Search, we need
to restrict η to a smaller range. Take η = 1−2α

4
≤ 1

4
. Then λ(x) ≤ 1−2α

4
. Plugging in t = 1 to (42),

we get
f̃(1) ≤ f̃(0)− λ(x)2 − λ(x)− log (1− λ(x))

≤ f̃(0)− 1

2
λ(x)2 + λ(x)3

(44)

42

The above inequality comes from the fact that −x − log(1 − x) ≤ 1
2
x2 + x3 for x ∈ [0, 0.81] and

λ(x) ≤ 1−2α
4

< 0.81. We can simplify the inequality even further:

λ(x) ≤ 1− 2α

4
,

1

2
− α− λ(x) ≥ 0,

λ(x)2(
1

2
− α− λ(x) ≥ 0) ≥ 0,

1

2
λ(x)2 − λ(x)3 ≥ αλ(x)2,

−1

2
λ(x)2 + λ(x)3 ≤ −αλ(x)2

(45)

Therefore, (44) can be simplified into

f̃(1) ≤ f̃(0)− αλ(x)2,

or
f(x)− f(x+) = f̃(0)− f̃(1) ≥ αλ(x)2.

From this, we know that the unit step size t = 1 satisfies the exit condition of the Backtracking
Line Search. To prove that the convergent rate is quadratic, we need the following inequality:

λ(x+) ≤
(

λ(x)

1− λ(x)

)2

,

which is true for λ(x) < 1. The proof will not be presented here but can be found in ***. Since we
have an even smaller upper bound λ(x) ≤ 1/4, we get that

1

(1− λ(x))2
≤ 2,

λ(x+) ≤ 2λ(x)2.

(46)

Hence, by (40), f(x+)− f(x∗) ≤ λ(x+)
2 ≤ (2λ(x))2. Applying (46) recursively, we get that

f(xk)− f(x∗) ≤ λ(xk)
2 ≤

(
1

2

)1−2k

(λ(x0))
2k

≤
(
1

2

)1−2k (
1

4

)2k

=

(
1

2

)2k+1

(47)

Lastly, similar to the classic Newton’s method, we can find an upper bound for the total number
of iterations:

(f(x0)− f(x∗))
1 + η

αγη2
+ 6.

43

0.5 Interior-point Method

In this section, we are going to introduce the Interior-point method which solves inequality and
equality constrained convex optimization problems. Here is the statement of the problem:

minimize f0(x)

subject to fi(x) ≤ 0, for 1 ≤ i ≤ m,

hj(x) = 0, for 1 ≤ j ≤ n,

(48)

where f0, f1, . . . , fm : Rn → R are convex and twice continuously differentiable functions and
h1, . . . , hn : Rn → R are affine functions. Let D be the domain of this optimization problem
and let X ⊆ D is the set of feasible points, that is for all x ∈ X , fi(x) ≤ 0 and hi(x) = 0. Let f ∗

be the optimal value and x∗ be the point that gives f0(x
∗) = f ∗. Before we go into the details, we

first introduce some basic definitions about primal and dual problems.

0.5.1 Primal and Dual Problem

We refer to the above constrained convex optimization problem as the primal problem. Define the
Lagrangian Equation L : Rn × Rm × Rn → R as the following:

L(x,u,v) = f0(x) +
m∑
i=1

uifi(x) +
n∑

j=1

vihi(x),

where u ∈ Rm and v ∈ Rn are called Lagrange multipliers. We restrict the domain of u to be Rm
+ ,

i.e., ui ≥ 0 for all 1 ≤ i ≤ m, in order to let inequality constraints fi make sense.
For every x ∈ X ,u ⪰ 0, we have L(x,u,v) ≤ f0(x). If we pick ui = 0 whenever fi(x) < 0, then

inf
x

sup
u⪰0, v

L(x,u,v) = f0(x
∗)

Note that u ⪰ 0 means that ui ≥ 0 pointwisely.
Now we define the Lagrange Dual Function as the following:

g(u,v) = inf
x

L(x,u,v)

= inf
x

f0(x) +
m∑
i=1

uifi(x) +
n∑

j=1

vihi(x)
(49)

Given (58) and (49), we define the Lagrange Dual Problem as:

maximize
u⪰0,v

g(u,v)

subject to ui ≥ 0, for 1 ≤ i ≤ m, (50)

Let g∗ denote the optimal value of the Lagrange Dual Problem. The pair (u∗, v∗) with which g∗ is
obtained is called dual optimal. For any fixed x ∈ X , L(x,u,v) is an affine function of u and v.
Then g can be viewed as the pointwise infimum of the affine function of u and v, thus is concave.
The constraint u ⪰ 0 is an affine constraint. So the system (50) is a concave maximization problem,
which is also a convex optimization problem.

