Martin Licht

Bernoulli Instructor at EPFL, Switzerland

  • Martin Licht
    Station 8
Martin W. Licht

I am a postdoctoral researcher at the Department of Mathematics at EPFL, Switzerland. My research focuses finite element methods for partial differential equations in electromagnetism, elasticity, and relativity.

After my PhD at the University of Oslo, I was a visiting assistant professor at UCSD. I have been visitor at the University of Minnesota, Cambridge University, and Brown University.

In my free time, I paint with acrylics and learn Mandarin.


01/2014 - 06/2017 PhD in Mathematics, University of Oslo.
Thesis: On the A Priori and A Posteriori Error Analysis in Finite Element Exterior Calculus. [Download] [Thesis Abstract]
10/2006 - 12/2013 Diplom (master's degree) in Computer Science, University of Bonn.
Diplom thesis: Smoothed Analysis of Linear Programming. [Download]
Final grade: "sehr gut".
10/2006 - 08/2012 Diplom (master's degree) in Mathematics, University of Bonn.
Diplom thesis: Discrete distributional differential forms and their applications.
Final grade: "sehr gut".
07/2018 - 08/2018 Micro-MBA, Rady School of Management, UCSD.

Positions & Activities

Since 09/2021 Bernoulli Instructor, EPFL, Switzerland.
01/2021 - 06/2021 Postdoctoral Scholar, UC San Diego, USA.
09/2020 - 12/2020 Postdoctoral Scholar, ICERM, Brown University, Providence, USA
Program Advances in Computational Relativity
07/2019 - 12/2019 Visitor at Isaac Newton Institute, University of Cambridge, UK.
Program Geometry, compatibility and structure preservation in computational differential equations
07/2017 - 06/2020 S.E.W Visiting Assistant Professor, UC San Diego, USA.
09/2015 - 05/2016 Visiting Research Scholar, University of Minnesota.
06/2010 - 09/2010 Visiting Scholar, Jülich Supercomputing Centre.
Domain Distribution for parallel Modeling of Root Water Uptake. Proceedings 2010, JSC Guest Student Programme on Scientific Computing, 2010. [Link]



Research Interests


Discrete harmonic vector fields on a square subject to mixed boundary conditions: we impose tangential boundary conditions along the middle parts of the four boundary faces and normal boundary conditions near the corners.

Even though the domain is simply connected, the space of harmonic vector fields is non-trivial. Its dimension is the first relative Betti number of the domain, which equals 3 in this example.

The low elliptic regularity of the vector Laplace equation in the presence of mixed boundary conditions is apparent.

Anulus Anulus

Discrete harmonic vector fields on an anulus, computed with a lowest-order Nedéléc method. Once with tangential boundary condition (left), then with normal boundary conditions (right). The space of harmonic vector fields reflects the non-trivial topology of the domain.

Selected Presentations

Undergraduate Supervision


«Great! Easy to understand despite French accent and explains examples very well!» - quote from my teaching reviews...
Restaurant Recommendations in Cambridge (and beyond)