44

Theorem 0.5.1.1. The optimal value for the Primal problem is always greater than or equal to the
optimal value for the Dual problem, i.e., f ∗ ≥ g∗. This inequality is called the Weak Duality.

Proof. We know that
f ∗ = inf

x
sup
u⪰0, v

L(x,u,v),

g∗ = sup
u⪰0, v

inf
x

L(x,u,v).

Notice that the following inequality is necessary:

inf
x

L(x,u,v) ≤ sup
u⪰0, v

L(x,u,v).

Then we first take the infimum over x on both sides to get

inf
x

L(x,u,v) ≤ inf
x

sup
u⪰0, v

L(x,u,v),

and then take the supremum over u ⪰ 0, v on both sides,

sup
u⪰0, v

inf
x

L(x,u,v) ≤ inf
x

sup
u⪰0, v

L(x,u,v) ⇒ f ∗ ≥ g∗.

We define Duality Gap = f ∗ − g∗ and Strong Duality states there are x∗, u∗, v∗ such that
f ∗ = g∗.

Theorem 0.5.1.2. Slater’s Condition
Suppose we have a convex optimization problem. If there exists at least one strict feasible x̃ ∈ Rn,

then the strong duality holds.

The very last thing in this section is the Karush-Kuhn-Tucker conditions or KKT conditions.
Given (58), the KKT conditions are

• ∇f(x) +
∑m

i=1 ui∇fi(x) +
∑n

j=1 vi∇hi(x) = 0 (Stationarity)

• uifi(x) = 0 for 1 ≤ i ≤ m (Complementary slackness)

• fi(x) ≤ 0, hj(x) = 0 for 1 ≤ i ≤ m (Primal feasibility)

• ui ≥ 0 for 1 ≤ i ≤ m (Dual feasibility)

Theorem 0.5.1.3. (x∗, u∗, v∗) are primal and dual solutions such that the strong duality holds if
and only if (x∗, u∗, v∗) satisfy the KKT conditions.

Proof. (⇒) Since the strong duality holds with (x∗, u∗, v∗), we know that

f(x∗) = g(u∗, v∗)

= inf
x

f0(x) +
m∑
i=1

u∗
i fi(x) +

n∑
j=1

v∗i hi(x)

≤ f0(x
∗) +

m∑
i=1

u∗
i fi(x

∗) +
n∑

j=1

v∗i hi(x
∗)

≤ f(x∗).

45

We have the first inequality because plugging in any value for x would give a value greater than
the infimum over all x. The second inequality comes from the fact that fi(x

∗) ≤ 0, u∗
i ≥ 0, and

hi(x
∗) = 0. Since we cannot have f(x∗) < f(x∗), all inequalities should be equality. Therefore,

we get x∗ gives the infimum of L(x,u,v) = f0(x) +
∑m

i=1 u
∗
i fi(x) +

∑n
j=1 v

∗
i hi(x), which give the

stationarity condition. On top of that, the last equality tells us that
∑m

i=1 u
∗
i fi(x

∗) = 0, which is
the complemetary slackness condition. The primal the dual feasibility are obviously true.

(⇐) By integrate the stationarity condition, we get the following:

g(u∗, v∗) = f0(x
∗) +

m∑
i=1

u∗
i fi(x

∗) +
n∑

j=1

v∗i hi(x
∗)

= f(x∗).

We get the last equality from complementary slackness and primal feasibility conditions. Hence,
we get that (x∗, u∗, v∗) satisfy that f(x∗) = g(u∗, v∗), which gives the strong duality.

0.5.2 Newton’s Method with Equality constraints

In this section, we talk about the extension of Newton’s Method to optimization problems with
equality constraints. This method will play an important role for our later discussion about the
Interior-point Method. Consider the following convex quadratic function with equality constraints:

minimize
1

2
xTAx+ bTx+ c

subject to Qx = q, (51)

where A is a Rn×n symmetric positive semidefinite matrix and Q ∈ Rp×n, rank(Q) = p < n. The
assumption on the dimension of Q says that there are fewer equality constraints than variables.

Since there is no inequality constraints, the KKT conditions can be simplified into the following:

• Ax∗ + b+QTv∗ = 0

• Qx∗ = q

From the previous section, we know that x∗ is the primal solution and v∗ is the dual solution if and
only if they satisfy the KKT conditions. The KKT conditions can be rewritten in the matrix form:[

A QT

Q 0

] [
x∗

v∗

]
=

[
−b
q

]
, (52)

which is a set of (n + p) linear equations. The coefficient matrix is called the KKT matrix. We
can solve for x∗, v∗ if the KKT matrix is nonsingular. To answer this question, we introduce the
following theorem:

Theorem 0.5.2.1. Suppose A is a Rn×n symmetric positive semidefinite matrix and Q ∈ Rp×n,
rank(A) = p < n. Then the following are equivalent to KKT matrix being nonsingular:

• N (A) ∩N (Q) = {0}, i.e., the only vector that satisfies Ax = Qx = 0 is the zero vector.

46

• Qx = 0, x ̸= 0 implies xTAx > 0.

• F TAF ≻ 0, where F ∈ Rn×(n−p) is a matrix such that R(F) = N (Q).

Proof. (1 ⇒ 2) Choose x ̸= 0 ∈ N (Q). Since N (A)∩N (Q) = {0}, we know that x /∈ N (A), which
means that xTAx > 0. Proved 2.

(2 ⇒ 3) Choose any x ∈ Rn−p. Then Fx = z for some z ∈ N (Q). xTF TAFx = zTAz. By the
Rank-Nullity Theorem, rank(A) + dim(N (A)) = n, i.e., dim(R(F)) = n − p. So dim(N (F)) = 0,
which means that N (F) = {0}. If z ̸= 0, then we have x ̸= 0 and xTF TAFx = zTAz > 0.
Therefore, for all x ̸= 0, xTF TAFx > 0, which means that F TAF ≻ 0.

(3 ⇒ 1) Choose any x ̸= 0. dim(N (F)) = 0 implies that z = Fx ̸= 0. R(F) = N (Q) implies
that z ∈ N (A). Since F TAF ≻ 0, we get that zTAz > 0 for all z ∈ N (A). This means that
N (A) ∩N (Q) = {0}.

In conclusion, if A is instead a symmetric positive definite matrix, then the KKT matrix is
always nonsingular.

Next, we discuss how Newton’s Method can be applied. The previous discussion about convex
quadratic function is useful because we need to use the second-order Taylor approximation. Suppose
we are interested in finding the minimum of a twice continuously differentiable function f : Rn → R
whose Hessian matrix is positive definite. Let Q be the same matrix that denotes the equality
constraints. Assume that we start at a feasible point x0 such that Qx0 = q. We approximate f(x0)
by its second-order Taylor expansion f̂(x0 + v) and get the following minimization problem:

minimize
1

2
vT∇2f(x0)v +∇f(x0)

Tv + f(x0)

subject to Q(x0 + v) = q, equivalently Qv = 0. (53)

Here, the variable is v which is a descent direction that decreases the function value. Define the
Newton step ∆x to be the previous optimal solution x∗ and v∗ as before to be the dual solution.
The KKT conditions for this minimization problem become:

• ∇2f(x0)∆x+∇f(x0) +QTv∗ = 0

• Q∆x = 0

To write this in the matrix form, we get[
∇2f(x0) QT

Q 0

] [
∆x
v∗

]
=

[
−∇f(x0)

0

]
. (54)

Since ∇2f(x0) is positive definite, we know that the KKT matrix must be nonsingular. So we can
always invert the matrix and solve for ∆x and v∗. Hence, we have computed the Newton step ∆x
which is the optimal solution that satisfies the equality constraints and minimize the second-order
approximation function. However, we still get some confusions that haven’t been verified yet. How
do we know that ∆x is a descent direction for f(x), i.e., f(x+ t∆x) < f(x)? Similar to the classic
Newton’s Method, is Newton decrement λ(x) still a good estimate of the distance between f(x)
and inf

v
f̂(x+ v)?

47

Newton Decrement

We define the Newton’s Decrement for the equality constrained minimization problem to be:

λ(x) = (∆xT∇2f(x)∆x)
1
2 .

This is actually the same definition as in chapter 3. Previously, we defined ∆x = −∇2f(x)−1∇f(x),

then λ(x) = (∆xT∇2f(x)∆x)
1
2 = (∇f(x)T∇2f(x)−1∇f(x))

1
2 , which is our previous definition for

λ(x) for the classic Newton’s Method. Now, we discover the relation between λ(x) and f(x) −
inf
v
f(x+ v)

Theorem 0.5.2.2. The difference between f and its second-order Taylor approximation satisfies

f(x)− inf{f̂(x+ v) |Qv = 0} = λ(x)2

2
.

Proof. f̂(x+∆x) = inf{f̂(x+ v) |Qv = 0}. The Newton step is defined by the KKT conditions:[
∇2f(x) QT

Q 0

] [
∆x
v∗

]
=

[
−∇f(x)

0

]
. (55)

From the first row of the KKT matrix, we get that

∇2f(x)∆x+QTv∗ = −∇f(x).

We multiply ∆xT to both sides of the equation:

∆xT∇2f(x)∆x = −∆xT∇f(x), (56)

because (Q∆x)Tv∗ = 0. Then

f̂(x+∆x) =
1

2
∆xT∇2f(x)∆x+∇f(x)T∆x+ f(x)

=
1

2
∆xT∇2f(x)∆x−∆xT∇2f(x)∆x+ f(x)

= −1

2
λ(x)2 + f(x).

(57)

So f(x)− f̂(x+∆x) = 1
2
λ(x)2 finishes the proof.

This theorem means that similar to the classic Newton’s Method, 1
2
λ(x)2 is a good indicator of

accuracy and can serve as the stopping criterion. Now, we explain why ∆x is a descent direction
for f(x). We just need to check that the directional derivative of f in the direction ∆x is negative:

d

dt
f(x+ t∆x)

∣∣∣∣∣
t=0

= ∇f(x)T∆x = −λ(x)2 < 0.

So the Newton step is a descent direction for f(x).

48

Algorithm for Equality Constrained Newton’s Method

The following algorithm uses the Backtracking Line Search to determine each iteration step size.

Algorithm 8: Newton’s Method with Equality Constraints

NewtonMethod (f, Q, x0, ϵ, α, γ);
Compute the initial λ2 and ∆x for x0;

while λ2

2
≥ ϵ do

xi+1 = xi +∆x;
while f(xi)− f(xi+1) < −αt∇f(xi)

T∆x, do
t = γt;
xi+1 = xi + t∆x;

xi = xi+1;[
∆x
v∗

]
=

[
∇2f(x) QT

Q 0

]−1 [−∇f(x)
0

]
;

λ2 = ∆xT∇2f(x)∆x;

return xi;

0.5.3 Barrier Method and Logarithmic Barrier Function

Our goal now is to use equality constrained Newton’s method to help solve the minimization problem
with both inequality and equality constraints. Here is the statement of the problem:

minimize f0(x)

subject to fi(x) ≤ 0, for 1 ≤ i ≤ m,

Ax = b,

(58)

where f0, f1, . . . , fm : Rn → R are convex and twice continuously differentiable functions and A ∈
Rp×n, rank(A) = p < n. Let D be the domain of this optimization problem. How can we transform
the problem to be a minimization problem with only equality constraints? The clever idea is that
we use a differentiable function to approximate the inequality constraint.

One immediate answer would be to use an indicator function to denote the inequality constraint,
that is

1{fi(x)>0} =

{
0 if f(x) ̸= 0

1 if f(x) > 0

Then the original minimization problem can be changed into the following:

minimize f0(x) +
m∑
i=1

1{fi(x)>0} · ∞

subject to Ax = b.

We get rid of the inequality constraints but the objective function is no longer differentiable. So
using the indicator function is not a good choice. Our next step is to approximate this indicator
function.

49

We use the following log function to approximate the indicator function:

It(x) = −1

t
log(−x), dom(It) = −R+

where t > 0 is a variable that determines the accuracy of the approximation. The following Figure
12 shows the approximation. The red curve has a much bigger value of t compared to the blue
curve. As a result, the red curve is a better approximation to the indicator function than the blue
curve. From the picture, we know that as t gets larger, It(x) approximates the indicator function
better. Unlike the indicator function, It(x) is convex, differentiable and it increases to positive
infinity as x goes to 0.

Figure 12: The log function that approximates the indicator function

We can update our minimization problem by replacing the indicator function with this log
function:

minimize f0(x) +
m∑
i=1

It(fi(x)) = f0(x) +
m∑
i=1

−1

t
log(−fi(x))

subject to Ax = b.

We define ϕ(x) = −
∑m

i=1 log(−fi(x)) with dom(ϕ(x)) = {x ∈ D|fi(x) < 0, i = 1, 2, . . . ,m} to be
the logarithmic barrier function. This new objective function is convex and twice continuously
differentiable. To simplify the problem, we multiply t to the objective function and get the following
equivalent problem:

minimize tf0(x) + ϕ(x)

subject to Ax = b.
(59)

This new problem has a different minimum function value but the minimizer x∗ is the same as in
the previous problem. For now, we assume that the above minimization problem can be solved by
the equality constrained Newton’s Method. Here we compute the gradient and Hessian matrix of

50

the objective function that will be useful when using Newton’s Method:

∇(tf0(x) + ϕ(x)) = t∇f0(x) +∇ϕ(x) = t∇f0(x)−
m∑
i=1

∇fi(x)

fi(x)
,

∇2(tf0(x) + ϕ(x)) = t∇2f0(x) +∇2ϕ(x)

= t∇2f0(x) +
m∑
i=1

1

fi(x)
2∇fi(x)

T∇fi(x) +
m∑
i=1

1

−fi(x)
∇2fi(x).

For each t > 0, we have a corresponding minimization problem (59), from which we get a unique
solution x∗(t). We define the central path to be the set of points x∗(t), t > 0. For future reference,
x∗, u∗, v∗ all depend on t. Different t gives different value for these three variables. To simplify the
notation, we just use x∗, u∗, v∗ to mean x∗(t), u∗(t), v∗(t). By the KKT conditions, we know that
points on the central path x∗ satisfies

• t∇f0(x
∗) +∇ϕ(x∗) + AT v̂ = 0, for some v∗ ∈ Rp

• fi(x
∗) < 0, for i = 1, 2, . . . ,m,Ax∗ = b

From the above conditions, we can derive a dual solution (u∗, v∗) that satisfy

∇f(x∗) +
m∑
i=1

ui
∗∇fi(x

∗) + ATv∗ = 0. (60)

Define u∗ and v∗ by the following formula,

ui
∗ =

−1

tfi(x∗)
for i = 1, 2, . . . ,m ,and v∗ =

v̂

t
(61)

We see that ui
∗ > 0 because fi(x

∗) < 0 and t > 0. In addition,

0 = t∇f0(x
∗) +∇ϕ(x∗) + AT v̂

= t

(
∇f0(x

∗)−
m∑
i=1

∇fi(x)

tfi(x)
+ ATv∗

)

= t

(
∇f0(x

∗)−
m∑
i=1

ui
∗∇fi(x) + ATv∗

)
Therefore, we find the dual solution such that (60) is true. This means that x∗ minimizes the
lagrangian equation L(x, u∗, v∗) = f0(x) +

∑m
i=1 ui

∗fi(x) + (Ax − b)Tv∗. Since the dual function
g(u∗, v∗) is defined to be the infimum of L(x, u∗, v∗) over all x, we get that

g(u∗, v∗) = f0(x
∗) +

m∑
i=1

ui
∗fi(x

∗) + (Ax∗ − b)Tv∗

= f0(x
∗) +

m∑
i=1

−1

tfi(x∗)
fi(x

∗) + (Ax∗ − b)Tv∗

= f0(x
∗)− m

t
.

(62)

51

The last term (Ax∗ − b)Tv∗ disappears because Ax∗ = b. By Weak Duality, we know that

m

t
= f0(x

∗)− g(u∗, v∗) ≥ f0(x
∗)− f0

∗,

where we proved the important fact that as t → ∞, f0(x
∗(t)) approaches to the infimum of f0.

where we proved the important fact that as t → ∞, f0(x
∗(t)) approaches to the infimum of f0. As

said before, x∗ is a variable that depends on t. In order to see the result clearly, we change x∗ into
x∗(t).

Algorithm for Barrier Method

The following algorithm uses nested while loop. The outer while loop generates a new objective
function tf0+ϕ and updates t and x∗. The inner while loop uses Newton’s Method to compute the
minimizer x∗ given the objective function.

Algorithm 9: Newton’s Method with Equality Constraints

BarrierMethod (f0, fi, A, x0, ϵ, α, γ, t0 > 0, β > 1);
Compute the ϕ(x), KKT matrix and ∆x for x0;
t = t0;
while m/t ≥ ϵ do

1. Use equality constrained Newton’s Method to minimize tf0 + ϕ with x0 as the
starting point and solve for x∗;
2. x0 = x∗;
3. t = βt;

return x0;

The iteration step for Newton’s Method is the following:

while λ2

2
≥ ϵ do

xi+1 = xi +∆x;
while f(xi)− f(xi+1) < −αt∇f(xi)

T∆x, do
t = γt;
xi+1 = xi + t∆x;

xi = xi+1;[
t∇2f0(x) +∇2ϕ(x) AT

A 0

] [
x∗

v∗

]
=

[
−t∇f(x)−∇ϕ(x)

0

]
.;

λ2 = ∆xT∇2f(x)∆x;

52

0.6 Finite Element Method

[?]

53

